A Conceptual Framework for Adaptation*

Roberto Bruni!, Andrea Corradini®, Fabio Gadducci®,
Alberto Lluch Lafuente?, and Andrea Vandin?

! Dipartimento di Informatica, Universita di Pisa, Italy
[bruni,andrea,gadducci]@di.unipi.it
2 IMT Institute for Advanced Studies Lucca, Italy
[alberto.lluch,andrea.vandin]@imtlucca.it

Abstract. In this position paper we present a conceptual vision of adap-
tation, a key feature of autonomic systems. We put some stress on the role
of control data and argue how some of the programming paradigms and
models used for adaptive systems match with our conceptual framework.

Keywords: Adaptivity, autonomic systems, control data, MAPE-K control loop

1 Introduction

Self-adaptive systems have been widely studied in several disciplines ranging from
Biology to Economy and Sociology. They have become a hot topic in Computer
Science in the last decade as a convenient solution to the problem of mastering
the complexity of modern software systems, networks and architectures. Still
there is no general agreement about the foundational model of such systems.

According to a widely accepted black-box or behavioural definition, a software
system is called “self-adaptive” if it can modify its behaviour as a reaction to a
change in its context of execution, where such “context” has to be understood
in the widest possible way, including both the external environment and the
internal state of the system itself. Typically the changes of behaviour are aimed
at improving the degree of satisfaction of some either functional or non-functional
requirements of the system, and self-adaptivity is considered a fundamental
feature of autonomic systems, that can specialize to several other so-called
self-* properties (like self-configuration, self-optimization, self-protection and
self-healing, as discussed for example in [6]).

An interesting taxonomy of the concepts related to self-adaptation is presented
in [13], where the authors also stress the highly interdisciplinary nature of the
studies of such systems. In fact, just restricting to the realm of Computer Science,
active research on self-adaptive systems is carried out in Software Engineering,
Artificial Intelligence, Control Theory, and Network and Distributed Computing,
among others. However, only a few contributions address the foundational aspects
of such systems, including their semantics or the use of formal methods for
analysing them (see e.g. [12,7]).

* Research supported by the European Integrated Project 257414 ASCENS



2 R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, A. Vandin

In this paper we propose an answer to very basic questions like “when is
a software system adaptive?” or “how can we identify the adaptation
logic in an adaptive system?”. We think that the limited effort placed in the
investigation of the foundations of (self-)adaptive software systems might be due
to the fact that it is not clear what are the characterizing features that distinguish
such systems from plain (“non-adaptive”) ones. In fact, almost any software
system can be considered self-adaptive, according to the black-box definition
recalled above. Indeed, any system of a reasonable size can modify its behaviour
(e.g., executing different instructions, depending on conditional statements) as a
reaction to a change in the context of execution (like the change of the value of a
parameter, or the input of a data from the user).

These simple considerations show that the behavioural definition of adaptivity
considered above is not useful in identifying which systems are adaptive, even
if it allows to discard many systems that certainly are not. We aim to have a
clear separation of concerns to distinguish situations where the modification
of behaviour is part of the application logic from those where they realize the
adaptation logic, calling adaptive only systems capable of the latter. We should
rather consider a white-box perspective which allows us to inspect, at least to a
certain extent, the internal structure of a system.

Self-adaptivity is often obtained by enriching the software that implements
the standard application logic with a control loop which monitors the context of
execution, determines the changes to be enforced, and enact them. Thus systems
featuring such an architectural pattern, often called MAPE-K [5, 6, 8], should
definitely be considered as adaptive. But as argued in [1] there are other, simpler
adaptive patterns, like the Internal Feedback Loop pattern, where the control
loop is not as neatly separated from the application logic as in MAPE-K, and
the Reactive Adaptation pattern, where the system just reacts to events from
the environment by changing its behaviour. Also systems realizing such patterns
should be captured by a convincing definition of adaptivity, and their adaptation
logic should be exposed and differentiated from their application logic.

Other software systems that can easily be categorized as (self-)adaptive are
those implemented with programming languages explicitely designed to express
these features. Paradigmatical examples are languages belonging to the paradigm
of Context Oriented Programming, where the contexts of execution are first-class
citizens [14], or to that of Dynamic Aspect Oriented Programming. Nevertheless,
it is not the language that make a program adaptive or not: truly adaptive
systems can be programmed in traditional languages, exactly like object-oriented
systems can, with some effort, in traditional imperative languages.

The goal of this position paper is to present a conceptual framework for
adaptation, proposing a simple structural criterion to characterize adaptivity
(§2). We discuss how systems developed according to mainstream methodologies
should be easily shown to be adaptive according to our definition (§3), and explain
how to understand adaptivity in many computational formalisms (§4). We also
propose a first formalization of our concepts and apply it to an autonomic robot
scenario (§5). Finally, we discuss future developments of these ideas (§6).



A Conceptual Framework for Adaptation 3

2 When is a software component adaptive?

Software systems are made of one or more processes, roughly programs in
execution, possibly interacting among themselves and with the environment in
arbitrarily complex ways. Sometimes an adaptive behaviour of such a complex
system may emerge from the interactions among its components, even if the
components in isolation are not adaptive. However, we do not discuss this kind
of adaptivity here: we focus instead on the adaptivity of simple components, for
which we introduce the following conceptual framework.

According to a traditional paradigm, a program governing the behaviour of
a component is made of control and data: these are two conceptual ingredients
that in presence of sufficient resources (like computing power, memory or sensors)
determine the behaviour of the component. In order to introduce adaptivity in this
framework, we require to make explicit the fact that the behaviour of a component
depends on some well identified control data. At this level of abstraction we are
not concerned with the way the behaviour of the component is influenced by the
control data, nor with the structure of such data.

Now, we define adaptation as the run-time modification of the con-
trol data. From this basic definition we derive several others. A component
is adaptable if it has a precisely identified collection of control data
that can be modified at run-time. Thus if either the control data are not
identified or they cannot be modified, then the system is not adaptable. Further,
a component is adaptive if it is adaptable and its control data are
modified at run-time, at least in some of its executions. And a component
is self-adaptive if it is able to modify its own control data at run-time.

Given the intrinsic complexity of adaptive systems, this conceptual view of
adaptation might look like an oversimplification. Our goal is to show that instead
it enjoys most of the properties that one would require from such a definition.

Any definition of adaptivity should face the problem that the judgement
whether a system is adaptive or not is often subjective. Indeed, one can always
argue that whatever change in the behaviour the system is able to manifest is
part of the application logic, and thus should not be deemed as “adaptation”.
From our perspective, this is captured by the fact that the collection of control
data of a component can be defined, at least in principle, in an arbitrary way,
ranging from the empty set (“the system is not adaptable”) to the collection of
all the data of the program (“any assignment is an adaptation”).

As a concrete example, we may ask ourselves whether the execution of a
simple branching statement, like if tooHeavy then askForHelp else push can
be interpreted as a form of adaptation. The answer is: it depends.

Suppose that the statement is part of the software controlling a robot, and
that the boolean variable tooHeavy is set according to the value returned by
a sensor. If tooHeavy is considered as a standard program variable, then the
change of behaviour caused by a change of its value is not considered “adapta-
tion”. If tooHeavy is instead considered as control data, then its change triggers
an adaptation. Summing up, our question can be answered only after a clear
identification of the control data.



4 R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, A. Vandin

Ideally, a sensible collection of control data should be chosen to enforce a
separation of concerns, allowing to distinguish neatly, if possible, the activities
relevant for adaptation (those that affect the control data) from those relevant
for the application logic only. We will come back to this point discussing several
computational paradigms in §4.

Of course, any computational model or programming language can be used to
implement an adaptive system, just by identifying the part of the data that governs
the behaviour. Consequently, the nature of control data can vary considerably,
ranging from simple configuration parameters to a complete representation of
the program in execution that can be modified at run-time. This latter scenario
is typical of computational models that support meta-programming or reflective
features even if, at least in principle, it is possible for any Turing-complete
formalism. We shall discuss in §4 how adaptivity, as defined above, can be
obtained in systems implemented according to several computational formalisms.

Several well accepted architectures of adaptive systems can be cast in our
framework, as discussed in §3. Just as an example, the IBM’s reference model for
adaptive systems, the MAPE-K control loop [5], can be considered as composed
of a component implementing the application logic and exposing suitable control
data, and of another component implementing the control loop and modifying
the control data of the former.

The identification of the special role that control data play in a system could
lead to better design principles and to novel analysis techniques for such systems,
as discussed in §6.

3 Architectures and patterns for adaptivity

Starting with the seminal IBM paper [5] introducing the MAPE-K model, several
contributionshave described possible architec-

tures for adaptive systems (or for autonomic (" AUTONOMIC MANAGER
systems, for which self-adaptivity is one of the
main features). According to the MAPE-K
architecture, which is a widely accepted refer-

Analyze

Control

ence model, a self-adaptive system is made of a Monitor Knowl<dse
component implementing the application logic,
equipped with a control loop that monitors the @l

Data

MANAGED COMPONENT

execution through suitable sensors, analyses
the collected data, plans an adaptation strat-
egy, and finally executes the adaptation of the
managed component through some effectors;
all the phases of the control loop access a shared knowledge repository. Adap-
tation according to this model naturally fits in our framework with an obvious
choice for the control data: these are the data of the managed component which
are either sensed by the monitor or modified by the execute phase of the control
loop. Thus the control data represent the interface exposed by the managed
components through which the control loop can operate, as shown in Fig. 1.

Fig. 1. Control data in MAPE-K.



A Conceptual Framework for Adaptation 5

[ o\
o N

N
S
|~

Actuate Monitor

A P External
xternal
controller
K Environment /Other agents MANAGED ELEMENT
CcD

A P @rnal FeedBck h‘.y

K Sense / React —
Communicate
cD Environment / Other agents MANAGED ELEMENT
A P Fig. 3. External (top) and internal (bottom) patterns.
K
Reactive Component
cD

MANAGED ELEMENT
Fig. 2. Tower of adaptation.

Sense / React

Environment

Fig. 4. Reactive pattern.

Clearly, by our definitions the managed component is adaptive, and the system
made of both the component and the control loop is self-adaptive.

The construction can be iterated, as the control loop itself could be adaptive.
As an example think of an adaptive component which follows a plan to perform
some tasks. This component might have a manager which devises new plans
according to changes in the context or in the component’s goals. But this planning
component might itself be adaptive, where some component controls and adapts
its planning strategy, for instance determining the new strategy on the basis
of a tradeoff between optimality of the plans and computational cost. In this
case also the manager (the control loop) should expose in an interface its control
data, which are conceptually part of its knowledge repository. In this way, the
approach becomes compositional in a hierarchical way, which allows one to build
towers of adaptive components (Fig. 2).

A richer architecture-based solution to adaptivity is proposed in [11]: at
run-time, an architectural model is mantained that describes the running imple-
mentation. This model, made of components and connectors, can be modified by
the control loop (adding or removing components or connectors, changing the
topology and so on); an Evolution Manager ensures the consistency between the
architectural model and the implementation, by changing the latter to reflect
the changes to the former. In this case the architectural model plays the role of
control data, as its modification triggers an adaptation of the implementation.



6 R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, A. Vandin

More recently, a preliminary taxonomy of adaptive patterns have been pro-
posed [1]. Two of these capture typical control loop patterns such as the internal
and the external ones. Like MAPE-K, also these patterns can be cast easily in
our framework (see Fig. 3): in the internal control loop pattern, the manager
is a wrapper for the managed component and it is not adaptable, while in the
external control loop pattern the manager is an adaptable component that is
connected with the managed component.

The taxonomy of [1] includes a third adaptive pattern that describes reactive
components (see Fig. 4). Such components are capable to modify their behavior in
reaction to an external event, without any internal control loop. In our conceptual
framework, a reactive system of this kind is (self-)adaptive if we consider as
control data the variables that are modified by sensing the environment.

4 Adaptivity in various computational paradigms

As observed in §3, the nature of control data can vary considerably depending
both on the degree of adaptivity of the system and on the nature of the com-
putational formalisms used to implement it. Examples of control data include
configuration variables, rules (in rule-based programming), contexts (in context-
oriented programming), interactions (in connector-centered approaches), policies
(in policy-driven languages), aspects (in aspect-oriented languages), monads
and effects (in functional languages), and even entire programs (in models of
computation exhibiting higher-order or reflective features).

We discuss a reasonable choice of control data for a few computational
formalisms that are suited for implementing adaptive systems.

Context-Oriented Programming. Many programming languages have been
promoted as suitable for programming adaptive systems [4]. A recent example is
context-oriented programing which has been promoted as a suitable programming
paradigm for autonomic systems in general [14]. Many languages have been
extended to adopt the context oriented paradigm. We mention among others
Lisp, Python, Ruby, Smalltalk, Scheme, Java, and Erlang. The main idea of this
paradigm is that the execution of a program depends on the run-time environment
under which the program is running.

The notion of context varies from approach to approach but in general it
refers to any computationally accessible information. A typical example is the
environmental data collected from sensors. In many cases the universe of all
possible contexts is discretised in order to have a manageable, abstract set of
fixed contexts. This is achieved, for instance by means of functions mapping the
environmental data into the set of fixed contexts. Code fragments like methods
or functions can then be specialized for each possible context. Such chunks of
behaviours associated with contexts are called variations.

The context-oriented paradigm can be used to program autonomic systems
by activating or deactivating variations in reaction to context changes. The key
mechanism exploited here is the dynamic dispatching of variations. When a piece



A Conceptual Framework for Adaptation 7

of code is being executed, a sort of dispatcher examines the current context of
the execution in order to decide which variation to invoke. Contexts thus act as
some sort of possibly nested scopes. Indeed, very often a stack is used to store the
current active contexts, and variations can be used to propagate the invocation
to the enclosing context scope.

The key idea to achieve adaptation along the lines of the MAPE-K framework
is for the manager to control the context stack (for example, to modify it in
correspondence with environmental changes) and for the managed component to
access it in a read-only manner. Those points of the code in which the managed
component queries the current context stack are called activation hooks.

The context stack acts then as the control data of our framework. With this
view, the only difference between the approach proposed in [14] and our ideas is
that the former suggests the control data to reside within the manager, while we
promote the control data to reside in the managed component’s interface.

More precisely, context-oriented programming can be used to instantiate
our framework as follows: for each adaptable component (at any level of the
adaptation tower) we must identify its possible contexts and implement the
corresponding variations. The behavior of each such component must be under
the scope of the component’s context. The scope can enclose the whole behavior
of the component or can be fine-grained at will, placing adaptation hooks where
needed. In any case, the component should not be able to modify its context
stack. Instead, the context stack should be made available for changes by the
component’s manager, which will be in charge of tuning the context stack after
inspecting environmental information and the managed component’s status.

Declarative Programming. Logic programming and its variations are one of
the most successful declarative programming paradigms. In the simplest variant,
a logic program consists of a set of Horn clauses and, given a goal, a computation
proceeds by applying repeatedly SLD-resolution trying to reach the empty goal
in order to refuse the initial goal.

Most often logic programming interpreters support two extra-logical predi-
cates, assert and retract, whose evaluation has the effect of adding or removing
the specified Horn clause from the program in execution, respectively, causing
a change in its behaviour. This is a pretty natural form of adaptation that fits
prefectly in our framework by considering the same clauses of the program as
control data. More precisely, this is an example of self-adaptivity, because the
program itself can modify the control data.

Rule-based programming is another example of a very successful and widely
adopted declarative paradigm, thanks to the solid foundations offered by rule-
based machineries like term and graph rewriting. As many other programming
paradigms, several rule-based approaches have been adapted or directly applied
to adaptive systems (e.g. graph transformation [3]). Typical solutions include
dividing the set of rules into those that correspond to ordinary computation and
those that implement adaptation mechanisms, or introducing context-dependent
conditions in the rule applications (which essentially corresponds to the use



8 R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, A. Vandin

of standard configuration variables). The control data in such approaches are
identified by the above mentioned separation of rules, or by the identification
of the context-dependent conditions. Such identification is often not completely
satisfactory and does not offer a neat and clear separation of concerns.

The situation is different when we consider rule-based approaches which enjoy
higher-order or reflection mechanisms. A good example is logical reflection, a key
expressiveness feature of rewriting and logical frameworks like rewriting logic. In
particular, the reflection mechanism of rewriting logic yields what is called the
tower of reflection. At the ground level, a rewrite theory R (e.g. software module)
let us infer a computation step R ¢ — ¢’ from a term (e.g. program state) ¢
into t’. A universal theory U lets us infer the computation at the meta-level,
where theories and terms are meta-represented as terms: U - (R,f) — (R,t).
The process can be repeated again and again as U itself is a rewrite theory. This
mechanism is efficiently supported by Maude [2] and has given rise to many
interesting meta-programming applications like analysis and transformation tools.

The tower of reflection immediately suggests a tower of adaptation as follows:
At each level i, theories are composed by some immutable part R; and some part
subject to modification CD;, i.e. the control data. A natural choice for control
data are subsets of rules. At the level 1, computation steps can modify both the
term ¢ and the control data CDy of level 0: U + Ry + CD1 = (Rg + CDq,t) —
(Ro + CDj,t'); and similarly for higher levels. It is easy to see that this tower of
adaptation easily fits in our framework.

It is not an accident that logical reflection has been proposed as a suitable
mean for modeling, specifying, verifying and executing adaptive systems. Some
of the most representative examples are reported in [9] where the authors discuss
various models of distributed (reflective) objects. One of the approaches described
in [9] follows a russian dolls approach, essentially based on the use of nested
components with logical reflection.

Models of Concurrency. Languages and models emerged in the area of con-
currency theory are natural candidates for the specification and analysis of
autonomic systems. We inspect some (most) widely applied formalisms to see
how the conceptual framework can help us in the identification of the adapta-
tion logic within each model. Petri nets are without doubts the most popular
model of concurrency, based on a set of repositories, called places, and a set
of activities, called transitions. The state of a Petri net is called a marking,
that is a distribution of resources, called tokens, among the places of the net. A
transition is an atomic action that consumes several tokens and produces fresh
ones, possibly involving several repositories at once. Since the topology of the net
is static, there is little margin to see a Petri net as an adaptive component: the
only possibility is to identify a subset of tokens as control data. Since tokens are
typed by repositories, i.e. places, the control data of a Petri net must be a subset
CP of its “control” places. Tokens produced or removed from places in CP can
enable or inhibit certain activities, i.e. adapt the net. The set CP can then be
used to distinguish the adaptation logic from the application logic: if a transition



A Conceptual Framework for Adaptation 9

modifies the tokens in C'P, then it is part of the adaptation logic, otherwise it
is part of the application logic. In particular, the transitions with self-loops on
places in C'P are those exploiting directly the control data in the application.

Mobile Petri nets allow the use of colored tokens carrying place names, so
that the output places of a transition can depend on the data in the tokens it
consumes. In this case, it is natural to include the set of places whose tokens are
used as output parameters from some transition in the set of control places.

Dynamic net allow for the creation of new subnets when certain transitions
fire, so that the topology of the net can grow dynamically. In this case, besides
the above considerations, such “dynamic” transitions are natural candidates for
the adaptation logic.

Classical process algebras (CCS, CSP, ACP) are certainly tailored to the
modeling of reactive systems and therefore their processes easily fall within the
hat of the interactive pattern of adaptation. Instead, characterizing the control
data and the adaptation logic is more difficult in this setting. Since they are based
on message passing facilities over channels, an obvious attempt is to identify
suitable adaptation channels. Processes can then be distinguished on the basis of
their behavior on such channels, but in general this task is more difficult w.r.t.
Petri nets, because processes will typically mix adaptation and computation.

The m-calculus, the join calculus and other nominal calculi, including higher-
order versions (e.g. the HOm-calculus) can send and receive channels names,
realizing some sort of reflexivity at the level of interaction: they have the ability to
transmit transmission media. The situation is then analogous to that of dynamic
nets, as new processes can be spawn in a way which is parametric w.r.t. the
content of the received messages. If again we follow the distinction between
adaptation channels names from ordinary channel names, then we need possibly
sophisticated forms of type systems or flow analysis techniques to separate the
adaptation logic from the application logic.

Paradigms with Reflective, Meta-Level or Higher-Order Features. The
same kind of adaptivity discussed for rewriting logic can be obtained in several
other computational paradigms that, offering reflective, meta-level or higher-order
features, allow one to represent programs as first-class citizens. In these cases
adaptivity emerges, according to our definitions, if the program in execution is
represented in the control data of the system, and it is modified during execution
causing changes of behaviour. Prominent examples of such formalisms, besides
rewriting logic, are process calculi with higher-order or meta-level aspects (e.g. HO
w-calculus, MetaKlaim), higher-order variants of Petri nets and Graph Grammars,
Logic Programming, and programming languages like LISP, Java, C#, Perl and
several others. Systems implemented in these paradigms can realize adaptation
within themselves (self-adaptivity), but in general the program under execution
can be modified also by a different entity, like an autonomic control loop written
in a different language, or in the same language but running in a separate thread.



10 R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, A. Vandin
5 A formal model for our framework

We propose a simple formal model inspired by our conceptual framework. Our
main purpose is to provide a proof-of-concept that validates the idea of developing
formal models of adaptive systems where the key features of our approach (e.g.
control data) are first-class citizens. The model we propose is deliberately simple
and based on well-known computational artifacts, namely labelled transition
systems. We apply it to a small scenario of an archetypal adaptive system.

Overall setting. We recall that a labelled transition system (LTS) is defined
as a triple L = (Q, A, —) such that @ is the set of states, A is the alphabet of
action labels and -C Q x A x Q is the transition relation. We write ¢ — ¢
when (¢, a,q’) €= and we say that the system can evolve from ¢ to ¢’ via action
a. Sometimes, a distinguished initial state gg is also assumed.

We further recall that labelled transition systems are the semantic model of
many system description languages such as various forms of automata, process
calculi or programming languages and that there are various extensions for taking
into account time, probability and other quantitative measures. Our presentation
is however agnostic in this regard.

The first ingredient of our formal scenario is an LTS S that describes the
behaviour of a software component. It is often the case that S is not running
in isolation, but within a certain environment. Thus, the second ingredient is
another LTS FE that we use to model the environment and that can constrain
the computation of S, e.g. by forbidding certain actions and allowing others. We
exploit the following composition operator over LTSs to define the behaviour of
S within F as the LTS S||E.

Definition 1 (composition). Given two LTSs L1 = (Q1,A1,—1) and Ly =
(Q2, Az, —2), we let Ly||La denote the labelled transition system (Q1 X Q2,41 U
Ay, —), where (q1,q2) = (¢}, qy) iff either of the following holds:

- q; i>7,q: fOTZ:1,2 ’U]ZthazeAl |’jf42 ;
- ¢; = ¢} and 45 = q; for {i,j} = {1,2} with a € A; \ A; .

Note that in general it is not required that A; = As: the transitions are
synchronised on common actions and are asynchronous otherwise.

Since adaptation is usually performed for the sake of improving a component’s
ability to perform some task or fulfill some goal, we provide here a very abstract
but flexible notion of a component’s objective in form of logical formulae. In
particular, we let ¢ be a formula (expressed in some suitable logic) characterizing
the component’s goal and we denote with the predicate L |= v the property of
the LTS L satisfying 1. Note that it is not necessarily the case that L = v gives
a yes/no result. For example, we may expect L = 1 to indicate how well L fits
1, or the likelihood that L satisfies ¥. In the more general case, we can assume
that L |= 1 evaluates to a value in a suitable domain.



A Conceptual Framework for Adaptation 11

Adaptable vs non-adaptable components. In a perfect but static world,
one would engineer the software component S by ensuring that S||E |= ¢ and
live happily afterwards (if such an S can be found). But this is not realistic
for several reasons: the analyst has only a partial knowledge of E; S must be
designed for running in different environments; the environment may change in
an unpredictable manner by external causes while S is running; the goal 1 may
be superseded by a more urgent goal 9’ to be accomplished. Roughly, we can
expect frequent variations of F and possible, but less frequent, variations of ).
The component is adaptable if it can cope with these changes in F and ¢ by
changes in its control data.

To one extreme, we can say that S has no control data, meaning the component
is not adaptable.

The other extreme is when the whole S is the control data. In fact an LTS
can be represented and manipulated in several forms: as list of transitions or as
a transition matrix when it is finite; as a set of derivation rules when it is finitely
specified. But this view would leave the component itself too loosely specified.

Most appealing is the case when S is obtained as the combination of some
statically fixed control FC' and of some control data C'D, i.e., S = FC||CD.
Then, adaptavity is achieved by plugging-in a different control data CD’ in
reaction to a change in the environment from F to E' (with S||E’ £~ ¢ and
FC||CD'||E' =), or to a change in the goal from 1 to ¢’ (with S||E = ¢" and
FC||CD'||E = ¢'), or to a change in both.

We assume here that the managed component F'C' is determined statically
such that it cannot be changed during execution and that each component may
run under a unique manager C'D at any time. However, adaptable components
come equipped with a set of possible alternative managers C' Dy, ..., C' Dy that can
be determined statically or even derived dynamically during the computation.

Knowledge-based adaptation. Ideally, given FC, E and v it should be
possible for the manager to select or construct the best suited control data CD;
(among the available choices) such that FC||CD;||E |= ¢ and install it over F'C.
However, in real cases E may not be known entirely or may be so large that it is
not convenient to represent it exactly. Therefore, we allow the manager to have a
perfect knowledge of F'C' and of the goal 1, but only a partial knowledge of F,
that we denote by O and call the observed environment, or contexzt.

The context O is derived by sensing the component’s run-time environment.
In general we cannot expect O and E to coincide: first, because the manager has
limited sensing capabilities and second because the environment may be changed
dynamically by other components. Thus, O models the current perception of the
environment from the viewpoint of the component.

The context O is expected to be updated frequently and to be used to adapt
the component. This means that C'D is chosen on the basis of F'C, O and %, and
that the manager can later discover that the real environment E differs from O in
such a way that FC||CDI||E (£ ¢ even if FC||CD||O [= 1. When this occurs, on
the basis of the discovered discrepancies between E and O, a new context O’ can



12 R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, A. Vandin

be guessed to approximate FE better than O, and O’ can be used to determine
some control data CD’ in such a way that FC||CD'||0" = .

Self-adaptive components. If the available control data strategies C D1, ..., C Dy,
are finitely many and statically fixed, then some precompilation can be applied
that facilitates the adaptation to the changing environment, as explained below.

We assume that, given F'C, ¢ and any C'D; we can synthesize the weakest
precondition ¢; on the environment such that O = ¢; implies FC||CD;||O [= .
Then, when the context changes from O to O’, the manager can just look for
some ¢, such that O’ |= ¢; and then update the control data to CD,.

Definition 2 (Self-adaptive component). A self-adaptive component is a
tuple (FC,CD, 9, ay) where F'C' models the managed component; CD is a family
of control data; 1 is the component’s goal; and oy : O x CD — CD is a function
that given a context O € O and the current control data CD returns a control
data CD' such that FC||CD'||O = 1.

Enforcing the analogy of LTS based control, a possible formalization of the
control manager of a self-adaptive component can be given as the composition of
two LTSs: a fixed manager F'M and the control data M C'D defined as follows. The
set of states of F'M is CD, and its transitions are labelled by context/goal pairs:

for any CD,CD’, 0,1 we have a transition CD 9¥, op'iff ay(0,CD) =CD'.
The LTS MCD has a single state and one looping transition labelled with
the current context O and the current goal t. The composition FM|MCD
constrains the manager to ignore all transitions with labels different from O, .
The manager updates the control data of the managed component according to
its current state. If C'D’ is the preferred strategy for O, but CD is the current

strategy, then the manager will move to C' D’ and then loop via CD’ 9¥, opr.

Stacking adaptive components. Pushing our formal model further, by ex-
ploiting the control data of (FC,CD,, ) we can add one more manager on top
of the self-adaptive component, along our tower of adaptation (§3).

Building on the above formalization, this second level control manager can
change the structure of M CD. For example, just by changing the label of its sole
transition this (meta-)manager can model changes in the context, in the current
goal, or in both.

However, one could argue that also other elements of the self-adaptive com-
ponent could be considered as mutable. For example, one may want to change
at run-time the adaptation strategy a,, that resolves the nondeterminism when
there are several control data that can be successfully used to deal with the
same context O, or even the set of available control data CD, for example as
the result of a learning mechanism. This can be formalized easily by exposing a
larger portion of F'M as control data.

Needless to say, also the above meta-manager can be designed as an adaptable
component, formalizing its logic via a suitable LTS that exposes some control
data to be managed by a upper level control manager, and so on.



A Conceptual Framework for Adaptation 13
5.1 Modelling robot swarms

We consider the case study of a robot swarm whose goal is to collect some items
on a unknown area. Scenarios of this kind are often called fostering scenario
and are being proposed in various flavours in the literature of swarm computing
in particular and adaptive systems in general (see e.g. [10]). Our own variant
considers that the area to explore is represented as a (discrete) grid. The robots
start in the origin of the grid (the nest of the swarm) and look around for items
to be brought back to the nest.

The possible actions A = {n, s, w, e, [, u} of the robots are to move towards
north (n), south (s), west (w), east (e), to load an item (I) or to unload an item
(u). The control FC of a robot has two states: explore (¢.) and return to the
nest (g,), with transitions: ¢ = ¢ for any q € {qc,¢.} and any a € {n, s, w, e};
Ge L> qr and gy — Ge-

The control data C'D can be used to make the robot freely explore a certain
area and make sure that if any item is found and loaded, then the robot goes
back to the nest and then unloads the item.

For example, let CD; = (Q1, A, —1) be defined as @1 = {¢; | ¢ € [0,10]};

@i 31 gi+1 and giy1 1 g; for i € [0,9]; g0 —1 go and g Ly gifori e [1,10].
The control data CD; lets the robot explore the area only along a northbound
path, up to ten cells far away from the nest. Similarly, let CDy = (Q2, A, —2)
be defined as Q2 = {g; | i € [0,10]}; ¢; —2 i1 and giy1 =2 ¢; for i € [0,9];
qo L, qo and g; i>2 q; for i € [1,10]; The control data C D5 lets the robot explore
the area only along a westbound path, up to ten cells far away from the nest.

Let 9 be the formula expressing the ability to find an item to load within at
most two cells away from the nest. Using the usual modal operators we can write
the formula as 1 = ¥ V 1y with ;1 = (n, s,w,e) () T, and ¥y = (n, s, w, e)t);.

Then, the most general hypothesis on the context O w.r.t. CD; for C||CD1||O
¥ is that O | ¢1 with ¢ = (n)(D)T V (n)(n)(l)T. Likewise, the most general
hypothesis w.r.t. C Dy is that ¢g = (w)(I)T V (w){w) () T.

Now, the context O observed by the robot may contain information gathered
during previous movements, or perceived via sensors. It may include admissible
directions for movements and even the (supposed) presence of items, which may
have been observed (but not loaded) on the way back to the nest to unload some
other item. The context O may not be faithful to E, because some obstacles
may have been introduced or removed (e.g. other robots may have moved) and
items may have been taken away in the meantime. Yet, O offers the basis to the
manager on which to take the decision of using CD; or CDs: if O = ¢; and
O }£ ¢2 then CD; is chosen; if O = ¢1 and O = ¢o then CDsy is chosen.

There are also two other cases. If O |= ¢; for i = 1,2, then one may take a
different interpretation for the logical V and count the number of disjuncts being
satisfied by O. For example, if two items can be found along the northbound
path within three cells and only one along the westbound path within three cells,
then C'D; is to be preferred.



14 R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, A. Vandin

If no distinction can be made for O between ¢, and ¢o, then a more accurate
sensing of the environment can be tried, to get O’ where a decision can be made.

When a robot swarm is considered, it could be useful to equip different
robots with different sets of strategies for adaptation, so to force them to explore
different, slightly overlapped, areas (to get a better covering and reduce the clash
of robots), or to retrieve items at different distances (to avoid greedy behaviors
at short distance which would leave far away items unobserved).

6 Conclusion and Future Developments

We presented a conceptual framework for adaptation, where a central role is
played by the explicit identification of the control data that govern the adaptive
behavior of components. As a proof of concept we have discussed how systems
conforming well-accepted adaptive architectures, including IBM’s MAPE-K and
several adaptive patterns, fit into our framework. We have also considered several
representative instances of our approach, focusing on foundational models of com-
putation and programming paradigms, and we proposed a simple formalization
of our concepts based on labelled transition systems.

We plan to exploit our conceptual framework by developing sound design
principles for architectural styles and patterns in order to ensure correctness-
by-design, and guidelines for the development of adaptive systems conforming
to such patterns. For instance, we might think about imposing restrictions on
the instances of our framework such as requiring an explicit separation of the
component implementing the application logic from the component modifying
the control data, in order to avoid self-adaptation within an atomic component
and to guarantee separation of concerns, and an appropriate level of modularity.

We also plan to develop analysis and verification techniques for adaptive
systems grounded on the central role of control data. For example, data- and
control-flow analysis techniques could be used to separate, if possible, the adap-
tation logic of a system (that modifies the control data) from the application
logic (that just reads them).

Another current line of research aims at developing further the reflective,
rule-based approach (§4). Starting from [9] we plan to use the Maude framework
to develop prototype models of archetypal and newly emerging adaptive scenarios.
The main idea is to exploit Maude’s meta-programming facilities (based on
logical reflection) and its formal toolset in order to specify, execute and analyze
those prototype models. A very interesting road within this line is to equip
Maude-programmed components with formal analysis capabilities like planning
or model checking based on Maude-programmed tools.

Even if we focused the present work on adaptation issues of individual
components, we also intend to develop a framework for adaptation of ensembles,
i.e., massively parallel and distributed autonomic systems which act as a sort
of swarm with emerging behavior. This could require to extend our local notion
of control data to a global notion, where the control data of the individual
components of an ensemble are treated as a whole, which will possibly require



A Conceptual Framework for Adaptation 15

some mechanism to amalgamate them for the manager, and to project them
backwards to the components.

Last but not least, we intend to investigate the connection of our work with
several other approaches presented in the literature for adaptive, self-adaptive
and autonomic systems: due to space limitation we have considered here just a
few such approaches.

References

1. Cabri, G., Puviani, M., Zambonelli, F.: Towards a taxonomy of adaptive agent-
based collaboration patterns for autonomic service ensembles. In: Smari, W.W.,
Fox, G.C. (eds.) CTS 2011. pp. 508-515. IEEE Computer Society (2011)

2. Clavel, M., Durdn, F., Eker, S., Lincoln, P., Marti{-Oliet, N., Meseguer, J., Talcott,
C.L.: All About Maude, LNCS, vol. 4350. Springer (2007)

3. Ehrig, H., Ermel, C., Runge, O., Bucchiarone, A., Pelliccione, P.: Formal analysis
and verification of self-healing systems. In: Rosenblum, D., Taentzer, G. (eds.)
FASE 2010, LNCS, vol. 6013, pp. 139-153. Springer (2010)

4. Ghezzi, C., Pradella, M., Salvaneschi, G.: An evaluation of the adaptation capabili-
ties in programming languages. In: Proceeding of the 6th international symposium
on Software engineering for adaptive and self-managing systems (SEAMS ’11).
ACM (2011)

5. Horn, P.: Autonomic Computing: IBM’s perspective on the State of Information
Technology (2001)

6. IBM Corporation: An Architectural Blueprint for Autonomic Computing (2006)

7. Karsai, G., Sztipanovits, J.: A model-based approach to self-adaptive software.
Intelligent Systems and their Applications 14(3), 46-53 (1999)

8. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41-50 (2003)

9. Meseguer, J., Talcott, C.: Semantic models for distributed object reflection. In:
Magnusson, B. (ed.) ECOOP 2002, LNCS, vol. 2374, pp. 1-36. Springer (2002)

10. O’Grady, R., Christensen, A.L., Pinciroli, C., Dorigo, M.: Robots autonomously
self-assemble into dedicated morphologies to solve different tasks. In: van der Hoek,
W., Kaminka, G.A., Lespérance, Y., Luck, M., Sen, S. (eds.) AAMAS 2010. pp.
1517-1518. IFAAMAS (2010)

11. Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johnson, G., Medvidovic,
N., Quilici, A., Rosenblum, D.S., Wolf, A.L.: An architecture-based approach to
self-adaptive software. Intelligent Systems and their Applications 14(3), 54-62
(1999)

12. Pavlovic, D.: Towards semantics of self-adaptive software. In: Robertson, P., Shrobe,
H.E., Laddaga, R. (eds.) Proc. IWSAS’00. LNCS, vol. 1936, pp. 65-74. Springer
(2000)

13. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-
lenges. ACM Transactions on Autonomous and Adaptive Systems 4(2) (2009)

14. Salvaneschi, G., Ghezzi, C., Pradella, M.: Context-oriented programming: A pro-
gramming paradigm for autonomic systems. CoRR abs/1105.0069 (2011)



