
A Computational Field Framework for
Collaborative Task Execution in Volunteer Clouds

Stefano Sebastio
IMT Institute for Advanced Studies

Lucca, Italy
stefano.sebastio@imtlucca.it

Michele Amoretti
Centro Interdipartimentale SITEIA.PARMA,

Università degli Studi di Parma, Italy
michele.amoretti@unipr.it

Alberto Lluch Lafuente
IMT Institute for Advanced Studies

Lucca, Italy
alberto.lluch@imtlucca.it

Abstract—The increasing diffusion of the cloud computing
paradigm is opening new opportunities for distributed and col-
laborative computing. Volunteer clouds are a prominent example,
where participants join and leave the platform and collaborate
by sharing their computational resources. The high dynamism
and unpredictability of such scenarios call for decentralized
self-* approaches to guarantee QoS. We present a simulation
framework for collaborative task execution in volunteer clouds
and propose one instance of the framework based on Ant
Colony Optimization, that we validate through simulation-based
statistical analysis over Google workload data.

Keywords—cloud computing; volunteer computing; distributed
tasks execution; ant colony optimization; bio-inspired algorithms;
spatial computing; peer-to-peer.

I. INTRODUCTION

The wide adoption of the cloud computing paradigm is
increasing the efforts of the research community on approaches
and techniques to optimize resource allocation. Usually, cloud
service providers arrange their resources in sites that cooperate
within the domain of the same company. However, new peer-
to-peer (P2P), decentralized, open-world paradigms such as
Volunteer Computing [1] are gaining popularity. Such paradigms
envision platforms where, in addition to data centers, less
powerful computational devices participate to share and use
each others’ resources, and are characterized by a high,
unpredictable dynamism (participants may leave and join at
any time) and heterogeneity (participants may share and need
different computational resources). Since global coordination
and optimization techniques can be hardly applied, the attention
has been shifted to the application of agent-based techniques
to cloud computing (e.g. as advocated in [2]), like Ant Colony
Optimization (ACO) [3] and Spatial Computing [4]. Such
approaches provide flexible and scalable solutions to distributed
computing problems, such as collaborative task execution.

We present here a framework designing and evaluating
collaborative task execution algorithms for volunteer cloud
computing platforms. The framework can be seen as an
evolution of our preliminary work [5], that we extend here in
several directions. First, we introduce in §II a distributed data
structure — called Colored Computational Field — inspired
by spatial fields, routing tables and ACO’s pheromone-based
stigmergy, which provides a suitable basis for many agent-based
collaborative task execution algorithms. Second, by means of
the aforementioned framework, we define in §III a highly
parametric ACO-based algorithm, offering a decentralized
solution characterized by lightweight ant agents (in terms of

behavior and carried knowledge), which maintain and exploit
the colored computational field and do not require any additional
data structures. In §IV we report an excerpt of the experimental
evaluation of the ACO-based algorithm, where we assess the
performance of various alternatives and parameters, using the
workload described by the Google Cluster dataset [6]. In §V
we discuss the main sources of inspiration and further related
work. Finally, in §VI we provide some concluding remarks and
outline our current and future research efforts.

All in all, our work provides (i) a flexible framework where
existing or new agent-based algorithms for collaborative cloud
computing problems can be designed and evaluated; (ii) a novel,
highly parametric ACO-based algorithm, which we advocate as
a strong candidate for collaborative task execution problems.

II. COLORED COMPUTATIONAL FIELD

We consider a Volunteer Cloud as a network of participants
(also called nodes) equipped with a set R of computational
resources, which can enter and leave the system any time,
and submit and satisfy task execution requests, subject to QoS
requirements. When a node is not able to execute its own
tasks, it needs to find another node able to do it. Such a search
must take into account that, as in social networks, the node’s
visibility is restricted to its contacts up to a certain degree,
and, at the same time, the amount of spent time and messages
spread in the network should be minimized.

The main supporting structure of our framework is a Colored
Computational Field, used to facilitate the discovery of nodes
which can satisfy task execution requests.

Definition 2.1 (Colored Computational Field): Let K be a
set of R+-valued computational pheromones. A K-colored
computational field is a tuple 〈N,E, ρ,Φ〉 such that N is a set
of nodes (representing cloud participants), E ⊆ N ×N is a set
of edges (representing contact relations among participants),
ρ : N → (R+)|R| is a resource map (i.e., a mapping of nodes
to their computational resources), and Φ : E → [0, 1]|K| is the
pheromone table of each edge.

Usually, R ⊆ K, i.e., each element of K corresponds to
a computational resource (e.g., memory amount, number of
cores, core frequency), but it may also contain other values.
We shall consider, for instance, the predicted idle time and
a feedback pheromone as elements of K in our examples.
For the sake of simplicity we assume that all nodes feature
the same set of resources and that those are measurable in

mailto:stefano.sebastio@imtlucca.it
mailto:michele.amoretti@unipr.it
mailto:alberto.lluch@imtlucca.it

R+ (i.e., as non-negative reals). We denote the subset of
QoS requirements of a task t which regard the computational
resources R by tQ, modeled as a vector in (R+)|R|, to be
interpreted as lower bounds on each resource. Additional
requirements such as deadlines are treated separately. The
resource map ρ is used to represent each node’s computational
resources. The pheromone table Φ is a mapping of edges into
a vector of [0, 1]-normalized pheromone values. Each value in
the vector is a “pheromone level” value associated to one of
the K computational pheromones and indicates a sort of level
of “goodness” of a connection with respect to the resource.
Obviously, Φ is intended to be implemented as a distributed
table where each entry Φ(i, j) is maintained at node i. We
assume that both R and K are ordered sets so that we can refer
to the individual components in the vectors returned by ρ and Φ
by their position. Indeed, we often refer to the pheromone k in
edge ej with Φk(ej). More in general we denote with ~xi the i-
th element of a vector ~x. We sometimes refer to the set of edges
(i, j) outgoing from a node i with Ei. The pheromone table
can be seen as a sort of routing table or gradient map [4], used
to ease resource discovery while minimizing communication.

III. ACO-BASED ALGORITHM

Several algorithms can be defined on top of a Colored
Computational Field, including those based on local diffusion
rules typical of spatial computing approaches [4]. This section
presents a paradigmatic and, at the same time, novel example of
a highly parametric ACO-based algorithm. Contrary to typical
spatial computing approaches the algorithm uses ant-like mobile
agents that are in charge of maintaing and exploiting the Colored
Computational Field. This algorithm relies on two different
types of ants: colored scout ants and hunter ants. Colored scout
ants periodically explore the neighborhood of a node to discover
computational resources, to update the field accordingly. Such
ants are specialized by computational pheromones: each color
k corresponds to one of the computational pheromones in K.
Hunter ants are spawned when a task execution request is
issued. They exploit the field to find a volunteer node, and
update the field according to the received feedback.

Both types of ants are described in detail in §III-A and
§III-B, respectively. It is worth to remark a key feature they
have in common: both exploit the field to take their exploration
decisions, namely when they are in a node they choose their
next hop with a probabilistic selection weighted according to
the corresponding level of pheromone. Such an operation, called
stigmergy, may eventually lead to an optimal situation in a static
network, but may also suffer (as all ACO-based approaches)
from stagnation, specially in dynamic networks. Stagnation
occurs when the ants converge to an apparently optimal decision,
which may prevent the system to adapt to the emergence of
new, better solutions. Our ACO-based algorithm features some
standard techniques to prevent stagnation, such as evaporation
(pheromones are regularly decreased), as well as some novel
ones, such as temperature regulation (the likelihood of exploring
new paths is increased when the network is updated), memory
aging (in analogy with the standard aging, releasing pheromone
quantities in invers proportion to the distance to resources) and
angry ants (a third kind of agents that remove pheromones
along outdated links).

A. Colored Scout Ants

Colored scout ants are periodically spawned in a process
that is independent from the request and execution of tasks.
Their goal is to explore the network and update the pheromone
field. Each ant releases and follows its own pheromone color
(k ∈ K). There may be computational colors with no associated
colored scout ants. In our case, for instance, no scout is in
charge of the feedback pheromone since this is to be maintained
by the hunter ants. Listing 1 describes the behavior of scout ants
through a pseudo-code. To summarize, each scout ant explores
the network (line 7), probing the neighborhood goodness while
going away from its home node (the one that has spawned it).
Each ant has an associated time-to-live (TTL), which establishes
the number of hops an ant must try to do during its exploration,
before returning home — that prevents endless and unnecessary
exploration efforts. When its TTL is exhausted, the scout ant
comes back (line 17) to its source node releasing the pheromone
according to the memory aging approach (line 31). We provide
a detailed explanation of the main features of the algorithm.

Temperature-dependent Exploration & Exploitation. The
behavior of ants is based on online Reinforcement Learning
(RL) [7], where at each step the decision involves a choice
among: exploration (try to gather new information) and
exploitation (focus on the best decision according the current
information). Exploration can be considered as a risk run by
the node, with the hope to obtain better knowledge and thus
make better decisions in the future. A common approach to
face the “exploration-exploitation dilemma” is the use of a
Softmax method [7]. Each ant moves according to the past path
desirability (exploitation) and to the exploration compliance,
according to the following equation:

pk(ej) =
e

Φk(ej)

Ti∑
∀eqεEi

e
Φk(eq)

Ti

(1)

that defined the probability pk(ej) that the k-colored scout ant
at node i chooses ej as the next hop. According to the Softmax
action selection method, we have chosen the Boltzmann/Gibbs
distribution, with a tunable temperature function Ti, to choose
the next hop from node i probabilistically, but taking into
account the expected reward, i.e., the probability to find a node
willing to perform a task. The temperature function controls
the exploitation/exploration tradeoff, i.e., if Ti →∞ the ant at
node i tends to follow a more random approach (all the paths
have the same preference), otherwise if Ti → 0 the ant follows
a greedy approach, which reduces the exploration component.

One of the roles of the temperature is to prevent stagnation.
Indeed, if we choose the temperature to be a monotonically
decreasing function with respect to time, then, as time goes by,
it is possible to reduce exploration and make a more sound use
of the knowledge gathered so far. However, each time a new
neighbor connects to a node i, the corresponding function Ti
is re-initialized to encourage the exploration of new resources.

Memory Aging. Scout ants explore the network and record the
nodes’ goodness (or nest value, i.e., the resource value associ-
ated to the corresponding color) found during their exploration.
While returning home, a scout releases a pheromone value ruled
by the ant memory aging factor (to prevent stagnation) and
the node goodness in that part of the network (Listing 1, lines

Listing 1. Colored scout ant algorithm
1 coloredAntStep(ScoutAnt antk){
2 antk.pathAdd(this);
3 antk.pathNest(this.getNestGoodness(k));
4 antk.updateTtl();
5
6 if (antk.getTtlValue()>0){
7 w := antChooseContact(this.neighbors - antk.getPath());
8 if (w!=0){
9 w.coloredAntStep(antk);

10 return;
11 }
12 }
13 l := antk.getStepPrevious(this);
14 l.coloredAntStepBack(antk, this);
15 }
16
17 coloredAntStepBack(ScoutAnt antk, Node from){
18 this.depositColoredPheromone(antk, from);
19 l := antk.getStepPrevious(this);
20 l.coloredAntStepBack(antk, this);
21 }
22
23 depositColoredPheromone(ScoutAnt antk, Node from){
24 p := antk.getMemoryAgingPheromone(this);
25 if ((p > this.getPheromoneEdge(from)) ||
26 (k != FINISHING_TIME)){
27 this.setPhermoneEdge(p, from);
28 }
29 }
30
31 getMemoryAgingPheromone(Node n){
32 antMemory_trace = pathNest.subList(n.index+1, end);
33 p_best = max(antMemory_trace);
34 mem_aging =|antMemory_trace.getIndex(p_best)-(n.index+1)|;
35 return p_memoryAging(p_best, mem_aging);
36 }

31-36, getMemoryAgingPheromone(·)). We do not use the
traditional concept of aging, where the ants deposit lesser and
lesser pheromone as they moves from node to node, because
the information that the pheromone provides, in our setting,
is useful not only for the node where the scout has been
spawned. However, we still want to take into account the
distance between a potential task execution requester and the
node holding the necessary resources. For this purpose, our
memory aging mechanism releases an amount of pheromone
that is inversely proportional to the distance to the best resource
found so far, and not to the distance between the node from
which the ant has been spawned (as in traditional aging). In
other words, our memory aging mechanism considers what
the ant remembers from the goodness of the best node in
the subsequent portions of the path it has followed. This
can be achieved, for instance, by implementing the function
p memoryAging(p best, mem aging), illustrated in Listing
1 at line 35 as p best− mem aging · AgingFactor, where
p best is the best value found so far, mem aging is the
distance to it and AgingFactor is a discounting factor.

Fig. 1 clarifies the memory aging approach through an
example. The scout ant is spawned at node 0 and follows the
path 0→ 1→ 2→ 3→ 4→ 5 (Fig. 1, top). When the TTL
expires after 5 hops (at node 5) the scout ant returns home
(node 0). In the first step back the actual value of the resource
at node 5 (i.e., 3) is taken into account (see the label on the
link from node 4 to 3). Note, however, that in the second step
back the edge is labelled with 2.5 and not 3, as an effect of
the aging function. At each step back, the pheromone on the
next link is updated only if its value is lower than the one the
ant would like to assign. Otherwise the current value is kept.

resource 2 4 3 2 3

Node Id 1 2 3 4 5 0

f = resource – step_n*memory aging
Memory aging = 0.5

• ant_0 = Ø
• ant_1 = Ø,2
• ant_2 = Ø,2,4
• ant_3 = Ø,2,4,3
• ant_4 = Ø,2,4,3,2
• ant_5 = Ø,2,4,3,2,3

• -ant_4 = 3

• -ant_3 = 2,3

• -ant_2 = 3,2,3

• -ant_1 = 4,3,2,3

• -ant_0 = 2,4,3,2,3
2 4 3 2 3

1 2 3 4 5 0

2 4 3 2 3

1 2 3 4 5

4 3 2 3

2 3 4 5

3 2 3

3 4 5

2 3

4 5

3

3

3

3

3 2,5

2,5

2,5

2,5

4

3

3

4

4 3,5

Best value
Previous value
Updated value
Ø: unknow/irrelevant
ant_x: step number x
-ant: ant step back

2 1 4 2 1

Step
s fo

rw
ard

Step
s b

ack

Fig. 1. Example of memory aging approach for scout ants.

This is the case of the third step back (from node 3 to node
2), where the ant has found a resource with value 3 but the
previous pheromone value is 4 (that may be the result from a
previous exploration of some of the subsequent gray nodes).

Evaporation. In addition to dynamic temperature and memory
aging mechanisms, we also use the evaporation technique to
deal with stagnation in presence of volatile resources. The
finishing time, for instance, is a volatile resource measure and
its value should be updated frequently. A higher amount of
pheromone is assigned the more the declared finishing time is
closer to the current time. A new pheromone is released only
if the new value is higher than the one previously released. If
instead we would update the pheromone values regardless of
the best previously found values, they would be highly variable,
providing unstable information. We consider resources such as
the amount of RAM and CPU characteristics to be non-volatile,
since those cannot be allocated forever but only on short-basis
(i.e., to execute tasks). Thus, until the node participates to
the network, its resources are stable, and the corresponding
deposited pheromone does not need to be updated by means of
evaporation. When a node perceives a new neighbor, the former
increases its temperature to update the field. Instead, when a
node notices that one of its neighbors has left, the former uses
angry ants (described below) to update the field.

Angry Ants. Despite the non-volatile nature of resources, the
instable nature of the network of participants [8] can lead
to stagnation: when a node that caused the update of the
pheromone on several links goes offline, all subsequent task
execution requests on the nodes of those links may follow a
wrong path, without finding the desired resources. As a remedy,
we propose angry ants, which are spawned by scout ants when
they find an abrupt change in the field. Angry ants follow back
the path of colored scout ants, and throw away a certain amount
of pheromone of the corresponding color, to force the update
of the corresponding pheromone color by future scout ants.

B. Hunter Ants

When a node has a task for which it cannot respect the
deadline, it starts spawning multiple hunter ants. Every hunter
ant tries to find a node ready to satisfy the task execution request.

Listing 2. Hunter ant algorithm
1 antStep(Ant ant){
2 ant.pathAdd(this);
3 ant.updateTtl();
4 if (this.askExecutionToNode(ant.getTask())){
5 l := ant.getStepPrevious(this);
6 l.antStepBack(ant, this);
7 } else if (ant.getTtlValue()>0) {
8 w := antChooseContact(this.neighbors - ant.getPath());
9 if (w!=0){

10 w.antStep(ant);
11 return;
12 }
13 }
14 this.antStepBackHome(ant);
15 }
16
17 antStepBack(Ant ant, Node from){
18 this.depositPheromone(ant, from);
19 l := ant.getStepPrevious(this);
20 l.antStepBack(ant, this);
21 }
22
23 depositPheromone(Ant ant, Node from){
24 p := ant.getAgingPheromone(this);
25 this.setPhermoneEdge(p, from);
26 }

For this purpose the hunter ant starts exploring the network,
exploiting the field and the task characteristics. Task execution
requests are sent to nodes found by the hunter ants, until one
of them accepts, or the hunter ant attempts are exhausted.
The hunter ant brings with it only a task description (with its
functional and not functional requirements) and not the task
itself, to minimize transmission overheads.

The behavior of hunter ants is sketched in Listing 2, where
the ant contains a task description used to find the best match
(as we shall explain). Each hunter ant tries to find a node
willing to execute the task (line 4), following the Colored
Computational Field (line 8) built according to the overall
pheromone — see below Eq. 3. If the hunter ant does not find
any node willing to collaborate after its TTL, it returns to the
home node. In the following we provide a detailed explanation
of the main features of the algorithm.

Resource Allocation Heuristic. The global goal of the system
would be to maximize the number of tasks that meet their
deadline. However, the problem is clearly untractable in a
global manner (for instance, even the problem of finding the
best task-node match is well known to be NP-complete) and
would require perfect predictions of future task arrival times and
characteristics, which is totally unrealistic in open environment
such as volunteer clouds, where tasks requests and nodes
participating in the network change over time. Therefore, hunter
ants use local heuristics, based on the idea that minimizing
wasted resources (the ones that are reserved but not used
completely) will increase the probability to accommodate more
requests in the future. These heuristics rely on a single resource
waste ratio function srwr and a combined resource waste ratio
function crwr , defined in Eq. 2. Note that the latter uses a
vector η of size |~x|, which allows one to express preferences
among resources.

srwr(x, y) =
min(x, y)

max(x, y)
crwr(~x, ~y) =

∑
∀k∈1..|~x|

ηk · srwr(~xk, ~yk)∑
∀σ∈1..|~x| ησ

(2)

TABLE I. EXAMPLE OF RESOURCES UNDER/OVER UTILIZATION

~x ~y srwr(~x1, ~y1) srwr(~x2, ~y2) crwr(~x, ~y)
〈M,N〉 〈M,N〉 1 1 1
〈M/2, N〉 〈M,N〉 0.5 1 0.75
〈M/2, N/2〉 〈M,N〉 0.5 0.5 0.5
〈0, N〉 〈M,N〉 0 1 0.5

These functions are exemplified in Table I, where two types
of resources are taken into account, both with the same weight
(η1 = η2 = 1). The first example is the best match, where the
required resources ~x perfectly match the provided resources ~y.
The rest of the cases exemplify mismatches due to under/over
resource utilization. Smaller values of crwr suggest higher
degree of mismatch between requested and provided resources.

Weighting links. Such heuristic functions are used to associate
goodness values to links. For this purpose we also use a function
Φ(tQ) which provides the pheromone vector for the resources
required by a task t obtained by applying the same functions
used by scout ants. Then the goodness of a link e will be
based on the value of crwr(ΦR(e),Φ(tQ)), where ΦR(e) is
the pheromone vector associated to all computational resources
in R (which coincide with those expressed in task’s QoS). Task
requirements that are closer to the available ones are preferable.
For a single color, the optimal value is approached when the
single resource waste ratio tends to 1, while the worst case is
when resources are reserved but not completely used by the
task and the function tends to 0. In the other cases, for each
single resource component k we obtain Φk(tQ)/Φk(e) when the
resource is under-used, or Φk(e)/Φk(tQ) when the resource is
over-used.

Pheromone Release. When a hunter ant finds a node willing
to perform a task, it releases its own type of pheromone which
serves to record a measure of the node’s availability to execute
remote tasks, its network stability and also its load. The node’s
willingness to perform tasks can be regarded as a reputation
assigned to the node, and is subject to pheromone aging and
evaporation, to take into account the loss of knowledge about
the node behavior. At each hop, a hunter ant computes an overall
pheromone value Ψ(e, t) for a candidate edge e according to:

Ψ(e, t) = crwrα(ΦR(e),Φ(tQ)) · Φβft (e) · Φ
γ
fb(e) · λδ(e, tQ) (3)

where Φft is the pheromone value associated to the node’s
finishing time, Φfb is the feedback pheromone released by the
hunter ants, and λ(e, tQ) ∈ R+ is a heuristic measure which
evaluates the estimated performance of link e for a task with
QoS tQ, in terms of data rate and delay perceived in the last
interaction along e. This measure takes into account the network
overhead for transferring the task to the node that will execute
it. The α, β, γ and δ parameters are used as tunable weights
for the components of the equation. The above components are
normalized in the range [0, 1].

Exploration. Unlike the function antChooseContact(·) used
by the colored ants, hunter ants combine all types of pheromone
colors (Listing 2, line 8). However, the probability to choose
link e′ as the next hop is computed in a similar manner:

ph(e′, t) =
e

Ψ(e′,tQ)

Ti∑
∀e′′∈Ei

e
Ψ(e′′,tQ)

Ti

(4)

TABLE II. NODE ATTRIBUTES

type CPU freq. cores RAM Nodes
Volunteer 1− 2 GHz 1− 6 0.1− 2 GBs 100− 3, 000
Data Center 1− 3 GHz 2− 32 2− 6 GBs 7

IV. SIMULATION

We evaluated our ACO-based instance of the framework
using a volunteer cloud computing scenario (§IV-A), modeled
in the discrete event simulation environment called DEUS [9],
[10]. DEUS is a general-purpose, open-source, Java-based
simulation environment, characterized by extreme ease of use
and flexibility, which supports the analysis of complex and
large scale systems. Our volunteer cloud simulator is realized
as a DEUS project, and is available at http://bit.ly/18MunO4.

A. Simulated Scenario

In the following, we describe the main characteristics of
the scenario used in the experiments. The network includes 10
cloud sites, among which 7 are managed by data centers and the
others are purely P2P. The specification of the nodes’ resources
is reported in Table II. Volunteer nodes are less computationally
powerful since they correspond to mobile devices such as
laptops. We consider different cloud configurations which
differ in the number of participating volunteer nodes (from
100 to 3, 000), each one belonging to one cloud site. Every
site is managed by a supernode which can be run on top of a
data center or a volunteer node. The overlay network is semi-
hierarchical with supernodes which have connections with peers
of other sites, and normal nodes which have connections only
in the same site. Each node joining the network notifies its
status (online, going offline) to the corresponding supernode,
and receives a list of neighbors — a random subset of the
volunteer nodes in the same site.

Each node acts both as task producer and consumer. Nodes
share their resources to address tasks execution requests coming
from other nodes, but can also create requests for their tasks.
We consider that nodes execute tasks in exclusive application
environments, allocating for this purpose a Virtual Machine
(VM), which is released when the execution of the task is
completed. A task is accepted for execution by a node only if
the latter is able to guarantee its completion within its deadline,
otherwise the task is discarded. A completed task marks a
hit for the node on which it has been executed. The cost of
communication is computed by means of the simple yet realistic
models of underlying communication network described in [11].

The workload model we considered is the Google Cloud
Backend [6], described in [12]. There, task requirements are
characterized by CPU cycles and memory occupation. Since
the workload data are partially obfuscated [6], we did some
assumptions, such as a QoS (Quality of Service) parameter
defined by a deadline (more restrictive for small tasks), after
which task execution is considered to be useless. Tasks attributes
are reported in Table III. The duration of the simulated scenario
is of 1 hour, with a granularity of ten milliseconds.

The task arrival model is taken from [12], i.e., based
on Markovian processes. The inter-arrival time between two
consecutive tasks is modeled as an exponential random variable
with mean value equal to 600 ms for large tasks, and 200 ms

TABLE III. TASK ATTRIBUTES

type duration Cores RAM Deadline Arrival
offset mean

small 0− 0.4 h 1 0− 0.5 GBs 0.2 200 ms
large 1− 12 h 1− 4 1− 4 GBs 0.4 600 ms

for small tasks. From a queue theoretic point of view, the
scenario can be seen as a queue model where data centers
are modeled as M/G/m/∞ queues, while the volunteers are
modeled as M/G/1/∞ queues. I.e., task arrivals are modeled
by a Markovian process (M), service time follows a generic
(G) distribution, data centers have m VMs, volunteers have 1
VM each, and task queues are unbounded.

B. Instantiated ACO Algorithm

As described in §III, our ACO-based algorithm is highly
parametric. The actual configuration used in the reported
experiment has been specified into the XML configuration
files of the DEUS tool (see Listing 3) shows the configuration
corresponding to scout ants colored by finishing time. Some
of the configuration parameters of the algorithm are functions
(i.e., releasing, aging and temperature) for which the current
implementation considers several possibilities (constants, linear
or exponential functions, user-specified functions, etc.).

In the experiments, the three resource scout ants are
configured with: ttl = 3, initial pheromone = 1,
depositing function = x, aging function = 1 − x/5,
and constant temperature = 1. The finishing time scout
ants differs in the pheromone deposit function that must be
decreasing (to assign more pheromone when the finishing time
is closer to the actual time), thus it is configured with 1− x/5
and with a constant evaporation rate of 0.0001. Scout ants are
spawned with a period of 50 seconds. Hunter ants are instead
configured with 3 attempts for each task (hunting efforts before
giving up), pheromone deposit function equals to 1 − x, the
weight for each kind of pheromone (used in Eq. 3) is 1, and
the constant temperature value equals to 1.

C. Evaluated performance indicators

The simulator allows to measure several performance
indicators. Here we focus on those we consider particularly
significant, to evaluate the goodness of our algorithm in terms
of perceived QoS, communication overhead and fairness (load
balance). In particular, we report the following indicators: (i)
Hit plus running rate, which is the relative amount of tasks
that meet their deadline or that, being still running, will likely
complete if their host will not go offline; (ii) Useless message
rate, which is the relative amount of refused requests over the
total number of sent requests, indicating the overhead of the
requests sent to overloaded nodes; (iii) Mean task waiting time:
the time that a task spends in the queue, before its execution
starts; (iv) Mean task sojourn time: the time that a task spends
in the network, summing up waiting and execution time.

D. Results

Apart from the basic common configuration we described
above, it is worth mentioning that every node uses ants
configured with exactly the same behavior. We performed
parametric simulations, to study the behavior of the system for

http://bit.ly/18MunO4

Listing 3. Colored scout ant configuration
1 <aut:event id="coloredAntFinishingTime" handler="it.imtlucca

.aco.ColoredAntEvent" >
2 <aut:params>
3 <aut:param name="hasSameAssociatedNode" value="true" />
4 <! const = a, line = b ∗ x+ a, exp = a ∗ eb∗x + c -->
5 <aut:param name="antColor" value="finishingTime" />
6 <aut:param name="initPheromone" value="1" />
7 <aut:param name="ttl" value="3" />
8 <aut:param name="pheromone_a" value="1" />
9 <aut:param name="pheromone_b" value="-0.2" />

10 <aut:param name="ant" value="line" />
11 <aut:param name="evaporation" value="0.0001" />
12 <aut:param name="pheromoneAging_a" value="1" />
13 <aut:param name="pheromoneAging_b" value="-0.2" />
14 <aut:param name="agingFunc" value="line" />
15 <aut:param name="temperature_a" value="1" />
16 <aut:param name="temperatureFunc" value="const" />
17 </aut:event>

different number of participating volunteer nodes and varying
the frequency of scout ants release (from every 50 second to
every 2, 000 seconds). In the following we refer to the average
results obtained after reaching a 95% confidence interval, with
a radius of 0.001, evaluated with the Student’s t-test. Typically,
tenths of simulations are needed, each taking several hours.

The purpose of the experiments was to evaluate the impact
of scout ants, in the proposed algorithm. It is worth to remark
that the algorithm can run without those ants by solely relying
on the feedback pheromone collected by hunter ants. These
experiments show that scout ants significantly improve the
algorithm’s performance in several dimensions.

Figures 2 (left), 3 (left) and 3 (right) report the Hit +
Running Rate for all, large, and small tasks, respectively. The
values are plotted considering the number of participating
volunteer nodes on the horizontal axis. Obviously, the higher
the number of nodes, the better the performance of the system
is in terms of Hit + Running Rate. As expected if the scout
ants are spawned with smaller frequency hunter ants have
less information and thus make worse decisions. This happens
especially when the number of nodes is higher and thus more
scout ant explorations are required to build an informative
computational field. The overall number of performed tasks is
acceptable considering the limited number of participants.

In Fig. 2 (right) we report the Rate of Refused Requests
for Remote Execution, which, as expected, is lower when the
number of nodes increases. Scout ants allow a faster reduction
in the refused requests thanks to the knowledge about resources
availability introduced by them in the field.

Due to lack of space the rest of the performance indices
results are only briefly commented. With a low number of nodes,
the knowledge added by the scout ants and the mismatch policy
followed in Eq. 2 tends to favor large tasks to data center nodes,
leading to an increased waiting and sojourn times, with lower
execution rate, for small tasks. Thus, large tasks become a
bottleneck for small ones. Scout ants provide an almost linear
scaling of executed tasks, by increasing the number of nodes.
Scout ants increase the number of accepted remote requests.
With them, the load is better spread among the nodes which are
able to execute the tasks. The only drawback is perceived in
the increased waiting and sojourn times, due to the bottleneck
created by the large tasks.

V. RELATED WORK

The ACO approach was firstly proposed by Di Caro and
Dorigo [13], to address the routing problem. In their AntNet
algorithm, each artificial ant builds a path from source to
destination. While building the path, ants collect information
about the time length of the path components, and implicit
information about the load status of the network. Our algorithm
is inspired by this work, but addresses the more complex
problem of distributed QoS-constrained task execution.

Another source of inspiration for our work is the compre-
hensive survey on approaches to network routing and load-
balancing based on ACO, by Sim et al. [14]. The authors
stress the main weakness of ACO-based approaches, namely
stagnation, and focus on the many strategies that have been
developed to deal with it. In addition to the ones featured
also by our algorithm (namely evaporation and aging), they
consider pheromone smoothing (placing a maximum to the
amount of pheromone and releasing less pheromone when that
threshold is closer), pheromone limiting (setting upper bounds
on the amount of deposited pheromone), privileged pheromone
laying (a privileged set of ants may release more pheromone
than the rest) and pheromone-heuristic control (the choice of
ants is a weighted combination of the amount of pheromone
and the estimate of a heuristic). Such techniques can be easily
implemented and evaluated in our framework.

Some authors have tried to adopt existing ACO-based
approaches to solve load balancing problems in task distribution
systems [15]–[17]. Many of them apply the basic minmax
algorithm proposed by Di Caro and Dorigo [13]. Unfortunately,
such works do not describe their algorithms in sufficient detail
to allow us to implement and evaluate them in our framework.
Nevertheless, we discuss some of their main concepts.

Mishra [15] proposed a simple ACO approach to deal with
the load balancing problem intended as the fact that every node
does approximately the same amount of work at any instant
of time. The proposed ACO-based algorithm for dynamic load
balancing relies only on the current state of the system (no prior
knowledge is needed). Each node is configured with its capacity,
its probability of being a destination, and its pheromone (or
probabilistic routing) table that plays a role similar to our
Colored Computational Field. Each row of the pheromone
table is a routing preference for each destination and each
column represents the probability of choosing a neighbor as
the next hop. Ants are launched with random destination, to
feed the information of the table. When an ant reaches a
node whose pheromone table is empty, it makes a random
decision. An extended version of this algorithm considers the
presence of multiple ant colonies with the sole purpose of
reducing the likelihood that all mobile agents establish the same
connection. In our opinion, such an approach is suitable for load
balancing in network routing problems, not for collaborative
task execution in volunteer clouds, as ants’ decisions do not
take into account the QoS requirements of the tasks.

LBACO (Load Balancing Colony Optimization) [16] is
an extension of the basic ACO algorithm of [13]. LBACO
not only tries to find the optimal resource allocation for each
task, but also to minimize the makespan of a given task set,
adapting to the dynamic cloud computing system and balancing
the entire system load. The makespan is defined as the time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

H
it
 +

 R
u

n
n

in
g

 r
a

te
 o

f
T

a
s
k
s

Volunteer nodes

without scout ants

with scout ants, 50 secs

with scout ants, 2000 secs

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 500 1000 1500 2000 2500 3000

R
a

te
 o

f
R

e
fu

s
e

d
 R

e
q

u
e

s
ts

 f
o

r
R

e
m

o
te

 E
x
e

c
u

ti
o

n

Volunteer nodes

without scout ants

with scout ants, 50 secs

with scout ants, 2000 secs

Fig. 2. Hit + Running Rate (left), and Rate of Refused Requests for Remote Execution (right) of the tasks, with and without scout ants.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

H
it
 +

 R
u

n
n

in
g

 r
a

te
 o

f
L

a
rg

e
 T

a
s
k
s

Volunteer nodes

without scout ants

with scout ants, 50 secs

with scout ants, 2000 secs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

H
it
 +

 R
u

n
n

in
g

 r
a

te
 o

f
S

m
a

ll
T

a
s
k
s

Volunteer nodes

without scout ants

with scout ants, 50 secs

with scout ants, 2000 secs

Fig. 3. Hit + Running Rate of large (left), and small (right) tasks, with and without scout ants.

difference among the task that completes first, and the one
that complete last, in a task set. The basic ACO algorithm
is extended by carrying out new task scheduling, depending
on the results in the past scheduling, and also considering
the load of each VM. The algorithm takes into account VM
characteristics like: the number of processors available in each
VM, its MIPS (Million Instruction Per Second) capability
and the communication bandwidth. The LBACO algorithm
is evaluated through simulation, comparing it with basic FIFO
and ACO algorithms, in terms of the average makespan and the
Degree of Imbalance (a measure of imbalance among VMs).
Our work has a different purpose: it considers only individual
tasks, that have an associated deadline parameter, and tries
to maximize the number of tasks completed respecting their
QoS requirements. The LBACO cannot be directly applied
for collaborative task exception in volunteer clouds, since it
assumes that each node knows all the resources available in
the neighbors nodes, which is unrealistic in those scenarios.

The idea of colored ants was previously presented in a
completely different way by Ali and Belal [17]. They considered
a multiple colony approach, where each node sends a colored
colony throughout the network. Using colored ant colony helps
in preventing ants of the same nest from following the same
route, and hence enforcing them to be distributed all over the
nodes in the network. One main difference with respect to our

work is that their ants tend to maximize the coverage of the
network (exploration), while the strategy of our scout ants can
be configured with a certain exploration-exploitation tradeoff,
according to the softmax method (see Eq. 1).

Our hunter ants share many similarities with the spatial
computing paradigm [4]. The use of decentralized approaches
for managing Grid resources in a P2P fashion through a spatial
computing approach was first tackled by Di Stefano and Santoro
[18], where a job resource request is defined by a capsule,
which is characterized by mass and energy, and moves on a
three-dimensional surface. The surface is built on top of the
overlay network (where the nodes define the X-Y plane) and
the available node’s resource characterize their mass (adding
the Z dimension). The capsule moves according to a couple
of functions, which define the difference of potential among
neighbors nodes (i.e., the capsule’s behavior, according to its
remaining energy), and the friction (which causes a loss of
energy of the capsule, thus ensuring termination). Such an
approach associates one surface to each type of resource. In our
ACO algorithm, hunter ants follow an approach which can be
considered an extension of the one proposed by Di Stefano and
Santoro [18]. Each scout ant releasing its colored pheromone
contributes to the construction of a surface where the values
are not associated to the node itself but to the link. Moreover
task requests do not have their own mass, but specify how they

react over different surfaces. Hunter ants are able to combine
these colored surfaces, to build a new “normalized surface”
(Eq. 2) to the task requests and to the importance of each kind
of resource (through the weights ηk). In our algorithm the Z
dimension is given by the under/over utilization of resources,
since our approach tries to minimize the amount of resources
reserved and not used by the task. This surface normalization
process aims to combine the different surfaces generated by
the pheromone colors, and at same time it is able to take into
account one of the ants’ goals (the minimization of task wasted
resources). Hunter ants behave similarly to task capsules since
their next hop choice is guided by this surface. The links that
prove to be more attractive to the combined colored pheromone
will present a higher gradient, guiding the hunter towards it.
Differently to a traditional spatial computing approach, hunter
ants do not have their own energy that must be exhausted to
stop the exploration, but adopt a more clever approach, stopping
when they find a suitable node that can fulfill their requests.
This ensures to find a solution in less time, which is more
effective when coping with scenarios where tasks may have
stringent deadlines. Termination is ensured by the ant’s TTL.

Finally, we remark that we use our cloud simulator instead
of CloudSim [19] (a popular simulator for cloud computing
environments) since CloudSim imposes a rigid architecture that
is not suitable for volunteer clouds. More precisely, cloud agents
in CloudSim must submit a description of their capabilities
to a broker that receives the task execution requests and then
dispatch them. These centralized solution does not copy well
with the de-centralized nature of volunteer clouds.

VI. CONCLUSIONS AND FUTURE WORK

We presented two novel contributions in the field of
volunteer cloud computing. First, a flexible framework for
the design and evaluation of agent-based algorithms for
collaborative cloud computing problems. The key feature of
the framework is a shared data structure called Computational
Colored Field, inspired by Ant Colony Optimization [3]
and Spatial Computing [4]. Overall, the framework is also
inspired by the volunteer computing [1] and cloud using agents
paradigms [2]. The proposed general framework can be easily
instantiated in different ways, to better fit the characteristics of
the considered scenario.

Second, inspired by previous ACO and spatial computing
based approaches to distributed computing problems (e.g., [13]–
[18]), we presented an instance of the framework in the form
of a novel, highly parametric ACO-based algorithm, which we
advocate as a strong candidate for collaborative task execution
problems. The proposed ACO approach is self-adaptive, which
makes it suitable for dynamic scenarios such as volunteer
clouds, where nodes can join and leave the network at any
time. The benefits of the algorithm can be summarized by its
decentralized and self-* nature together with a light network
overhead introduced by ants. The proposed algorithm was
evaluated with a set of simulation-based experiments using
workload data from Google [6], [12].

We plan to evaluate further features of our algorithm, with
particular attention to the novel anti-stagnation mechanisms we
have proposed (angry ants and memory aging). Moreover, we
plan to investigate novel mechanisms based on heterogeneous

ants (i.e., ants having different behaviors), as well as standard
spatial computing approaches based on local information
diffusion rules. We shall also consider existing volunteer
computing platforms such as the SCIENCECLOUD [20].

ACKNOWLEDGMENTS

Research partly supported by the European projects IP
257414 ASCENS and STReP 600708 QUANTICOL, and the
Italian PRIN 2010LHT4KM CINA.

REFERENCES

[1] V. D. Cunsolo, S. Distefano, A. Puliafito, and M. Scarpa, “Volunteer
computing and desktop cloud: The cloud@home paradigm,” in IEEE
International Symposium on Network Computing and Applications, july
2009, pp. 134–139.

[2] D. Talia, “Cloud computing and software agents: Towards cloud
intelligent services,” in WOA’11, vol. 741. CEUR, 2011, pp. 2–6.

[3] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative
learning approach to the traveling salesman problem,” IEEE Trans.
Evolutionary Computation, vol. 1, no. 1, pp. 53–66, 1997.

[4] F. Zambonelli and M. Mamei, “Spatial computing: An emerging
paradigm for autonomic computing and communication,” in WAC’04,
ser. LNCS, vol. 3457. Springer, 2004, pp. 44–57.

[5] M. Amoretti, A. Lluch-Lafuente, and S. Sebastio, “A cooperative
approach for distributed task execution in autonomic clouds,” in PDP.
IEEE Computer Society, 2013, pp. 274–281.

[6] J. L. Hellerstein, “Google cluster data,” Google research blog, Jan. 2010,
http://googleresearch.blogspot.com/2010/01/google-cluster-data.html.

[7] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2nd ed. Pearson Education, 2003.

[8] D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-peer
networks,” in Proceedings of the 6th ACM SIGCOMM conference on
Internet measurement, ser. IMC ’06. ACM, 2006, pp. 189–202.

[9] M. Amoretti, M. Agosti, and F. Zanichelli, “DEUS: a discrete event
universal simulator,” in Proceedings of the 2nd International Conference
on Simulation Tools and Techniques for Communications, Networks and
Systems, (SimuTools 2009). ICST, 2009, p. 58.

[10] “Distributed Systems Group, DEUS,” http://code.google.com/p/deus/.
[11] L. Saino, C. Cocora, and G. Pavlou, “A toolchain for simplifying network

simulation setup,” in 6th International ICST Conference on Simulation
Tools and Techniques (SIMUTOOLS ’13). ICST, 2013.

[12] A. Mishra, J. Hellerstein, W. Cirne, and C. Das, “Towards Characterizing
Cloud Backend Workloads: Insights from Google Compute Clusters,”
ACM SIGMETRICS Performance Evaluation Review, vol. 37, no. 4, pp.
34–41, 2010.

[13] G. D. Caro and M. Dorigo, “Antnet: A mobile agents approach to
adaptive routing,” IRIDIA, Tech. Rep., 1997.

[14] K. M. Sim and W. H. Sun, “Ant colony optimization for routing and load-
balancing: survey and new directions,” IEEE Transactions on Systems,
Man, and Cybernetics, Part A, vol. 33, no. 5, pp. 560–572, 2003.

[15] R. Mishra and A. Jaiswal, “Ant colony optimization: A solution of
load balancing in cloud,” International Journal of Web & Semantic
Technology (IJWesT), vol. 3, no. 2, pp. 33–50, April 2012.

[16] K. Li, G. Xu, G. Zhao, Y. Dong, and D. Wang, “Cloud task scheduling
based on load balancing ant colony optimization,” in Chinagrid
Conference (ChinaGrid), 2011 Sixth Annual, aug. 2011, pp. 3–9.

[17] A.-D. Ali and M. A. Belal, “Multiple ant colonies optimization for load
balancing in distributed systems,” in Proceedings of ICTA 2007, 2007.

[18] A. Di Stefano and C. Santoro, “A peer-to-peer decentralized strategy
for resource management in computational grids: Research articles,”
Concurr. Comput. : Pract. Exper., vol. 19, no. 9, pp. 1271–1286, 2007.

[19] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “Cloudsim: a toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provisioning
algorithms,” Softw. Pract. Exper., vol. 41, no. 1, pp. 23–50, Jan. 2011.

[20] “The science cloud platform,” http://svn.pst.ifi.lmu.de/trac/scp/.

http://googleresearch.blogspot.com/2010/01/google-cluster-data.html
http://code.google.com/p/deus/
http://svn.pst.ifi.lmu.de/trac/scp/

	Introduction
	Colored Computational Field
	ACO-based algorithm
	Colored Scout Ants
	Hunter Ants

	Simulation
	Simulated Scenario
	Instantiated ACO Algorithm
	Evaluated performance indicators
	Results

	Related Work
	Conclusions and Future Work
	References

