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1. Introduction

This online publication supplements the article Robust optimization in simulation: Taguchi

and Krige combined by G. Dellino, J.P.C. Kleijnen and C. Meloni. It provides a brief survey

of robust simulation-optimization methods, introducing Taguchian and metamodel-based

approaches. In particular, it summarizes Kriging metamodeling. It illustrates computational

issues through an additional example based on Bertsimas et al. (2010), taking into account

both environmental factors and implementation errors.

2. Robust simulation-optimization: an overview

The simulation-optimization process aims to identify the setting of input parameters leading

to optimal system performance, evaluated through a simulation model of the system itself.

The factors involved in the simulation model are often noisy and cannot be controlled or

varied during the design process, due to measurement errors or other implementation issues;

moreover, some factors are determined by the environment, not the managers. Therefore,

the presumed optimal solution may turn out to be sub-optimal or even infeasible. Robust

optimization tackles problems affected by uncertainty, providing solutions that are in some

sense insensitive to perturbations in the model parameters.
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Several alternative methods have been proposed for achieving robustness in simulation-

based optimization problems, adopting different experimental designs and/or metamodeling

techniques. The present section reviews the current state of the art on robust optimization

approaches, focusing on simulated systems. First, we summarize robust Mathematical Pro-

gramming. Then we discuss the approach introduced by Taguchi in the 1970s. Finally, we

consider methods to tackle robustness using metamodels (Kriging, in particular).

2.1 Robust Mathematical Programming through Uncertainty Sets

The robust optimization methodology developed by Ben-Tal and Nemirovski (2008) investi-

gates different choices of uncertainty sets to model data uncertainty, in order to characterize

the structure of the resulting robust counterparts of optimization problems. In particular,

their research focuses on robust formulations for Linear Programming (LP), Mixed Integer

Programming (MIP), Second Order Cone Programming (SOCP), and Semidefinite Program-

ming (SDP) problems. For this family of problems a fundamental issue is related to the

feasibility of the solutions with respect to the classical optima; in particular, the challenge

is to guarantee that the constraints will be satisfied for any possible value of the parameters

in a given uncertainty set. The computational complexity of the deterministic problem and

its robust counterpart is also investigated, to ensure that the problem remains tractable.

Although this approach has a strong theoretical background, there are several practical

problems to which it cannot be applied, for many reasons (see Beyer and Sendhoff, 2007):

the main disadvantage is the necessity of modeling a real-world problem through a linear

model with (at most) conic or quadratic constraints. Moreover, in order to satisfy all the

assumptions under which the method is applicable, the approximate model might become

very complex and difficult to manage. Finally, if the objective function is not defined through

a mathematical expression but can only be evaluated through simulations, the methodology

cannot be applied.

Zhang (2004) deals with some of the aforementioned cases, proposing a mathematical

formulation extending Ben-Tal’s approach to parameterized nonlinear programming, with

both equality and inequality constraints; the inequality constraints are supposed to be strictly

satisfiable and are referred to as safety constraints. Zhang points out that his approach is

especially suitable for applications where the satisfaction of safety constraints is of crucial

importance. However, the formulation of the robust problem assumes that a reasonable

estimate for the uncertain parameters is available, and the magnitude of the variations in
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the uncertain parameters is relatively small. He proved that his formulation reduces to Ben-

Tal’s formulation when the objective function and the inequality constraints are linear and

there is no uncertainty in the equality constraints. Anyway, further research is needed to

develop algorithms able to effectively solve the proposed formulation.

Mainly based on Ben-Tal’s approach, Bertsimas proposes a formulation for stochastic

and dynamic optimization problems using uncertainty sets, in contrast to the stochastic

programming approach which assumes full knowledge of the underlying probability distri-

butions. Bertsimas and Sim (2004) propose a robust optimization methodology—based on

linear and mixed-integer programming—to find an optimal supply chain control strategy,

assuming stochastic demand. Their approach incorporates demand randomness in a de-

terministic manner, without making any specific assumption on the demand distribution.

First, a robust formulation is given for the simple uncapacitated single-station case; then,

capacity constraints are introduced, both on the orders and on the inventory level; finally,

the network case is considered. The numerical experiments showed that, if only the mean

and the variance of the demand distribution are known, the robust policy often outperforms

the nominal policy, and also policies computed assuming full but erroneous knowledge of

the demand distribution. The authors also prove that the nominal problem and its robust

counterpart belong to the same complexity class, and that the robust formulation does not

suffer from the curse of dimensionality. The method guarantees the robust solution to be

feasible if less than a prespecified number of coefficients change; moreover, if the coefficient of

variation affects a bigger number of factors, those authors provide a probabilistic guarantee

that the solution will be feasible with high probability. The method has been applied by

Bertsimas and Thiele (2004, 2006).

In a recent paper, Bertsimas et al. (2010) propose an approach to solve robust optimiza-

tion problems in which the objective function is not explicitly available, but is derived from

simulation models. They implement an iterative local search method, moving along descent

directions of the worst-case cost function. The first step of the proposed algorithm consists

of exploring a (properly defined) neighborhood of the current point; then, a descent direction

can be found by solving a SOCP problem. The robust local search is designed to terminate

at a robust local minimum, which is a point where no improving directions are available for

the algorithm.
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2.2 Taguchi’s Approach

In the late 1970s, Genichi Taguchi, a Japanese textile engineer, introduced new ideas on

quality improvement, resulting in an innovative parameter design approach for reducing

variation in products and processes (see Taguchi, 1987). His methodology has been success-

fully applied in many important industries in the USA, such as Ford Motor Company and

Xerox.

Taguchi identifies three stages in the design process:

• System Design is a general approach to design a process that includes defining the

system’s objectives and goals.

• Parameter Design involves defining responses of interest and optimizing them w.r.t.

their mean and variation.

• Tolerance Design corresponds to fine-tuning the variables that have been optimized in

the previous stage by controlling the factors that affect them.

Notice that the last two stages may appear quite similar to each other, so it may be difficult

to keep them distinct; see Beyer and Sendhoff (2007). In fact, from a mathematical point of

view, parameter and tolerance design differ only in the granularity by which design parame-

ters are treated. On the other hand, from a practical point of view, it is important to distin-

guish between the two phases, because they can occur under very different constraints, e.g.

design time versus operation time. Taguchi—focusing on Parameter Design—distinguishes

between two different types of factors when designing a product or process:

• control or decision factors (which we denote by dj, j = 1, . . . , nd) are under the control

of the users; e.g., in inventory management, the order quantity may be controllable.

• noise or environmental factors (denoted by ek, k = 1, . . . , ne) cannot be controlled

while the process operates or the product is used; e.g. the demand rate in inventory

problems.

Notice that, in practice, the controllability of a factor depends on the specific situation;

e.g., in production or inventory management the decision makers may affect the demand

rate through an advertising campaign.
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Other authors distinguish between environmental uncertainty (e.g., demand uncertainty)

and system uncertainty (e.g., yield uncertainty); see Mula et al. (2006) and also Beyer

and Sendhoff (2007). Implementation errors may also be a source of uncertainty. These

errors occur whenever recommended (optimal) values of control factors have to be realized

in practice; see Stinstra and den Hertog (2008). Continuous values are hard to realize in

practice, because only limited accuracy is then possible; e.g., the optimal solution in the

Economic Order Quantity model (EOQ) turns out to be the square root of some expression,

but in practice only a discrete number of units could be ordered. Besides implementation

errors, there are validation errors of the simulation model—compared with the real system—

and the metamodel—compared with the simulation model; see Kleijnen and Sargent (2000).

Taguchi’s basic idea in dealing with robust parameter design is to take account of the

environmental (noise) factors in the experimental design and find the most insensitive, or

robust, system configuration in the decision (controllable) factors with respect to the noise

factors variation.

As far as the experimental strategy is concerned, Taguchi adopted crossed arrays, re-

sulting from the product of two experimental designs; one design varies the decision factors

d (obtaining the “inner array”, as Taguchi calls it), and one design varies the environmen-

tal factors e (thus obtaining the “outer array”). Combining them together is equivalent to

consider variations in the uncontrollable (environmental) factors at different locations in the

space of the controllable factors. Taguchi further distinguishes between factors that have a

location effect, changing the mean of the response or objective function, and factors that

have a dispersion effect, since they affect the variance of the process. Therefore, in the

optimization process, Taguchi takes into account the first two moments of the distribution

of the objective function, and combines them using the signal-to-noise ratio (SNR). Taguchi

suggests to consider three types of problems:

1. “Smaller the better”: select the factor combination in the inner array that maximizes

SNRS = −10 log

n0∑
i=1

w2
i

n0

(1)

where wi = w(d, ei) and n0 is the number of runs in the outer array.

2. “Larger the better”: select the inner array point that maximizes

SNRL = −10 log
1

n0

n0∑
i=1

1

w2
i

(2)
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3. “Target is best”. Here Taguchi proposes a two-step approach, suggesting two cases:

(a) µw (mean of w) is not related to σw (standard deviation of w). In this case the

steps are the following:

i - Select some control factors that maximize

SNRT1 = −10 log s2 (3)

where s2 is the sample variance of the outer array observations.

ii - Select some other inner array factor (not varied before) to make

w ≈ T (4)

where w is the average of the outer array observations and T is the target of

the quality characteristic.

(b) If σw is proportional to µw—a case likely to occur in practice—then

i - Select some control factors to maximize

SNRT2 = −10 log
w2

s2
(5)

ii - Select some other control factors not varied before, to make

w ≈ T .

Because the standard deviation is assumed to be proportional to the mean,

the controllable factors will change the mean but will not change the ratio

w2/s2 much.

Some aspects of the Taguchian approach have been severely criticized; see Myers et al.

(1992), Myers et al. (2009) and Del Castillo (2007). The mostly debated issues were the

following:

• A data set with no outer array variability and one with considerable outer array vari-

ability may result in the same SNR; therefore, SNR would be ineffective in Robust

Parameter Design.

• No attention is paid to the computational costs required by the experimental design:

in fact, using a crossed array design often requires a large number of runs, which can

be prohibitive in some industrial processes.
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• The method does not enable flexible modeling of the design variables, not taking

into account the interactions either among decision factors or between decision and

environmental factors. Standard ANOVA techniques can be used to identify the control

factors that impact SNR (see Myers et al., 2009; Robinson et al., 2004).

• Factors may have both location and dispersion effects, so the proposed two-step ap-

proach may be inadequate in practice. Moreover, the adoption of the SNR as perfor-

mance characteristic appears to be too restrictive (Park et al., 2006) and may confound

the mean and variance contributions; keeping them separately, instead, can provide

further insight into the process behavior.

Although based on Taguchi’s view of modeling uncertainty in a design process, some

authors (Trosset, 1997) have suggested to directly model the response as a function of both

decision and environmental factors, instead of using SNRs. Suppose we measure q perfor-

mance indicators, w1, . . . , wq; let wi(d, e) denote the value of the i-th performance indicator

when control and noise factors assume values (d, e) and let l[w1(d, e), . . . , wq(d, e)] denote

the corresponding loss. A robust design approach will seek a combination of control factors

that minimizes the expected loss, computed with respect to the random vector e. If the

distribution of e does not depend on d, then the objective function is

L(d) =

∫
l[w1(d, e), . . . , wq(d, e)] p(e) de (6)

where p(e) denotes the probability density function of e. The question arises: how have

statisticians sought to minimize (6)? A numerical optimizer would answer this question in

the following manner:

1. A design is chosen that specifies the (dj, ej) at which the wi have to be evaluated; this

approach results in a single “combined” array, instead of inner and outer arrays.

2. The wi(dj, ej) are used to estimate cheap-to-compute surrogate models ŷi.

3. Optimization is carried out using the surrogate objective function

L̂(d) =

∫
l[ŷ1(d, e), . . . , ŷq(d, e)] p(e) de. (7)

A similar approach is suggested by Sanchez (2000), who proposes a robust methodology,

starting from Taguchi’s approach and combining it with metamodeling techniques. Focusing
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on discrete-event simulation models, she identifies some performance characteristic, denoted

by w(d), d being the vector of decision factors, and an associated target value T . The goal

would be to select the decision factors to keep the objective function on target, with zero

variance. However, this would be an ideal situation—hard to realize in practice. Therefore,

to find a trade-off between performance mean and variability, Sanchez proposes to use a

quadratic loss function, defined as follows: assuming that no loss occurs when w(d) achieves

the target T , the quadratic loss function can be written as

l(w(d)) = c[w(d)− T ]2 (8)

where c is a scaling factor, accounting for possible units conversions. It follows from (8) that

the expected loss associated with configuration d is

E[l(w(d))] = c[σ2 + (µ− T )2] (9)

where µ and σ2 denote the true mean and variance of the output function w.

As far as the robust design is concerned, Sanchez tries to characterize the system behavior

as a function of the control factors only. First, an appropriate experimental design is planned,

for both decision and environmental factors. Then, for every combination of decision factor

configuration i and environmental factor configuration j, the sample average wij and sample

variance s2
ij are computed—after suitable truncation to remove initialization bias. Finally,

summary measures across the environmental space for each decision factor configuration i

are computed:

wi· =
1

ne

ne∑
j=1

wij (10)

V i· =
1

ne − 1

ne∑
j=1

(wij − wi·)2 +
1

ne

ne∑
j=1

s2
ij (11)

where ne is the number of combinations in the environmental design.

Two initial metamodels are then built, using regression polynomials: one for the perfor-

mance mean, and one for the performance variability; for discrete-event simulation exper-

iments, Sanchez recommends a design which allows for fitting at least a quadratic effect.

Robust configurations are identified by combining information resulting from the mean and

variance metamodels, using (9) where the true mean and variance are replaced by the esti-

mate given in (10) and (11). If the configurations suggested by the robust design were not
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among those initially tested, further experimentation could be needed: in this case, how-

ever, computational time could be saved, by screening the decision factors involved in the

experiment.

Al-Aomar (2002) presents an iterative scheme to solve simulation-based optimization

problems. His work considers a discrete-event simulation model; the (controllable) design

parameters are d1, . . . , dn, and its performances are evaluated through the metrics w1, . . . , wq.

Then, an overall utility function U is defined combining multiple performance measures into

a single function. The general formulation of the system design problem can be defined as

follows:

max U(w1, . . . , wq)

s.t. wi = fi(d1, . . . , dn), 1 ≤ i ≤ q (12)

dj ∈ S, 1 ≤ j ≤ n

where S is the feasible space for the control variable d. His methodology consists of four

modules: i) the Simulation Modeling (SM) module uses a discrete-event simulation model

to evaluate the set of performance metrics wi associated with each solution alternative d,

in terms of means and variances; ii) the Robustness Module (RM) transforms the mean

and variance of each performance measure into a Signal-to-Noise Ratio—thus adopting a

Taguchian approach; iii) the Entropy Method (EM) module builds the utility function U

by linearly combining the performance criteria, through a proper choice of the weights,

dynamically updated at each iteration; iv) the Genetic Algorithm (GA) module is utilized

as a global optimizer, working on a set of possible solutions that are selected basing on

the overall utility function value at each point. A convergence test at the end of each step

controls whether any stopping criterion is met (maximum number of generations reached

or convergence rate achieved). For a detailed discussion we refer to El-Haik and Al-Aomar

(2006).

Because of the criticism on SNRs, some authors like Myers et al. (2009) suggest to build

separate models for the mean and variance of the system performance, adopting the so-called

Dual Response Surface approach. This methodology has some advantages:

• It provides an estimate of the mean and standard deviation at any location in the space

of control design variables.
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• Some insight can be gained regarding the roles of these variables in controlling process

mean and variance.

• It could be easily integrated into process optimization based on a squared error loss

criterion, Êe(w − T )2 = [Êe(w)− T ]2 + σ̂2
e(w)w or the maximization of an estimated

quantile Êe(w)−2σ̂e(w) in the Taguchian “larger the better” case, or the minimization

of Êe(w) + 2σ̂e(w) in the Taguchian “smaller the better” case.

• It allows the use of constrained optimization; that is, choosing a target value of

µ̂e[w(d, e)] or—better to say—a threshold T below which one cannot accept the solu-

tion. Therefore, the following problem has to be solved:

min
d
σ̂2

e[w(d, e)] s.t. µ̂e[w(d, e)] ≤ T (13)

Several values of T may be used to consider different user’s alternatives.

The Dual Response Surface approach has been successfully applied to robust process

optimization; see Del Castillo (2007). Quite often, in fact, the purpose is to reach a desired

performance for the process that manufactures some products—e.g. by minimizing the cost

of operation in a production process, or the variability of a quality characteristic, or by

maximizing the throughput of the manufacturing process. Evidently, multiple—and some-

times conflicting—responses are usually considered in practical problems. However, due to

noisy data and/or to uncertainty affecting some parameters of the model, achieving robust

performances is of interest.

Miró and del Castillo (2004) point out that the classical Dual Response Surface approach

takes into account only the uncertainty due to the noise factors; they identify an additional

component due to the uncertainty in the parameter estimates. Therefore, they propose an

extension of the Dual Response Surface approach, introducing the additional variance of

the parameters estimates into an objective function that combines it with the noise factor

variance. Optimizing such a function will achieve a process that is robust with respect to

both noise factor variation and uncertainty in the parameter estimates. One such function

is the variance of the predicted response, where the variance is now taken with respect to

both the parameter estimates of the model and the noise factors.

Robustness is also a central issue in design optimization. Many engineering applications

have to deal with the uncertainty which affects the components of the system under design;
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ignoring the source of uncertainty and assuming some parameters to be exactly known and

constant might cause the designed system not to be adequate whenever the environmental

setting changes.

Bates et al. (2006) compare different methods to perform robust optimization, applying

them to solve robust design optimization of a mechanical component: the objective is to

achieve a given mean cycle time while minimizing the standard deviation of the cycle time.

The authors discuss the following issues: the Taguchian approach, using a crossed-array

design and maximizing the SNR; the Response Model analysis, involving both decision and

environmental factors, and accounting for factor interactions; and the Dual Response Surface

approach. They propose a framework called Stochastic Emulator Strategy, consisting of the

following building blocks: (i) DoE, using an array that includes both design and noise factors;

they prefer space-filling designs (such as LHS) or lattice designs rather than orthogonal arrays

or fractional factorials, to achieve more uniform coverage of the input space. (ii) Metamodel

(or emulator, as they called it) fitting, to represent the relationship among all factors—

disregarding whether they are decision or environmental factors—and the chosen response.

(iii) Metamodel prediction, to estimate the mechanical component cycle time for a given set

of factor values and evaluate the effect of noise on the output by studying how it behaves

when subjected to small changes in factor values. (iv) Optimization process, minimizing the

output variance with a target value for the mean cycle time.

Lee and Park (2006) present a methodology—based on Kriging metamodels—to tackle

robust optimization in deterministic simulation-based systems. They use simulated anneal-

ing to solve the optimization problem. The approach is basically the one proposed by

Taguchi, employing mean and variance as statistics to study the insensitivity of the response

to possible variations in the noise factors.

The use of Kriging as an approximation technique is justified because Kriging provides

reliable approximation models of highly nonlinear functions, and this feature is even more

useful in robust optimization than it is in classical optimization because in general the

nonlinearity of the response variance could be higher than that of the mean. Kriging is

also recommended by Jin et al. (2003), who compare some metamodeling techniques and—

based on the results of some tests performed on both mathematical functions and a more

complex case study—they conclude that Kriging models provide higher accuracy than the

other alternatives. However, Allen et al. (2003) notice that regression modeling should not

be quickly discarded for cases in which the number of runs is particularly low.
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Lee and Park aim at determining a design point d providing a target response value µw

with the smallest variation σ2
w. Therefore they formulate the robust optimization problems

as follows:

min σ2
w (14)

s.t. µw ≤ µw (15)

Because the analytical computation of the mean and variance of a given response w is

not always possible (too time expensive or too difficult), Lee and Park approximate these

two statistics by means of the first-order Taylor expansion:

µw ≈ w(d, e)d̄,ē (16)

σw ≈
nd∑
i=1

(
∂w

∂di

)2

d̄

σ2
di

+
ne∑
j=1

(
∂w

∂ej

)2

ē

σ2
ej

(17)

where d̄ and ē denote the mean vectors of the control and noise factors, and σ2
di

and σ2
ej

represent the variance of the i-th control variable and the j-th noise variable. However, (16)

and (17) are valid approximations only for monotonic functions, which is usually a property

difficult to ascertain when working with black-box simulation models.

The following issues emerge from Lee and Park (2006):

• The authors fit one single metamodel over the control-by-noise factors space. They

suggest that this metamodel be highly accurate, because it will be used to derive the

approximation model for the variance.

• To derive a model for the mean of the response, they use the approximation provided

by (16), applying it to the metamodel computed.

• To derive a model of the variance, they use Monte-Carlo simulations performed not on

the simulation model but on the (inexpensive) metamodel obtained in the beginning.

• They point out that post-processing may be necessary because of the nonlinearity both

of the mean response and (even more) of its variance, and the approximation errors

coming from fitting the metamodel of the variance based on the metamodel of the mean

response function. The post-processing consists in solving the following optimization
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problem, restricting the search area to the neighborhood of the optimal solution found

so far:

min σ̂2
w =

nd∑
i=1

(
∂ŷ

∂di

)2

σ2
di

+
ne∑
j=1

(
∂ŷ

∂ej

)2

σ2
ej
, (18)

s.t. ŷ(d, e)d̄,ē ≤ µ̄w (19)

This post-processing would aim to further refine the robust optimum, but experimental

results usually show rather small improvements.

• As a further research topic, they suggest to adopt two distinct metamodels, approxi-

mating the true response and the true variance. They suggest to adopt this approach

for strongly nonlinear models, especially the variance model.

3. Robust Optimization and Kriging metamodels

The purpose of the section is to integrate the description of Kriging within our framework for

robust simulation-optimization discussed in the main paper. We still interpret the simulated

system from the Taguchian viewpoint, but use Kriging as a metamodeling technique.

In this section we describe the characteristics of the Kriging metamodeling technique in

more general terms than in the main paper, adopting a notation which goes beyond the one

characterizing our robust methodology. We also refer to Sacks et al. (1989) and Santner et

al. (2003) for a detailed exposition of both theory and implementation of Kriging.

A Kriging model is

y(x) = f(x) + Z(x) , (20)

where f(x) is a function of the n-dimensional x that is a global model of the original function,

and Z(x) is a stochastic process with zero mean and non-zero variance that represents a local

deviation from the global model. Usually, f(x) is

f(x) =

p∑
i=0

βi fi(x) (21)

where fi : Rn → R, i = 0, . . . , p, are polynomial terms (typically of zero, first or second

order). The coefficients βi, i = 1, . . . , p, are regression parameters. The p + 1 regression

functions can be regarded as components of a vector

f(x) = [f0(x), . . . , fp(x)]T . (22)
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Suppose the design sites are (x1, . . . ,xNs), where xi ∈ Rn, i = 1, . . . , Ns. Then we can

compute the matrix F by evaluating the vector f(x) at the design sites, thus obtaining:

F =

 fT (x1)
...

fT (xNs)

 =

 f0(x1), . . . , fp(xNs)
...

...
f0(x1), . . . , fp(xNs)

 . (23)

The covariance of Z(x) is:

Cov[Z(xj), Z(xk)] = σ2R(xj,xk), j, k = 1, . . . , Ns (24)

where σ2 is the so-called process variance and R is the correlation matrix with elements

Rjk = Rθ(xj,xk), representing the correlation function between any two of the Ns samples

xj and xk, with unknown parameters θ. R is a symmetric matrix of dimension Ns × Ns,

with diagonal elements equal to 1. The form of the correlation function Rθ(xj,xk) can be

chosen among a variety of functions proposed in the literature. Yet, the exponential family

is used most frequently

Rθ,p(xj,xk) =
n∏
i=1

exp (−θi|xji − xki|pi) (25)

where n is the dimension of the input variable. When pi = 2, then (25) is called the Gaussian

correlation function. The parameters pi determine the smoothness of the correlation function;

e.g., pi = 2 implies an infinitely differentiable function.

The Kriging predictor can be written as a linear combination of the observed responses:

y(x) = cT (x)ys , (26)

where ys is the vector of the response function evaluated at the Ns design sites, ys =

[y(x1), . . . , y(xNs)]
T . The weights c(x) are obtained by minimizing the Mean Squared Error

(MSE), which is given by

MSE[y(x)] = E
[(

cT (x)ys − y(x)
)2]

. (27)

In order to keep the predictor unbiased, the following constraint has to be satisfied:

FTc(x) = f(x) . (28)

It can be proven that the MSE in (27) can be rewritten as

MSE[y(x)] = σ2[1 + cT (x)Rc(x)− 2cT (x)r(x)] (29)
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where r(x) = [R(x1,x), . . . , R(xNs ,x)]T is the vector of the correlations between Z(xi) and

Z(x). Minimizing the MSE in (29) with respect to c(x) under the constraint (28) gives the

Kriging predictor

ŷ(x) = ĉT (x)ys = r̂T R̂−1(ys − Fβ̂) + fT β̂ , (30)

where

β̂ = (FT R̂−1F)−1FT R̂−1ys (31)

follows from the Generalized Least-Squares (GLS) criterion or the Maximum Likelihood

Estimation (MLE) criterion.

Assuming the stochastic process Z(x) to be Gaussian, MLE maximizes a likelihood func-

tion using numerical optimization techniques to determine an estimate θ̂ (Sacks et al., 1989).

The likelihood function depends on the coefficients β in the regression model, the process

variance σ2, and the correlation parameters θ. Given the correlation parameters θ and hence

R, the MLE of β is given by (31), and the MLE of σ2 is given by

σ̂2 =
1

Ns

(ys − Fβ̂)TR−1(ys − Fβ̂) . (32)

Therefore, the MLE of R follows from

min
θ

(detR)1/Nsσ̂2 ; (33)

this is a global nonlinear optimization problem, which requires a heuristic procedure for its

solution.

In our study, we estimate Kriging models using algorithms and functions of the MATLAB

DACE Toolbox (see Lophaven et al., 2002), which includes some heuristics to solve the

problem in (33), and offers some support for experimental designing.

In our own experiments we use so-called ordinary Kriging

y(x) = µ+ Z(x) (34)

where µ = β0 and f0 ≡ 1.

4. Examples

A set of inventory problems based on the Economic Order Quantity (EOQ) model provides a

first group of examples we use to illustrate and test our methodology (as documented in the
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main paper). In spite of its simplicity—and maybe even thanks to that simplicity—it helps

to describe each step of the heuristic procedure, and the computational results are easy to

understand. The main characteristics of these models are described in the main paper. In

subsection 4.1 we detail the computational results for the robust EOQ model with uncertain

demand rate and cost coefficients. Subsection 4.2 introduces another example taken from

Bertsimas et al. (2010).

4.1 Robust optimization with uncertain demand rate and cost co-
efficients

Inspired by Borgonovo and Peccati (2007), we extend our robust formulation of the EOQ

model such that it accounts for fixed but uncertain cost parameters. So the number of en-

vironmental factors increases from one (demand rate) to three (holding and set-up costs,

besides demand rate). We assume that all the environmental factors follow normal distri-

butions, with mean equal to the nominal value (the value when no uncertainty is assumed;

namely, µh = 0.3 for the holding cost, µK = 12000 for the set-up cost, and µa = 8000 for the

demand rate); the standard deviation of each factor is equal to 10% of the nominal value;

we resample negative values; we assume that the three factors are independent.

4.1.1 1L-KM approach

We again adopt a crossed design, combining a uniform space filling design of size nQ = 10

for the decision factor Q and a LHS design of size ne = 120 for the three-dimensional space

of the environmental factors a, K, and h.

Next we average over the environmental factors to derive a set of nQ output values for

both the mean and the standard deviation, using (18) and (19) in the main paper with na

replaced by ne. Based on these I/O data, we fit one Kriging metamodel for each of the two

outputs; see the solid curve in Figures 1 and 2, which also displays the true cost function

obtained from

E(C) =

(
µK
Q

+ c

)
µa +

µhQ

2
, (35)

and the true standard deviation computed through

σC =

√
σ2
a

(
c2 +

2cµK
Q

+
σ2
K + µ2

K

Q2

)
+
µ2
aσ

2
K

Q2
+
σ2
hQ

2

4
. (36)
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We use leave-one-out cross-validation to validate our two metamodels. Based on the

relative prediction errors which are smaller than 1%, we decide to accept both metamodels.

We let the threshold T vary in the interval [8200, 8600] (the same as for the EOQ model

with uncertain demand rate only), which gives the estimated Pareto frontier in Figure 3.

4.1.2 2L-KM approach

Following the 2L-KM approach, we first build a LHS design for the four input factors,

without distinguishing between decision and environmental factors; we choose a design of

size n = 1200 (we keep the same sample size as in the 1L-KM approach).

We run the simulation model over these n input combinations, and collect the corre-

sponding output values Ci (i = 1, . . . , n). Next, we fit a Kriging metamodel based on these

n I/O combinations. We produce a bigger DOE by crossing a uniform space filling design

for the order quantity Q and a LHS design for the three environmental factors, accounting

for their distribution; the overall design size is N = NQ×Ne = 30×200 = 6000. Notice that

the bigger value for N does not imply a computationally expensive task, because we use this

bigger design to compute Kriging predictions instead of running the simulation model.

Next we compute the sample average of cost predictions through (22) in the main paper

and the sample standard deviation of cost through (23) in the main paper, and derive

two Kriging metamodels; namely, one for the expected cost and one for the cost standard

deviation; see again Figures 1 and 2. We validate these metamodels through leave-one-

out cross-validation. As noticed in the EOQ example with uncertain demand rate, both

metamodels give small relative prediction errors; namely, around 10−6.

Finally, we take 100 equally spaced values of the threshold T in the interval [8200, 8600],

and collect the corresponding optimal solutions to estimate the Pareto frontier; see again

the dashed curve in Figure 3.

4.1.3 Bootstrapped confidence regions

To analyze the variability in the optimal solutions of the Pareto frontier, we apply bootstrap-

ping, as discussed in Section 4.2 in the main paper. Therefore, we derive the bootstrapped

output data and use them to fit B pairs of bootstrapped Kriging metamodels. We use these

bootstrapped metamodels to derive the rectangular confidence regions for two points on the

original estimated Pareto curve. Part (a) of Figure 4 corresponds with the relatively small

threshold value T = 8250 so Q̂+ = 25531.91 for the 1L-KM approach and Q̂+ = 29943.98 for
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the 2L-KM approach; part (b) corresponds with the larger threshold value T = 8600 so we

obtain the smaller Q̂+ = 25291.39 for 1L-KM and Q̂+ = 24001.84 for 2L-KM. Both Kriging

approaches give confidence regions that cover the true point, although the confidence region

associated with 2L-KM is smaller—which confirms what we have already observed in Section

5.2 in the main paper.

Again, we notice that there is still a probability of violating the threshold on the standard

deviation for some elements of the Pareto frontier. Therefore, the manager may prefer to im-

plement a solution providing a relatively small probability of becoming infeasible (estimated

through the confidence region), accepting higher costs.

4.2 Bertsimas et al.’s example

Besides uncertainties in coefficients or parameters, uncertainties can result from implementa-

tion errors; i.e. models cannot be implemented to infinite precision (Stinstra and den Hertog

(2008)). Therefore, in the optimization process, the decision maker could account for both

these aspects. In this section, we consider an example proposed by Bertsimas et al. (2010)

including both sources of uncertainty.

Let f(x, p̂) be the planned cost of design vector x where p̂ is an estimator of the true

problem coefficient p. Because p̂ is an estimate, the true coefficient p may turn out to be

p̂ + ∆p where ∆p is the additive parameter uncertainty. Often, the design optimization

problem

min
x
f(x, p̂) (37)

is solved ignoring the presence of uncertainties.

Bertsimas et al. consider problem (37) where both ∆p ∈ Rm and implementation errors

x ∈ Rn are present, while further assuming that ∆z =

(
∆x
∆p

)
lies within the uncertainty

set

U = {∆z ∈ Rn+m | ‖∆z‖2 ≤ Γ} (38)

where Γ > 0 is a scalar describing the size of the errors or perturbations. Those authors seek

a design x that minimizes the worst-case cost given a perturbation in U whereas, according

to Section 2 in our main paper, we seek a design that minimizes expected (mean) cost under

a constraint on the variability of this cost.
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The Bertsimas et al.’ example consists of the following polynomial function:

f(x1, x2) = 2x6
1 − 12.2x5

1 + 21.2x4
1 + 6.2x1 − 6.4x3

1 − 4.7x2
1 + x6

2 − 11x5
2

+43.3x4
2 − 10x2 − 74.8x3

2 + 56.9x2
2 − 4.1x1x2 − 0.1x2

2x
2
1 + 0.4x2

2x1 + 0.4x2
1x2 =

=
r+s≤6∑
r>0,s>0

crsx
r
1x

s
2 . (39)

The case study considers the uncertainty in each of the 16 coefficients of the objective

function; i.e. the objective function is

f̃(x1, x2) =

r+s≤6∑
r>0,s>0

crs(1 + 0.05∆prs)x
r
1x

s
2 . (40)

where ∆p is the vector of uncertain parameters; the robust optimization problem considers

also the implementation errors and has to minimize the following objective function

f̃(x1 + ∆x1, x2 + ∆x2) . (41)

The vector ∆z =

 ∆x1

∆x2

∆p

 is used to define the following uncertainty set

Uf = {∆z ∈ R18 | ‖∆z‖2 ≤ 0.5} (42)

The problem has two decision variables, x1 and x2, and 18 environmental factors; namely,

2 implementation errors, ∆x1 and ∆x2, and 16 coefficients uncertainties ∆p. Therefore, the

uncertainty set Uf defined in (42) is a hypersphere of dimension 18.

Whereas Bertsimas et al. focus on worst-case robust optimization, we account for the

probability of each specific realization of the vector ∆z and apply our robust optimization

approach. In order to conduct a computational experiment giving results comparable with

those obtained by Bertsimas et al., we consider the same region for uncertainties, and choose

a uniform distribution for them.

As we discussed in the main paper, we apply 1L-KM and 2L-KM to the Bertsimas et

al.’s example. The 1L-KM approach crosses a space-filling design for the decision factors

and a LHS design for the environmental factors; more specifically, we take nd = 100 equally

spaced points in the rectangle [0, 5] × [0, 8]—which is the experimental area Bertsimas et

al. choose—, and we sample ne = 100 points from a uniform distribution in the hypercube
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[−0.5, 0.5]18. The 2L-KM approach starts from a uniform LHS design of size n = 1600 in

the entire space of decision-by-environmental factors, to fit the metamodel of the output f .

In the second stage we use a crossed design obtained through a grid of Nd = 100 points for

the decision factors and a uniform LHS design of Ne = 100 points for the environmental

factors.

After deriving the metamodels for the mean and the standard deviation of the output

through 1L-KM and 2L-KM, we solve the optimization problem for different values of T in

the interval [3, 20]; this provides an estimated Pareto frontier. Then, we apply the bootstrap

procedure to derive a confidence region for the optimal solution resulting from the original

estimated Pareto frontier. Figure 5 shows the results obtained for an intermediate threshold

value; namely, T = 8.58. Like the EOQ examples in the main paper, 2L-KM provides

a smaller confidence region; both approaches ensure confidence regions which cover the

original (i.e., non-bootstrapped) optimal solution and guarantee the optimal solutions to

remain feasible despite the metamodel variability.

Bertsimas et al. also provide the global optimum for the nominal problem (when there

is no uncertainty on the parameters) xopt = (2.8, 4), with corresponding output f(xopt) =

−20.8. Computing the prediction of the expected output and its standard deviation on the

Kriging metamodels in our approaches gives the following results: ŷ1L−KM(xopt) = −2.225,

ŝ1L−KM(xopt) = 246.3; and ŷ2L−KM(xopt) = 7.436, ŝ2L−KM(xopt) = 111.97. Notice that Bert-

simas et al. associate a worst-case cost of 450 to the nominal solution xopt, which appears

compatible with the high standard deviation we obtained from the metamodel approxima-

tions.
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Figure 1: Kriging metamodels for the expected total cost of the EOQ model with uncertain
demand rate and cost coefficients, derived through 1L-KM (solid curve) and 2L-KM (dashed
curve). The dotted curve represents the true model.
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Figure 2: Kriging metamodels for the expected standard deviation of cost of the EOQ model
with uncertain demand rate and cost coefficients, derived through 1L-KM (solid curve) and
2L-KM (dashed curve). The dotted curve represents the true model.
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Figure 3: Pareto frontiers for the EOQ model with uncertain demand rate and cost co-
efficients, derived through 1L-KM approach (crosses) and 2L-KM (pluses). True model is
displayed through dots.
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Figure 4: Confidence regions for σC (on x-axis) and E(C) (on y-axis) in the extended EOQ
example, based on bootstrapped Kriging in 1L-KM (solid rectangle) and 2L-KM (dash-
dotted rectangle) at (a) T = 8250 and (b) T = 8600 (see the vertical line). ‘∗’ and ’4’
denote the ‘true’ solutions based on (20) and (21) in the main paper, in 1L-KM and 2L-KM

respectively; namely, (a) (Ĉ1L−KM = 87538.62, ŝ1L−KM = 8248.49) at Q̂+
1L−KM = 25531.91,

and (Ĉ2L−KM = 87703.95, ŝ2L−KM = 8205.61) at Q̂+
2L−KM = 29943.98, (b) (Ĉ1L−KM =

87538.28, ŝ1L−KM = 8251.94) at Q̂+
1L−KM = 25291.39, and (Ĉ2L−KM = 87605.84, ŝ2L−KM =

8287.48) at Q̂+
2L−KM = 24001.84
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Figure 5: Confidence regions for σy (on x-axis) and E(y) (on y-axis) based on boot-
strapped Kriging in 1L-KM (solid rectangle) and 2L-KM (dash-dotted rectangle) at (a)
T = 8.58 (see the vertical line). ‘∗’ and ’4’ denote the ‘true’ solutions in 1L-KM and 2L-

KM respectively; namely, (ŷ1L−KM = 2.01, ŝ1L−KM = 4.676) at x̂+
1L−KM = (0, 0.16), and

(ŷ2L−KM = 5.551, ŝ2L−KM = 3.739) at x̂+
2L−KM = (0.089, 0.344)

28


