

RA Computer Science and Applications

Dimming Relations for the
Efficient Analysis of Concurrent
Systems via Action Abstraction

Rocco De Nicola
Giulio Iacobelli
Mirco Tribastone

IMT LUCCA CSA TECHNICAL

REPORT SERIES 09
August 2013

#09
2013

IMT LUCCA CSA TECHNICAL REPORT SERIES #09/2013

© IMT Institute for Advanced Studies Lucca
Piazza San Ponziano 6, 55100 Lucca

Research Area
Computer Science and Applications

Dimming Relations for the Efficient
Analysis of Concurrent Systems via

Action Abstraction

Rocco De Nicola
IMT Institute for Advanced Studies Lucca

Giulio Iacobelli
Department for Informatics, Ludwig Maximilians University of Munich

Mirco Tribastone
Department for Informatics, Ludwig Maximilians University of Munich

Dimming Relations for the Efficient Analysis of
Concurrent Systems via Action Abstraction

Rocco De Nicola1, Giulio Iacobelli2, and Mirco Tribastone2

1 IMT — Institute for Advanced Studies Lucca, Italy
rocco.denicola@imtlucca.it
2 Department for Informatics

Ludwig Maximilians University of Munich, Germany
{iacobelli,tribastone}@pst.ifi.lmu.de

Abstract. We study models of concurrency based on labelled transition
systems where abstractions are induced by a partition of the action set.
We introduce dimming relations, i.e., notions of behavioural equivalence
which are able to relate two models if they can match each other’s actions
whenever they are in the same partition block. We show applicability to
a number of situations of practical interest which are apparently hetero-
geneous but exhibit similar behaviors although manifested via different
actions. Dimming relations make the models more homogeneous by col-
lapsing such distinct actions into the same partition block. With our ex-
amples, we show how these abstractions permit reducing the state-space
complexity from exponential to polynomial in the number of concurrent
processes.

1 Introduction

Behavioural relations are powerful techniques to reason about models based on
labelled transition systems. The classic notion of bisimulation relates two states
P and Q such that any action performed by P can be matched by the same
action from Q (and vice versa). Weak bisimulation exploits the fact that some
behaviour is abstracted away by hiding the identity of certain actions that can
be considered uninteresting at some desired level of detail [17]. Alternatively, in
some situations, by exploiting specific structural properties, e.g. symmetries, it
is possible to study the properties of a given model by considering another one
with a smaller state-space size, thus reducing the cost of the analysis.

We propose an approach that lies between these two extremes. We study
behavioural relations that take a coarse-grained view of a model, based on par-
titioning the set of actions that it can exhibit. Our first notion relates P and Q
whenever Q is able to match some action a performed by P with any action in
the same partition block of a (and vice versa). We call this dimmed bisimulation
to highlight the fact that, based on the action partition employed, the modeller
is able to see and reason about the original system at different levels of details
and thus with different levels of accuracy. Clearly, dimmed bisimulation is less
discriminating than bisimulation. For instance, using standard notation, let us

consider a1.0 + a2.0: a simple process that offers a choice between two actions,
a1 and a2, and then stops. This will be dimmed bisimilar to a1.0 if both a1

and a2 belong to the same partition block; evidently, a1.0 + a2.0 is not strongly
bisimilar to a1.0. This simple example shows that it is possible to obtain a more
compact description when the modeller is content with reasoning at the level
of partition representatives instead of considering detailed concrete actions. In-
deed, we will present more substantial examples where this abstraction will be
more significant. To provide some intuition behind this approach, let ‖ denote a
generic parallel operator and consider a1.0 ‖ a2.0 ‖ · · · ‖ an.0, e.g., a model of
n independent threads of execution, each performing a distinct computation ai,
1 ≤ i ≤ n, and then stopping. The state space size of this (concrete) system is
2n; however, allowing all ai to be actions of the same partition block permits a
dramatic reduction of the (abstract) state space to only n+ 1 states, where each
of them tracks the number of processes that have not become inert (0) yet.

An analogous state-space reduction could have been obtained by assuming
that the actions in the same partition block represent unnecessary detail in
the model. Thus, in a1.0 + a2.0 one would replace a1 and a2 with internal τ
actions, yielding τ.0+τ.0, which is bisimilar to τ.0. However, there are two major
drawbacks with this approach. Firstly, in such a reduced form it is not possible
to keep track of the concrete actions from which the internal ones are originated.
Secondly, sometimes this abstraction may not be possible, for instance when a1

and a2 are intended to be used for synchronising with other processes.

More closely related to our behavioural relations is turning one action, say a2,
into another one. For instance, this could be formally obtained by considering the
process (a1.0 + a2.0)[f] where f is the relabelling function such that f(a1) = a1

and f(a2) = a1. Indeed, we provide a characterisation of dimmed bisimulation
based on the existence of an appropriate f such that P [f] is bisimilar, in the
classical sense, to Q[f]. Thus, dimmed bisimulation is able to relate processes
that behave bisimilarly after an appropriate relabelling of their actions.

A highly desirable property of any behavioural relation for process algebra is
establishing that it is preserved by its operators. This is not only of theoretical
interest, but it is very useful in practice in order to infer relations in a composi-
tional fashion, starting from the simplest constituting communicating processes,
for which they are typically not difficult to establish. Indeed, this will be the pre-
ferred way in which we will treat our worked examples. Here we study a CSP-like
process algebra (see, e.g., [19]) where the parallel operator is parametrised by
a synchronisation action set. We find that dimmed bisimulation is preserved if
certain syntactic conditions are met. For instance, for parallel composition the
action set must enjoy the so-called property of singleton coherence. Roughly
speaking, this requires that the partitions of the actions in the synchronisation
set be singletons. That is, dimmed bisimulation can be used compositionally if all
non-trivial partition blocks consist of actions that are performed independently.

Unfortunately, the restriction of singleton coherence can rule out the possibil-
ity of compositional reasoning for some models of practical interest. For instance,
using again the simple example discussed above, a1.0+a2.0 could not be placed

in any context where both a1 and a2 are synchronisation actions. However, this
appears to be an attractive feature, because it represents a typical modelling pat-
tern whereby a process is able to offer two (or more) options of different kinds
to the environment. In order to capture this situation, we introduce dimmed
simulation (whereby, analogously to the classic notion of simulation, any action
performed by P can be matched by Q with any other action in the same partition
block, but not vice versa). It turns out that this is preserved by parallel compo-
sition under the much more relaxed assumption of block coherence, essentially
requiring that a whole partition block must be included in a synchronisation set
if there is at least one action of the partition block in it.

We will show the applicability of our dimming relations by studying a num-
ber of models which exhibit some form of heterogeneity, realised by expressing
analogous behaviour with distinct actions.

We will study a simple model of fork/join synchronisation mechanism. This
can be relevant, for instance, to capture certain aspects of novel programming
paradigms such as MapReduce (see, e.g., [8]) in order to support large-scale con-
current and distributed systems. Here, a large computational task is handled by
a master process, which forks several independent children threads. Each thread
is responsible for a distinct sub-task (modelled, for instance, by a distinct ac-
tion type); when all thread finish, the control passes again to the master process
which finalises the whole task.

In a producer/consumer system mediated by a buffer, the existence of differ-
ent classes of items may be captured by having the buffer expose distinct pairs
of put and get actions for each item class. In these cases, the state-space sizes of
such models grow exponentially with the number of components in the model.

Our dimming relations allow us to consider processes that can be more easily
analysed by making them more homogeneous, provided that the modeller accepts
a coarser-grained view of the system induced by action partitioning. For exam-
ple, the modeller may be content with ensuring that the fork/join model only
captures that some sub-task has been completed by some thread; or that some
action put will enable some action get in any buffer place, without necessarily
wanting to know which specific thread has completed or which specific item class
has been handled. In all our examples, it will turn out that it is possible to ob-
tain simpler dimmed (bi-)similar processes with state-space sizes of polynomial
complexity rather than exponential.

Paper outline. Section 2 introduces our process algebra of interest and discusses
dimmed bisimulation. It presents its characterisation with respect to action re-
labelling and the compositionalilty properties. Section 3 applies these results
to a number of case studies. Section 4 studies dimmed simulation, similarly
to dimmed bisimulation. Section 5 is concerned with weak extensions of both
dimmed relations. Section 6 discusses related work, while Section 7 briefly con-
cludes. Unless otherwise stated, all proofs are given in the appendix.

a.P
a−→ P

P
a−→ P ′

P + Q
a−→ P ′

Q
a−→ Q′

P + Q
a−→ Q′

P
a−→ P ′

A
a−→ P ′

A , P

P
a−→ P ′

P [f]
f(a)−−−→ P ′[f]

P
a−→ P ′

P/L
a−→ P ′/L

a 6∈ L
P

a−→ P ′

P/L
τ−→ P ′/L

a ∈ L

P
a−→ P ′

P ‖L Q
a−→ P ′ ‖L Q

a 6∈ L
Q

a−→ Q′

P ‖L Q
a−→ P ‖L Q′

a 6∈ L
P

a−→ P ′ Q
a−→ Q′

P ‖L Q
a−→ P ′ ‖L Q′

a ∈ L

Fig. 1. Process algebra semantics.

2 Dimmed Bisimulation

We carry out our investigation in the context of a process algebra with CSP-style
semantics. However, with appropriate changes our ideas of dimmed relations
carry over to other synchronisation operators such as the binary one in CCS [17].

Definition 1 (Process Algebra Syntax). Let A be a set of actions and L =
A ∪ {τ}, with τ 6∈ A, be the set of labels. Our process algebra has the syntax

P ::= 0 | a.P | P + P | K | P [f] | P ‖L P | P/L

where a ∈ L, K ∈ K, with K the set of constants and K , P , f : L → L is a
relabelling function with f(τ) = τ , and L ⊆ A. Let P be the set of processes.

We use standard syntax, thus: τ is the internal action; 0 is the inert process, that
does nothing; a.P denotes prefixing, a process that can perform an a-action and
become P ; P + P offers a choice between behaviours; K is a constant, used for
recursion; P [f] is a process to which a relabelling of its actions is applied (where
τ cannot be relabelled); P ‖L P is the generalised parallel operator, whereby the
two operands are required to synchronise only over the actions that are in the
set L; P/L models hiding, whereby an action performed by P is made internal
if it is in L. These rules are captured by the structured operational semantics in
Fig. 1.

Notation 1 Throughout the paper, we let F = {F1, . . . ,Fm} denote a partition
of A. If a ∈ A we let [a]F denote the partition block Fi such that a ∈ Fi; when F
is clear from the context, we omit the subscript and simply write [a]. We extend
the notation [·] to τ by setting [τ] = {τ}.

Definition 2. Let F be a partition of A. We say that P
[a]−→ P ′ iff there exists

b ∈ [a] such that P
b−→ P ′.

According to this definition and to the previous notation, if P
τ−→ P ′ then we

write P
[τ]−→ P ′. Intuitively, Definition 2 gives us the dimmed behaviour of a

process P : if it can make a concrete action b then we say that it can make an

abstract action [a], which essentially stands for saying that “P can make any of
the actions of the partition block to which b belongs.” Our notion of dimmed
bisimulation allows processes to match each other’s actions so long as they are
in the same partition block.

Definition 3 (Dimmed Bisimulation). Given a partition F, a binary relation
R over P is an F-dimmed bisimulation iff whenever (P,Q) ∈ R and a ∈ L:

– if P
[a]−→ P ′ then Q

[a]−→ Q′ and (P ′, Q′) ∈ R;

– if Q
[a]−→ Q′ then P

[a]−→ P ′ and (P ′, Q′) ∈ R.

Two processes P,Q are F-dimmed bisimilar, written P ∼F Q, iff there exists an
F-dimmed bisimulation that relates them.

Let us stress that the classic notion of bisimulation, hereafter denoted by ∼,
can be recovered by choosing F as the trivial singleton partition (which yields
[a] = {a} for all a ∈ A). With an appropriate choice of the action partition,
it is possible to find dimmed bisimilar processes that are easier to analyse. For
instance, using again the simple process presented in Section 1, it holds that
a1.0 + a2.0 ∼F a1.0 (and also that a1.0 + a2.0 ∼F a2.0) if {a1, a2} ∈ F. This
is because R = {(a1.0 + a2.0, a1.0), (0,0)} is an F-dimmed bisimulation. For

instance, both a1.0+a2.0
a1−→ 0 and a1.0+a2.0

a2−→ 0 imply that a1.0+a2.0
[a1]−−→

0 and a1.0
[a1]−−→ 0 since a1.0

a1−→ 0. Please notice that, in this particular case, the
dimmed bisimilar process has the same number of states, but fewer transitions.
Later in this paper we will provide examples where also the number of states
will be reduced.

As expected, similarly to classical bisimulation, the following holds.

Theorem 1. For any partition F, the relation ∼F

a) is an equivalence relation;
b) is the largest F-dimmed bisimulation;
c) satisfies the following property: P ∼F Q iff, for any a ∈ L,

– if P
[a]−→ P ′ then Q

[a]−→ Q′ and P ′ ∼F Q
′;

– if Q
[a]−→ Q′ then P

[a]−→ P ′ and P ′ ∼F Q
′.

Let us observe that, with {a1, a2} ∈ F, it is also possible to establish the rela-
tion a1.0+a2.0 ∼F a1.0+a1.0. This intuitively suggests that dimmed bisimula-
tion can be understood as a form of relabelling that turns actions of a partition
block into possibly distinct actions of within the same partition block. Indeed,
in this simple case we have that (a1.0 + a2.0)[f] ∼ (a1.0 + a1.0)[f] for f such
that f(a1) = a1 and f(a2) = a1.

Indeed, dimmed bisimulation can be characterised in terms of actions rela-
belling. We start with identifying functions that relabel within the same block
of F.

Definition 4. A relabelling function f : L → L is said to be partition-preserving
(pp) for F iff ∀F ∈ F and ∀a ∈ F it holds that f(a) ∈ F .

Theorem 2 (Characterisation of Dimmed Bisimulation via relabelling).
Given a partition F, P ∼F Q iff there exists a pp-function f for F such that
P [f] ∼ Q[f].

We now study whether dimmed bisimulation is preserved by the operators of
our process algebra. For hiding and parallel composition, that are parameterized
by an action set, we need to impose syntactic restrictions on the actual action
sets, which we call block coherence and singleton coherence, respectively. Roughly
speaking, block coherence requires that an element of F is either completely in
the action set, or completely outside. Singleton coherence, instead, requires that
each action belonging to the action set cannot be aggregated with other actions.

Definition 5. Given a partition F and L ⊆ A, we say that L is

– block coherent with F iff ∀F ∈ F such that F ∩ L 6= ∅ we have F ⊆ L .
– singleton coherent with F iff ∀F ∈ F such that F ∩L 6= ∅ we have |F| = 1 .

For instance, let F =
{
{a1, a2}, {b}

}
. Then {b} is singleton coherent with F,

whereas {a1, a2} is not. However, {a1, a2} is block coherent with F. Furthermore,
every action set L is singleton coherent with the trivial singleton partition of the
action set; finally, the empty set is singleton coherent with any F.

Theorem 3 (Compositionality for Dimmed Bisimulation). Let P and Q
be two processes such that P ∼F Q. Then it holds that:

i) a.P ∼F b.Q for any a, b such that [a] = [b];
ii) P +R ∼F Q+ S for any two processes R and S such that R ∼F S;

iii) P [g] ∼F Q[g] for any function g that is partition preserving for F;
iv) P/L ∼F Q/L for L block coherent with F;
v) P ‖L R ∼F Q ‖L S if R ∼F S and L is singleton coherent with F.

In general, dimmed bisimulation is not preserved if the above syntactical re-
strictions are not satisfied. To see this, let us take, for instance, processes a1.0
and a2.0, and some partition F such that {a1, a2} ⊆ [a1]. Then it holds, that
a1.0 ∼F a2.0. For relabelling, let b1 6∈ [a1] and define f such as f(a1) = b1,
f(a2) = a2, and f(b1) = b1, whence f is not a pp-function. Then, it holds that
a1.0[f] 6∼F a2.0[f]. For hiding, a1.0/L 6∼F a2.0/L if L = {a1}. Finally, dimmed
bisimulation is not preserved by parallel composition if the action set is not
singleton coherent with F. For instance, a1.0 ‖L a1.0 6∼F a2.0 ‖L a1.0.

Working with dimmed bisimilar candidates. The following fact establishes a clear
relationship between a process P and the process obtained by inserting P in a
context making use of a relabelling pp-function. In practice, it allows us to find
a nontrivial (i.e., nonidentical) candidate bisimulating process.

Proposition 1. Let F be a partition and f be a pp-function for F. Then it holds
that P ∼F P [f].

Proof. The relation {(P ′, P ′[f]) | f is a pp-function for F} is an F-dimmed
bisimulation. ut

Notice that, in general, the state space of P is as large as that of P [f].
However, in some cases, it may be easier to find a smaller process by studying
how the pp-function f distributes over the process algebra operators.

Proposition 2. Let f be a pp-function for F. It holds that

i) (P [g])[f] ∼F P [f] for any function g that is partition preserving for F;
ii) (P/L)[f] ∼F (P [f])/L for L block coherent with F;

iii) (P ‖L Q)[f] ∼F P [f] ‖L Q[f] if L is singleton coherent with F.

Interestingly, dimmed bisimilarity behaves rather differently than bisimilarity
with respect to distributivity. For instance, in i) the information of the pp-
function g is lost, while bisimilarity uses function composition f◦g; the analogous
statement to ii) for bisimilarity requires a similar form of coherence for L, i.e. a ∈
L iff f(a) ∈ L; finally, iii) uses a weaker assumption on f than bisimilarity, for
which f must be injective, but has a syntactic restriction on the synchronisation
set, unlike bisimilarity. In fact, singleton coherence and partition preservation
coincide with requiring that f be injective on the synchronised actions.

Let us also remark that, in general, distributivity may not be preserved when
the side conditions are not satisfied. For instance:

– (a1.0[g])[f] 6∼F (a1.0)[f] if g(a1) = b, with b 6∈ [a1], and f(a1) = a1 and
f(b) = b;

–
(
(a1.0+a2.0)/{a1}

)
[f] 6∼F

(
(a1.0+a2.0)[f]

)
/{a1} if f(a2) = a1 and f(a1) =

a1, with {a1, a2} ∈ F;
– (a1.0 ‖{a1,a2} a2.0)[f] 6∼F (a1.0)[f] ‖{a1,a2} (a2.0)[f], with the same f as

above.

Different levels of dimming. So far, all our results have assumed a given fixed
partition of the action set. Now we turn to considering what can be said for
models with different levels of dimming, induced by different partitions. In gen-
eral, for any two partitions, establishing dimmed bisimilarity with one parti-
tion does not allow us to infer dimmed bisimilarity for the other. For example,
a1.0+a2.0+b.0 ∼F1 a1.0+a2.0 for F1 =

{
{a1, b}, {a2}

}
; but a1.0+a2.0+b.0 6∼F2

a1.0 + a2.0 if F2 =
{
{a1, a2}, {b}

}
. However, it turns out that the usual partial

order based on partition refinement captures the intuitive idea that one parti-
tion provides a higher level of abstraction than the other. Formally, given two
partitions F1 and F2, one says that F1 is a refinement of F2, written as F1 ≤ F2,
if every element of F1 is a subset of an element of F2. In this case, it is also said
that F1 is finer than F2 and that F2 is coarser than F1.

Proposition 3. Let F1, F2 be two partitions of A such that F1 ≤ F2 and let P
and Q be two processes such that P ∼F1 Q; then it holds that P ∼F2 Q.

Proof. F1 ≤ F2 entails that [a]F1
⊆ [a]F2

for any a ∈ A. Thus R , {(P ′, Q′) |
P ′ ∼F1 Q

′} contains (P,Q) and is an F2-dimmed bisimulation.

Let us denote by F0 the trivial singleton partition, for which it holds that
F0 ≤ F for any F. Since ∼ = ∼F0

, as a corollary of the above proposition we
have the following.

Corollary 1. ∼ implies ∼F for any partition F.

3 Dimmed Bisimulation at Work

In this section we present how to exploit dimmed bisimulation in four examples
of typical modelling patterns of distributed systems. In all cases, Corollary 1
will be used in order to find dimmed bisimilar processes that are much easier to
analyse than the original ones. Given some process P , the idea is to first find
some Q such that P ∼F Q; then, using well-known algorithms [18], one reduces
Q up to bisimulation into R, from which it holds that P ∼F R. For instance,
the relation a1.0 + a2.0 ∼F a1.0 can be interpreted as establishing first that
a1.0 + a2.0 ∼F a1.0 + a1.0, and then observing that a1.0 + a1.0 ∼ a1.0.

Our first example studies a concurrent system with fork/join synchronisa-
tion, which could be used, as discussed, for a high-level model of a MapReduce
computing task [8].

Example 1 (A Fork/Join System). Let us consider A = {fork , join} ∪ {wi | 1 ≤
i ≤ n}. Our model consists of a master process, denoted by F , which invokes
(fork) n worker threads. Each worker thread, Wi, performs a distinct type of
computation, modelled as a distinct action wi. Once all threads finish their task,
the master process collects the results (join) and repeats the cycle invoking the
threads again. The model is as follows.

F , fork .join.F Wi , fork .wi .join.Wi 1 ≤ i ≤ n.
M := F ‖L W1 ‖L · · · ‖L Wn, L = {fork , join}.

Model M has a state space size that grows as 2n + 1. In addition, it cannot be
further minimised up to bisimulation. Dimmed bisimulation, on the other hand,
yields a simpler model which enjoys linear complexity of the state space size. To
show this, let us consider F =

{
{fork}, {join}, {wi | 1 ≤ i ≤ n}

}
, with which L

is singleton coherent. We have that Wi ∼F W1 for all 1 ≤ i ≤ n. Thus, item v)
of Theorem 3 may be applied to yield that M ∼F M̄ , with

M̄ := F ‖L W1 ‖L · · · ‖L W1︸ ︷︷ ︸
n times

.

Now, M̄ still has 2n + 1 states, but it can be minimised up to bisimulation due
to the symmetry among the worker threads, which are now copies of the same
process. In this case, it is sufficient to just count how many worker threads are
performing w1. More precisely, let us consider the process W̄0 defined as

W̄0 , fork .W̄1, W̄i , w1.W̄i+1, for 1 ≤ i ≤ n, W̄n+1 , join.W̄0.

Then it holds that W1 ‖L · · · ‖L W1︸ ︷︷ ︸
n times

∼ W̄0, from which, by Proposition 1, it

follows that M ∼F F ‖L W0. Hence, given a model with 2n + 1 states, we were
able to construct a dimmed bisimilar one with only n+ 2 states.

n1 n2 m1 m2 k |M | |M̄ | |M |/|M̄ |

1 1 1 1 1 48 18 2.67
2 2 2 2 1 243 50 5.06
1 1 1 1 10 1056 99 10.67
2 2 2 2 10 5346 275 19.44
1 1 1 1 100 82416 909 90.67
2 2 2 2 100 417213 2525 165.23
3 3 2 2 100 741744 3535 209.83

Table 1. State space sizes for M and M̄ in Example 2, denoted by |M | and |M̄ |,
respectively.

In the above example, nontrivial parts of the action set involve actions which
are never synchronised. That is, dimmed bisimulation can be inferred composi-
tionally, starting from the simplest concurrent processes, because they are com-
posed together over synchronisation action sets that satisfy singleton coherence.
By contrast, the following examples can still be related to more compact dimmed
bisimilar processes; however, dimmed bisimilarity cannot be inferred composi-
tionally because the synchronisation sets are not singleton coherent. Thus a
relation must be directly given for the whole composite process under consid-
eration. In Section 4 we will, however, show how compositional reasoning on
the same examples can be recovered at the cost of establishing only dimmed
simulation.

Our second case study is a model of a producer/consumer system where the
interaction is mediated by a buffer of finite capacity (see also [2]).

Example 2 (Multi-class Producer/Consumer). For simplicity, let us consider two
classes of producers and two classes of users which share the same buffer. Let
m1 (resp., m2) be the number of producers of the first (resp., second) class; let
n1 and n2 be the number of consumers. Finally, let k be the buffer capacity.

A class-i producer, for i = 1, 2, is modelled by Pi , prod i.put i.Pi; here prod i
models an independent action that describes the production of an item, whereas
put i is a synchronisation action to be performed with the buffer: It can be
executed only when there is at least one place available in the buffer. In a similar
fashion, the model of a class-i consumer is given by Ci , get i.consi.Ci. In this
case, get i is a synchronisation action with the buffer, whereas the (independent)
consumption of an item is modelled by action consi. Finally, a place in the buffer
is modelled by the component B , put1.get1.B+put2.get2.B. Overall, our model
of interest, denoted by M , is given by

M :=
(
P1[m1] ‖∅ P2[m2]

)
‖L1 B[k] ‖L2

(
C1[n1] ‖∅ C2[n2]

)
where L1 = {put1, put2}, L2 = {get1, get2}, and S[l] abbreviates (S ‖∅ · · · ‖∅ S︸ ︷︷ ︸

l times

).

A reasonable abstraction is not to insist on keeping the two classes of pro-
ducers (resp. consumers) distinct.

To this end, let us consider F =
{
L1, L2, {prod1, prod2}, {cons1, cons2}

}
.

With this partition, it is possible to show that (cf. Appendix C)

M ∼F M̄, with M̄ := P1[m1 +m2] ‖L1
B1[k] ‖L2

C1[n1 + n2].

That is, producers and consumers of the second class are dimmed bisimilar to
those of the first class; furthermore, a buffer place with two distinct actions is
dimmed bisimilar to a buffer with actions of a single representative type. As
with Example 1, the state-space reduction achieved can be significant. Indeed,
Table 1 compares the state space sizes of M and M̄ (after minimisation of both
processes up to bisimulation) for different values of n1, n2, m1, m2, and k.

Our next example is m-out-of-n communication, a typical pattern of inter-
action that occurs frequently in distributed systems. For instance, it is adopted
by certain security protocols, whereby a client performs connections to a subset
of the available authentication servers in order to improve resilience to attacks
by decentralising the information (e.g., [15]); in quorum consensus protocols, to
guarantee availability in distributed databases (e.g., [21]); and in peer-to-peer
systems, where among all nodes that are potentially able to serve a request, a
peer connects to a subset of them in order to avoid data fragmentation [5].

Example 3 (m-out-of-n Communication). Let us consider an illustrative case of
2-out-of-3 communication, where exactly two processes can make progress in
a computation [23]. Each process evolves through two local states, Pi and Qi,
1 ≤ i ≤ 3, where Pi encodes the 2-out-of-3 communication and Qi performs
some local computation whenever Pi turns out to be one of the two processes
that is allowed to make progress:

P1 , a12.Q1 + a13.Q1 + a23.P1 Q1 , b1.Q1 + a23.Q1

P2 , a12.Q2 + a13.P2 + a23.Q2 Q2 , b2.Q2 + a13.Q2

P3 , a12.P3 + a13.Q3 + a23.Q3 Q3 , b3.Q3 + a12.Q3

M := P1 ‖L P2 ‖L P3 L = {a12, a13, a23}.

The encoding is such that each process Pi is able to react to all synchronisation
actions a12, a13, a23; however, Pi does make progress and becomes Qi only when
the synchronisation action akl is such that i = k or i = l. Similarly, Qi is such
that it does not prevent the synchronisation action that does not involve i to
happen. For instance, process Q1 ‖L P2 ‖L P3, which is reachable from M ,
affords an a23-transition to Q1 ‖L Q2 ‖L Q3. In general, constructing processes
in this way yields a 2-out-of-n model which has 2n states.

In this form, M cannot be minimised any further up to bisimulation. How-
ever, as with the previous examples, dimmed bisimulation offers a means to
exploiting symmetries after an appropriate perturbation of the action names.
Specifically, let us consider

F =
{
{a12, a13, a23}, {b1, b2, b3}

}
, P̄ , a12.P̄ +a12.Q̄, and Q̄ , b1.P̄ +a12.Q̄.

It is possible to show that (cf. Appendix C)

P1 ‖L P2 ‖L P3 ∼F P̄ ‖L P̄ ‖L P̄ := M̄.

Now, M̄ is bisimilar to a process, C̄3, counting the number of P̄ -processes:

C̄3 , a12.C̄3 + a12.C̄2 + a12.C̄1 + a12.C̄0

C̄2 , a12.C̄2 + a12.C̄1 + a12.C̄0 + b1.C̄3

C̄1 , a12.C̄1 + a12.C̄0 + b1.C̄2

C̄0 , a12.C̄0 + b1.C̄1.

In general, for a 2-out-of-n model it is possible to define a process C̄n in a similar
fashion, which reduces the complexity of the state space from 2n to n+ 1.

We end this section by discussing a classical example in the process algebra
literature.

Example 4 (Milner’s Cyclers [17]). Milner’s cyclers is a model of a scheduler that
allows a set of processes P1, P2, . . . , Pn to cyclically perform local computations
in succession; that is, process Pi cannot start its computation until Pi−1 has
instructed it to do so. For simplicity, here we study the case for n = 3. The
model of the three processes is as follows:

P1 , γ1.Q1 + γ2.P1 + γ3.P1 Q1 , α1.R1 R1 , γ2.S1 + β1.T1

S1 , β1.P1 + γ3.S1 T1 , γ2.P1

P2 , γ1.P2 + γ2.Q2 + γ3.P2 Q2 , α2.R2 R2 , γ3.S2 + β2.T2

S2 , β2.P2 + γ1.S2 T2 , γ3.P2

P3 , γ1.P3 + γ2.P3 + γ3.Q3 Q3 , α3.R3 R3 , γ1.S3 + β3.T3

S3 , β3.P3 + γ2.S3 T3 , γ1.P3

Here, γi represents the signal that process i is able to start the computation; its
performance is modelled by action αi; upon completion, the process may signal
the start to its successor (hence, to achieve cyclic behaviour R3 will perform
action γ1), or notify the end of the local computation via βi, in either order.
Process Si describes the state of a cycler which has already started the compu-
tation and let the next cycler go. In that state, it may witness some γj-action
performed by other cyclers; in this case, the cycler ignores this signal and be-
haves as Si again. For instance, S1 may witness a γ3-action because the second
cycler may let the third one go before the first cycler has finished.

The model is completed by a scheduler, Sc, that will enforce the start of P1:

Sc , γ1.Sc′ Sc′ , γ1.Sc′ + γ2.Sc′ + γ3.Sc′

Thus, the overall system is described by

M := Sc ‖L P1 ‖L P2 ‖L P3, with L = {γ1, γ2, γ3}.

Let us now consider F =
{
{α1, α2, α3}, {β1, β2, β3}, {γ1, γ2, γ3}

}
and

P̄ , γ1.P̄ + γ1.P̄ Q̄ , α1.R̄ R̄ , γ1.S̄ + β1.T̄

S̄ , β1.P̄ + γ1.S̄ T̄ , γ1.P̄ S̄c , γ1.S̄c

Then, using similar arguments as in Example 3, it holds that M ∼F S̄c ‖L P̄ ‖L
P̄ ‖L P̄ . In general, Milner’s model is of exponential complexity with the number
of cyclers (e.g., [13]). Using the same counting-process technique discussed in the
previous examples will yield a model of polynomial complexity, by exploiting that
P̄ is present in multiple identical copies in the dimmed bisimilar process.

4 Dimmed Simulation

As mentioned, single coherence may be an impediment to compositional reason-
ing for some interesting models of practical relevance. A modelling pattern that
is not supported is that of multi-class systems, where multiple synchronisation
actions may be performed by processes that the modeller wishes to keep differen-
tiated. For instance, let F =

{
{a1, a2}, {b1, b2}

}
. Even though a1.0+a2.0 ∼F a1.0

and a1.b1.0 + a2.b2.0 ∼F a1.b1.0, we cannot infer by Theorem 3 that

(a1.0 + a2.0) ‖L (a1.b1.0 + a1.b2.0) ∼F a1.0 ‖L a1.b1.0, with L = {a1, a2},

because L is not singleton coherent with F. Similarly to Examples 2, 3, and 4,
dimmed bisimilarity does hold. However, since it cannot be proven composition-
ally, a relation containing the whole processes must be provided.3

Fortunately, compositional reasoning can still be applied if one accepts to
use dimmed simulation instead of dimmed bisimulation.

It has however to be said that simulation, that was introduced by Milner
much before bisimulation [16], has been used for establishing interesting prop-
erties of systems. For example, in [14] it is argued that “in many cases, neither
trace equivalence nor bisimilarity, but similarity is the appropriate abstraction
for computer-aided verification”.

Definition 6 (Dimmed Simulation). Given a partition F, a binary relation
R over P is an F-dimmed simulation iff whenever (P,Q) ∈ R and a ∈ L:

– if P
[a]−→ P ′ then Q

[a]−→ Q′ and (P ′, Q′) ∈ R.

For two processes P and Q, we say that Q F-dimmed ly simulates P , written
P �F Q, if there is an F-dimmed simulation which relates them.

3 Specifically, consider the relation

R =
{(

(a1.0 + a2.0) ‖L (a1.b1.0 + a1.b2.0), a1.0 ‖L a1.b1.0
)
,(

0 ‖L b1.0,0 ‖L b1.0
)
,
(
0 ‖L b2.0,0 ‖L b1.0

)
,
(
0 ‖L 0,0 ‖L 0

)}
.

Then, R is a dimmed bisimulation.

Similarly to dimmed bisimulation, using the trivial singleton partition we recover
the standard notion of simulation between processes, hereafter denoted by �.
We state the next proposition without proof.

Proposition 4. The following hold:

i) �F is a preorder;

ii) P ∼F Q =⇒ P �F Q ∧ Q �F P .

Mutatis mutandis, the relationship between dimmed simulation and simula-
tion is the same as the relationship between dimmed bisimulation and bisimula-
tion as discussed in Section 2. That is, Theorem 2 carries over. Further, dimmed
similarity is preserved by partition refinement (cf. Proposition 3), thus similarity
implies dimmed similarity (cf. Corollary 1). Propositions 1 and 2 hold also for
dimmed simulation by point ii) of Proposition 4.

The results of Theorem 3 would carry over as well. However, in the case of
dimmed simulation it is possible to relax the assumption on singleton coherency,
which is needed for the preservation of dimmed bisimulation by parallel compo-
sition. Here, instead, we will just require block coherency, as well as a form of
homogeneity of the two operands of the parallel composition with respect to the
synchronisation set. To formally define this notion, we denote by Act(P) the set
of all actions that can be performed by process P ; for all a ∈ L,

a ∈ Act(P) iff ∃n ≥ 1 : P
a1−→ P1

a2−→ · · · an−−→ Pn, an = a ∧ ai 6= a, 1 ≤ i ≤ n− 1.

Definition 7 (Homogeneous Processes). Let P and Q be two processes,
L ⊆ A, and F a partition. P and Q are said to be homogeneous for L with F iff∣∣(Act(P) ∪Act(Q)

)
∩ [a]

∣∣ ≤ 1, for all a ∈ L.

Essentially, we require that both P and Q be able to perform at most one of
the synchronisation actions belonging to the same element of F. For instance,
let P , a1.0 + a2.0, Q , a1.Q + a2.Q, and {a1, a2} ∈ F. Then P and Q are
not homogeneous for L = {a1, a2} in F. Let us now consider their respectively
dimmed similar processes, P̄ , a1.0 and Q̄ , a1.Q̄. In this case, instead, it holds
that P̄ and Q̄ are homogeneous for L in F.

Theorem 4 (Compositionality for Dimmed Simulation). Let P , Q be two
processes such that P �F Q. Then it holds that:

i) a.P �F b.Q for all a, b such that [a] = [b];

ii) P +R �F Q+ S, for any R, S such that R �F S;

iii) P [g] �F Q[g] for any g pp-function for F;

iv) P/L �F Q/L if L is block coherent with F;

v) P ‖L R �F Q ‖L S, for R, S such that R �F S, if L is block coherent with
F and Q and S are homogeneous for L with F.

The conditions required for the last point deserve more explanation. In gen-
eral, dimmed simulation is not preserved if only L is block coherent with F but
Q and S are not homogeneous for L with F. To show this take, for instance,
P := a1.0 + a2.0, R := P , Q := a1.0, and S := a2.0, with L = {a1, a2} and
L ∈ F. Similarly, if the condition of homogeneity is satisfied but L is not block
coherent with F, dimmed simulation may not be preserved either. For instance,
take P := a1.0, R := P , Q := a2.0, S := Q, with L = {a1} and {a1, a2} ∈ F.

Then, it holds that P ‖L R
a1−→ 0 ‖L 0 but Q ‖L S 6→. Finally, we wish to point

out the fact that homogeneity is to be satisfied only by the simulating process
Q ‖L S. This is why we have preferred a statement in the form of item v) in-
stead of the weaker “P �F Q =⇒ P ‖L R �F Q ‖L R for Q, R homogeneous
for L in F and L block coherent with F.” Stated in this way, homogeneity for
Q and R would imply some form of homogeneity also in the simulated process
P ‖L R. Indeed, R cannot enable two or more alternative synchronisation ac-
tions within the same part, thus significantly reducing the class of composite
processes P ‖L R that can be simulated. This is because, since L must be block
coherent with F, it could in principle contain two actions a1, a2 belonging to the
same part. But R can enable only one of them, say a1. Therefore there would
be a2 ∈ L which is never performed by one of the two operands. This, in turn,
would cause a2 never to be seen at all by P ‖L R.

In order to show practical usefulness of dimmed simulation, let us now revisit
the previous examples and show that they can be simplified compositionally via
�F, but not with ∼F.

Example 2 (continued). It possible to show that P2 ∼F P1. Theorem 3 could
be used to show that P1[m1] ‖∅ P2[m2] ∼F P1[m1 + m2]. Similarly, it holds
that B[k] ∼F B1[k], where B1 , put1.get1.B1. However, although (P1[m1] ‖∅
P2[m2]) ‖L1 B[k] ∼F P1[m1 + m2] ‖L1 B1[k] does hold, this fact cannot be
inferred compositionally from Theorem 3 because L1 is not singleton coherent
with F. Thus, a simpler dimmed bisimilar process to M cannot be obtained by
congruence.

Instead, a dimmed similar process can indeed be constructed compositionally.
Since ∼F implies �F, we have that P1[m1] ‖∅ P2[m2] �F P1[m1 + m2] and
B[k] �F B1[k]. Now, P1[m1 + m2] and B1[k] are homogenous for L1 and L1 is
block coherent with the chosen F. Hence, item v) of Theorem 4 yields(

P1[m1] ‖∅ P2[m2]
)
‖L1

B[k] �F P1[m1 +m2] ‖L1
B1[k].

Analogously, it holds that C1[n1] ‖∅ C2[n2] �F C1[n1 +n2]. Again, we have that
P1[m1 +m2] ‖L1

B1[k] and C1[n1 + n2] are homogeneous for L2 and L2 is block
coherent with F. Therefore we are able to conclude (compositionally) that

M �F M̄, with M̄ := P1[m1 +m2] ‖L1
B1[k] ‖L2

C1[n1 + n2].

Example 3 (continued). In Section 3 we were able to show that

P1 ‖L P2 ‖L P3 ∼F P̄ ‖L P̄ ‖L P̄ := M̄.

However, this cannot be established compositionally because L is not singleton
coherent with F, hence Theorem 3 cannot be applied. Instead we show that

P1 ‖L P2 ‖L P3 �F M̄

since Pi �F P̄ (in fact, Pi ∼F P̄) for i = 1, 2, 3, and L is block coherent with F.

Example 4 (continued). Similarly to the previous example, in Section 3 we dis-
cussed that

Sc ‖L P1 ‖L P2 ‖L P3 ∼F S̄c ‖L P̄ ‖L P̄ ‖L P̄ .

However, compositional reasoning was not possible because L is not singleton
coherent. Once again, L is instead block coherent for the action partition F
chosen in this case. Now, it holds that Sc �F S̄c and Pi �F P̄ . This implies that
the relation Sc ‖L P1 ‖L P2 ‖L P3 �F S̄c ‖L P̄ ‖L P̄ ‖L P̄ can indeed be proven
by repeatedly using point v) of Theorem 4.

5 Weak Extensions

So far, we have been able to successfully exploit our dimmed relations in cases
where the related processes are, in some informal sense, structurally resembling
each other. For instance, in Example 4 of Milner’s cyclers, each process Pi is
syntactically equal to Pj after a suitable relabelling of the actions. Further state-
space compressions may be possible when abstracting away from unnecessary
detail in the model. This has been at the basis of any weak notion of behavioural
relation considered in the past. Weak extensions of our dimmed relations are
similar in spirit.

Given P and P ′ two processes in P, we shall write, for any action a ∈ L,
P

a
=⇒ P ′ iff either of the following holds:

– a 6= τ and there are processes P1, P2 such that P (
τ−→)∗P1

a−→ P2(
τ−→)∗P ′;

– a = τ and P (
τ−→)∗P ′.

The notation (
τ−→)∗ refers to the reflexive and transitive closure of the relation

τ−→. Similarly to Section 2, we define P
[a]
=⇒ P ′ iff there exists b ∈ [a] such

P
b

=⇒ P ′. Based on this, the following definitions of dimmed weak bisimulation
and dimmed weak simulation are then natural.

Definition 8 (Dimmed Weak Bisimulation). Given a partition F, a binary
relation R over P is an F-dimmed weak bisimulation iff whenever (P,Q) ∈ R
and a ∈ L

– if P
[a]−→ P ′ then Q

[a]
=⇒ Q′ and (P ′, Q′) ∈ R;

– if Q
[a]−→ Q′ then P

[a]
=⇒ P ′ and (P ′, Q′) ∈ R.

Two processes P,Q are F-dimmed weak bisimilar, written P ≈F Q, iff there
exists an F-dimmed weak bisimulation that relates them.

Definition 9 (Dimmed Weak Simulation). Given a partition F, a binary
relation R over P is an F-dimmed weak simulation iff whenever (P,Q) ∈ R and
a ∈ L

– if P
[a]−→ P ′ then Q

[a]
=⇒ Q′ and (P ′, Q′) ∈ R.

Two processes P,Q are F-dimmed weak similar, written P wF Q, iff there exists
an F-dimmed weak simulation that relates them.

All the results presented in Section 2 and 4 carry over straightforwardly to
these weak variants. (For completeness, they are reported in Appendix A.)

For instance, it holds that a1.τ.0 + a2.τ.τ.0 ≈F a1.0, while, clearly, a1.τ.0 +
a2.τ.τ.0 6∼F a1.0. In a variant of Example 1, if the worker threads were addition-
ally given τ -computations of different length, e.g.,

Ŵi , fork . τ. · · · .τ︸ ︷︷ ︸
i times

.join.Ŵi

then it would still hold that Ŵi ≈F W1. In a variant of Example 2, a model B̂
of a buffer that threats the two kinds of item differently by means of τ -actions,
e.g., B̂ , put1.get1.B̂ + put2.τ.get2.B̂ would be such that B̂ ≈F B1. Our strong
notions of dimmed relations almost seem to require a strict structural/syntactic
resemblance up to action relabelling for effective applicability. In contrast, their
weak extensions may be conveniently applied to practical examples even for less
“symmetric” processes, so long as their differences are due to behaviour that
may be considered irrelevant at the desired level of abstraction.

6 Related Work

At the very core of our dimmed relations is an abstraction operated at the level
of the transition system laid down by the process algebra, which lifts concrete
actions a, b, . . . , to elements [a], [b], . . . of a given partition of the action set.
As such, this work is in the general context of abstract interpretation [6], where
a concrete model is approximated with a hopefully simpler one that preserves
some properties of interest, for example expressed as logical formulae (e.g., [4,
7]). This framework has also been considered in process algebra as early as
in [22], where an approximation based on a preorder on the action set of CCS
is studied; an analogous preorder has been used for model checking abstractions
for µ-calculus [10]. While a preorder can be motivated by situations where cer-
tain actions may be considered as carrying more information than others, our
approach is fundamentally different because all actions belonging to the same
partition block are equal in power.

The present paper is also somewhat related to [9], where the authors consider
abstract interpretation to reduce infinite branching to finite branching of value-
passing LOTOS based on trace semantics to enable model checking of linear
temporal logic. Instead, more work than on action abstraction seems to have

been directed to the dual notion of action refinement, where the main idea is
that an atomic action is expanded into a process, e.g., a more detailed sequence
of actions [11, 1, 12].

7 Conclusion

Dimmed behavioural relations permit trading-off between a detailed knowledge
of the action types exhibited by a concrete model under study and a potentially
more compact description arising from collapsing several actions together.

From a theoretical standpoint, the characterisation in terms of actions re-
labelling seems to make justice to this classic process algebra operator, which
has been oftentimes neglected in recent developments of this field (see [20] for
a discussion). The property of partition-preservation for a relabelling function
presented in this paper is less restrictive than injectivity, as required for stan-
dard bisimulation results; yet it permits compositional reasoning for our dimmed
relations.

From a more pragmatic standpoint, on a number of modelling patterns of
practical interest, we showed that our dimmed relations can be effectively em-
ployed for a significantly more efficient (as well as more abstract) analysis of
heterogeneous systems, when heterogeneity is captured by the presence of anal-
ogous but formally distinct behaviours which are told apart by the use of distinct
actions.

Future work will be concerned with a thorough investigation of a logical
characterisation of dimmed bisimulation and simulation. We expect, however,
that a straightforward adaptation of Hennessy-Milner logic should characterise
the former; instead, an extension of simulation to ready simulation should be
characterised by a suitably revised class of denial formulas, along the lines of [3].

Acknowledgement

Most of this work was done while the first author was visiting LMU in Munich;
he would like to thank Martin Wirsing and his group for the excellent scientific
and social atmosphere.

References

1. L. Aceto and M. Hennessy. Towards action-refinement in process algebras. Infor-
mation and Computation, 103(2):204–269, 1993.

2. Alessandro Aldini, Marco Bernardo, and Flavio Corradini. A Process Algebraic
Approach to Software Architecture Design. Springer Publishing Company, 2009.

3. Bard Bloom, Sorin Istrail, and Albert R. Meyer. Bisimulation can’t be traced. J.
ACM, 42(1):232–268, January 1995.

4. Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and
abstraction. ACM Trans. Program. Lang. Syst., 16(5):1512–1542, September 1994.

5. Bram Cohen. Incentives build robustness in BitTorrent. In Proceedings of the
Workshop on Economics of Peer-to-Peer Systems, Berkeley, CA, USA, June 2003.

6. Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
POPL, pages 238–252, New York, NY, USA, 1977. ACM.

7. Dennis Dams, Rob Gerth, and Orna Grumberg. Abstract interpretation of reactive
systems. ACM Trans. Program. Lang. Syst., 19(2):253–291, March 1997.

8. Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on
large clusters. Commun. ACM, 51(1):107–113, January 2008.

9. Alessandro Fantechi, Stefania Gnesi, and Diego Latella. Towards automatic tempo-
ral logic verification of value passing process algebra using abstract interpretation.
In CONCUR ’96, volume 1119 of LNCS, pages 563–578. Springer, 1996.

10. Harald Fecher and Michael Huth. Model checking for action abstraction. In Verifi-
cation, Model Checking, and Abstract Interpretation, volume 4905 of LNCS, pages
112–126. Springer, 2008.

11. Rob Glabbeek and Ursula Goltz. Equivalence notions for concurrent systems and
refinement of actions. In MFCS, volume 379 of LNCS, pages 237–248. Springer,
1989.

12. Roberto Gorrieri, Arend Rensink, and Mura Anteo Zamboni. Action refinement.
In Handbook of Process Algebra, pages 1047–1147. Elsevier, 2000.

13. JanFriso Groote and Faron Moller. Verification of parallel systems via decomposi-
tion. In CONCUR, volume 630 of LNCS, pages 62–76. Springer, 1992.

14. Monika Rauch Henzinger, Thomas A. Henzinger, and Peter W. Kopke. Computing
simulations on finite and infinite graphs. In FOCS, pages 453–462. IEEE Computer
Society, 1995.

15. Philip D. MacKenzie, Thomas Shrimpton, and Markus Jakobsson. Threshold
password-authenticated key exchange. J. Cryptology, 19(1):27–66, 2006.

16. Robin Milner. An algebraic definition of simulation between programs. In D. C.
Cooper, editor, IJCAI, pages 481–489. William Kaufmann, 1971.

17. Robin Milner. A Calculus of Communicating Systems. Springer-Verlag, 1980.
18. R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM Journal on

Computing, 16(6):973–989, 1987.
19. A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1997.
20. Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge Uni-

versity Press, 2011.
21. Robert H. Thomas. A majority consensus approach to concurrency control for

multiple copy databases. ACM Trans. Database Syst., 4:180–209, June 1979.
22. Bent Thomsen. An extended bisimulation induced by a preorder on actions. M.Sc.

thesis, Aalborg University, 1987.
23. Max Tschaikowski and Mirco Tribastone. Generalised Communication for Inter-

acting Agents. In QEST, pages 178–188. IEEE Computer Society, September 2012.

A Dimmed Weak Relations: Results

The results of this section are given without proof because they are a standard
extension from dimmed strong bisimulation and simulation, which are proven in
Appendix B.

Theorem 5. For any partition F, the relation ≈F

a) is an equivalence relation;
b) is the largest F-dimmed weak bisimulation;
c) satisfies the following property: P ≈F Q iff, for any action a,

– if P
[a]−→ P ′ then Q

[a]
=⇒ Q′ and P ′ ≈F Q

′;

– if Q
[a]−→ Q′ then P

[a]
=⇒ P ′ and P ′ ≈F Q

′.

Theorem 6 (Characterisation of Dimmed Weak Bisimulation). Given a
partition F, P ≈F Q iff there exists a pp-function f for F such that P [f] ≈ Q[f].

Similarly to weak bisimilarity, dimmed weak bisimilarity turns out not to be a
congruence with respect to the choice operator. Indeed, although τ.a1.0 ≈F a2.0
if {a1, a2} ∈ F, we have that τ.a1.0 + b.0 6≈F a2.0 + b.0. However, dimmed weak
bisimilarity is preserved by the others operators, and this is addressed in the
next theorem.

Theorem 7 (Compositionality for Dimmed Weak Bisimulation). Let P
and Q be two processes such that P ≈F Q. Then it holds that:

i) a.P ≈F b.Q for all a, b such that [a] = [b];
ii) P [g] ≈F Q[g] for any g partition-preserving for F;

iii) P ‖L R ≈F Q ‖L S if R ≈F S and L is singleton coherent with F.

Proposition 5 (Characterisation of Dimmed Weak Simulation). Given
a partition F, P wF Q iff there exists a pp-function f for F such that P [f] w Q[f].

Theorem 8 (Compositionality for Dimmed Weak Simulation). Let P ,
Q be two processes such that P wF Q. Then it holds that:

i) a.P wF b.Q for all a, b such that [a] = [b];
ii) P [g] wF Q[g] for any g pp-function for F;

iii) P ‖L R wF Q ‖L S for R, S such that R wF S, if L is block coherent with
F and Q and S are homogeneous for L with F.

B Proofs

Proof (Theorem 2). [If P ∼F Q⇒ ∃f pp-function for F such that P [f] ∼ Q[f]]:
In order to prove this implication, we need to show that there exists a partition-
preserving function f and a strong bisimulation relating P [f] and Q[f]. Let us
define h to be the pp-function for F such that for every F ∈ F and for every
a, b ∈ F , h(a) = h(b). Let us now consider the following relation

R , {
(
P ′[h], Q′[h]

) ∣∣ P ′ ∼F Q
′} .

Readily, the pair
(
P [h], Q[h]

)
∈ R. We shall now prove that R is a strong

bisimulation. For this purpose suffices to show that when
(
P ′[h], Q′[h]

)
∈ R and

P ′[h]
a−→ P ′′[h] there exists a transition Q′[h]

a−→ Q′′[h] such that
(
P ′′[h], Q′′[h]

)
∈

R. If P ′[h]
a−→ P ′′[h] then there exists an action b ∈ [a], with h(b) = a such that

P ′
b−→ P ′′. The assumption P ′ ∼F Q

′ guarantees the existence of an action d ∈ [b]

and a transition Q′
d−→ Q′′ such that P ′′ ∼F Q

′′. Thus, Q′[h]
h(d)−−−→ Q′′[h]. Being

the function h defined in such a way that h(m) = h(l) for all m, l ∈ F and [d] =

[b] we have h(d) = h(b) = a, whence, Q′[h]
a−→ Q′′[h] and

(
P ′′[h], Q′′[h]

)
∈ R.

[If ∃f pp-function for F such that P [f] ∼ Q[f] ⇒ P ∼F Q]: We prove
this claim by providing an F-dimmed strong bisimulation relating P and Q. In
order to construct such a relation, let f denote the pp-function for F such that
P [f] ∼ Q[f] and define

R ,
{

(P ′, Q′) | P ′[f] ∼ Q′[f]
}
.

We are left with proving that R is indeed an F-dimmed strong bisimulation.
By assumption we have that (P,Q) ∈ R. Furthermore, due to the fact that
the strong bisimilarity is a symmetric relation, to prove that R is an F-dimmed
strong bisimulation suffices to show that if (P ′, Q′) ∈ R and P ′

a−→ P ′′ then there

exists a b ∈ [a] and a transition Q′
b−→ Q′′ such that (P ′′, Q′′) ∈ R. If P ′

a−→ P ′′

then there exists a c, with c = f(a), such that P ′[f]
c−→ P ′′[f]. Exploiting the

fact that P ′[f] ∼ Q′[f] we know there exists a transition Q′[f]
c−→ Q′′[f] with

P ′′[f] ∼ Q′′[f]. Furthermore, from the transition Q′[f]
c−→ Q′′[f] follows that

there exists an action b, with f(b) = c, such that Q′
b−→ Q′′. The assumption on

the function f being partition-preserving guarantees that [b] = [c] and [a] = [c].

Thus, given a transition P ′
a−→ P ′′ we have shown the existence of an action

b ∈ [a] and a transition Q′
b−→ Q′′ such that (P ′′, Q′′) ∈ R. ut

Proof (Theorem 3). We prove each claim separately by providing for each of
them the F–dimmed strong bisimulation relating the corresponding pair.

i) Let R′ be an F-dimmed strong bisimulation relating P and Q. Then the
relation R , {(a.P, b.Q)} ∪ R′, with [a] = [b], proves the first point.

ii) Let R′ be an F-dimmed strong bisimulation relating P and Q and R′′ be
an F-dimmed strong bisimulation relating R and S. Then the relation R ,
{(P +R,Q+ S)} ∪ R′ ∪R′′ proves the second point.

iii) For any g pp-function for F the relation R , {(P ′[g], Q′[g]) | P ′ ∼F Q′}
yields the claim.

iv) To prove this point, we exploit Theorem 2 and show, under the assumptions
P ∼F Q and L block coherent with F, the existence of a pp-function f for F
such that P/L[f] ∼ Q/L[f]. The assumption P ∼F Q assures the existence
of a pp-function h for F such that P [h] ∼ Q[h]. We shall now prove, using
the assumption that L is block coherent with F, that the relation

R , {(P ′/L[h], Q′/L[h]) | P ′[h] ∼ Q′[h]} ,

contains the pair (P/L[h], Q/L[h]) and is a strong bisimulation. By assump-
tion, the pair (P/L[h], Q/L[h]) ∈ R. To show that it is a strong bisimulation

it is enough to show that if (P ′/L[h], Q′/L[h]) ∈ R and P ′/L[h]
a−→ E, then

there exists a transition Q′/L[h]
a−→ T such that (E, T) ∈ R. Let us assume

P ′/L[h]
a−→ E; this implies the existence of an action b ∈ [a], with h(b) = a,

such that P ′/L
b−→ E′. We distinguish among two cases:

1) b 6= τ . By the operational semantics it must hold that b /∈ L. Let us

assume E′ = P ′′/L. It must then hold that P ′
b−→ P ′′; thereby P ′[h]

h(b)−−→
P ′′[h]. By the assumption P ′[h] ∼ Q′[h], we can infer the existence of a

transition Q′[h]
h(b)−−→ Q′′[h] such that P ′′[h] ∼ Q′′[h]. From Q′[h]

h(b)−−→
Q′′[h] we can conclude there exists a c, with h(c) = h(b) = a, such that

Q′
c−→ Q′′. Moreover, the partition preserving property of h tells us that

[c] = [b] and, in addition, the assumption on L being block coherent

with F guarantees that c /∈ L. Therefore, Q′/L
c−→ Q′′/L from which

Q′/L[h]
h(c)=a−−−−→ T , with T = Q′′/L[h], and (E, T) ∈ R.

2) b = τ . In this case we have that a = τ . By the operational semantics

either P ′
τ−→ P ′′ (τ /∈ L) or P ′

d−→ P ′′, with d ∈ L. The first sce-

nario implies that P ′[h]
τ−→ P ′′[h] which together with the assumption

P ′[h] ∼ Q′[h] assures the existence of a transition Q′[h]
τ−→ Q′′[h] such

that P ′′[h] ∼ Q′′[h]. Consequently, Q′
τ−→ Q′′ wherefrom Q′/L

τ−→ Q′′/L

and Q′/L[h]
τ−→ T , with T = Q′′/L[h] and the pair (E, T) ∈ R. As re-

gards the second case instead, we have P ′[h]
h(d)−−−→ P ′′[h] which, by the

assumption P ′[h] ∼ Q′[h], implies Q′[h]
h(d)−−−→ Q′′[h], with P ′′[h] ∼ Q′′[h].

From Q′[h]
h(d)−−−→ Q′′[h] we infer the existence of an action c, with

h(c) = h(d), such that Q′
c−→ Q′′. The partition-preserving property

of h together with the fact that L is block coherent with F yield that
[c] = [d] and c ∈ L. Therefore, Q′/L

τ−→ Q′′/L from which Q′/L[h]
τ−→ T ,

with T = Q′′/L[h] and (E, T) ∈ R.
v) Albeit the proof of this point, similarly to that of point iv), could be attained

by exploiting the result of Theorem 2, we opt for a more direct proof, which
only relies on the definition of dimmed strong bisimilarity.
We shall prove, under the assumption that L is singleton coherent with F,
that the relation

R , {
(
(P ′ ‖L R′), (Q′ ‖L S′)

)
| P ′ ∼F Q

′ and R′ ∼F S
′} ,

contains the pair
(
(P ‖L R), (Q ‖L S)

)
and is an F-dimmed strong bisim-

ulation. The fact that the pair is in R promptly follows. To show that
R is an F-dimmed strong bisimulation suffices to prove that for any pair(
(P ′ ‖L R′), (Q′ ‖L S′)

)
∈ R if (P ′ ‖L R′)

a−→ E, then there exists an action

b ∈ [a] and a transition (Q′ ‖L S′)
b−→ T such that (E, T) ∈ R.

Let us assume (P ′ ‖L R′)
a−→ E and consider a case distinction:

1) a /∈ L. Assume that E = P ′′ ‖L R′. By the operational semantics it must

hold that P ′
b−→ P ′′. Exploiting the assumption that P ′ ∼F Q′, we can

infer the existence of an action b ∈ [a] and of a transition Q′
b−→ Q′′ such

that P ′′ ∼F Q
′′. Due to the fact that a /∈ L and L is singleton coherent

with F, we have that b /∈ L. Therefore, (Q′ ‖L S′)
b−→ T , with T = (Q′′ ‖L

S′), and (E, T) ∈ R. The case in which we assume E = P ′ ‖L R′′ can
be proved similarly.

2) a ∈ L. By the operational semantics, there must exist transitions P ′
a−→

P ′′ and R′
a−→ R′′ and E = P ′′ ‖L R′′. Exploiting the assumptions

P ′ ∼F Q′ and R′ ∼F S′ we can infer the existence of an action b ∈ [a]

and a transition Q′
b−→ Q′′ such that P ′′ ∼F Q

′′, as well as the existence

of an action c ∈ [a] and a transition S′
c−→ S′′ such that R′′ ∼F S

′′. The
assumption of L being singleton coherent with F assures us that a = b =
c. Hence, from Q′

a−→ Q′′ and S′
a−→ S′′ we have that (Q′ ‖L S′)

a−→ T ,
with T = (Q′′ ‖L S′′) and (E, T) ∈ R.

Proof (Theorem 4). The proofs of the points i)− iv) are similar to those previ-
ously shown for the compositionality for dimmed strong bisimulation.

v) In order to prove this point, we shall provide, under the assumption that L is
block coherent with F and the assumption of homogeneity for Q and S, that
the relation

R ,
{(

(P ′ ‖L R′), (Q′ ‖L S′)
)
| P ′ �F Q

′, R′ �F S
′, and

Q′ and S′ are homogeneous for L
}
,

contains the pair
(
(P ‖L R), (Q ‖L S)

)
and is an F-dimmed strong simu-

lation. The fact that the pair is in R promptly follows. To show that R is
an F-dimmed strong simulation, we must prove that for any pair

(
(P ′ ‖L

R′), (Q′ ‖L S′)
)
∈ R if (P ′ ‖L R′)

a−→ E then there exists an action b ∈ [a]

and a transition (Q′ ‖L S′)
b−→ T with (E, T) ∈ R.

Let us assume (P ′ ‖L R′)
a−→ E and distinguish the following two cases:

1) a /∈ L. Assume that E = P ′′ ‖L R′. By the operational semantics it must

hold that P ′
a−→ P ′′. Exploiting the assumption that P ′ �F Q′, we can

infer the existence of an action b ∈ [a] and a transition Q′
b−→ Q′′ such that

P ′′ �F Q
′′. Since a /∈ L, the fact that L is block coherent with F guarantees

that [a] ∩ L = ∅, assuring that b /∈ L. Therefore, (Q′ ‖L S′)
b−→ T , with

T = (Q′′ ‖L S′). The fact that the pair (E, T) ∈ R follows by noticing that
if Q′ and S′ are homogeneous for L, then Q′′ and S′ are still homogeneous

for L because Act(Q′′) ⊆ Act(Q′) since Q′
b−→ Q′′. The case in which we

assume E = P ′ ‖L R′′ can be proved similarly.

2) a ∈ L. By the operational semantics, there must exist transitions P ′
a−→ P ′′

and R′
a−→ R′′ and E = P ′′ ‖L R′′. Exploiting the assumptions P ′ �F Q

′

and R′ �F S′, we can infer the existence of an action b ∈ [a] and a

transition Q′
b−→ Q′′ such that P ′′ �F Q′′, as well as the existence of an

action c ∈ [a] and a transition S′
c−→ S′′ such that R′′ �F S′′. If a ∈ L

it must hold that [a] ∩ L 6= ∅; the assumption that L is block coherent

with F guarantees then that b, c are both in L. Moreover, due to the
homogeneity assumption of Q′ and S′, it holds that b = c. In fact, let us
assume toward a contradiction that it is not the case i.e., b 6= c. Since

Q′
b−→ Q′′ and S′

c−→ S′′ we have that b ∈ Act(Q′) and c ∈ Act(S′); thus
it holds that {b, c} ⊆ Act(Q′) ∪ Act(S′). Since {c, d} ⊆ [a], we conclude
that

∣∣(Act(Q′) ∪Act(S′)
)
∩ [a]

∣∣ ≥ 2; a contradiction to the hypothesis

of homogeneity. Hence, from Q′
b=c−−→ Q′′ and S′

c=b−−→ S′′ we have that
(Q′ ‖L S′)

c−→ T , with T = (Q′′ ‖L S′′) and (E, T) ∈ R because Q′′ and
S′′ are still homogeneous for L for a similar reason to point 1).

C Examples

Example 2. Using the process definitions in the main text, here we show that

M ∼F M̄, with M̄ := P1[m1 +m2] ‖L1 B1[k] ‖L2 C1[n1 + n2].

We do this by exhibiting a relation R which contains the pair (M,M̄). We
proceed by first introducing a counting function: Given a matching process P
and a model M , it returns the number of sub-terms of M that are syntactically
equal to P .

Definition 10. The counting function of P in M , denoted by C(P,M), is re-
cursively defined as follows.

C(P,M) =



1 if M = P = 0,M = P = a.Q,

M = P = Q+R, or M = P = K,K ∈ K,
C(P,Q) if M = Q[f],

C(P,Q) + C(P,R) if M = Q ‖L R,
C(P,Q) if M = Q/L,

0 otherwise.

Next, we introduce a notational convenience by removing the static operators
from the process representation and by only listing the sequential processes. For
instance, M̄ is denoted by the tuple

(P1, . . . , P1︸ ︷︷ ︸
m1+m2 times

, B1, . . . , B1︸ ︷︷ ︸
k times

, C1, . . . , C1︸ ︷︷ ︸
n1+n2 times

).

In this case it holds that C(P1, M̄) = m1 +m2 and C(B2, M̄) = 0.

A generic derivative of M , denoted by M ′, will be in the form

M ′ = (P ′1, . . . , P
′
m1
, P ′′1 , . . . , P

′′
m2
, B′1, . . . , B

′
k, C

′
1, . . . , C

′
n1
, C ′′1 , . . . , C

′′
n2

),

with

P ′i1 ∈ {P1, put1.P1}, 1 ≤ i1 ≤ m1,

P ′′i2 ∈ {P2, put2.P2}, 1 ≤ i2 ≤ m2,

B′j ∈ {B, get1.B, get2.B}, 1 ≤ j ≤ k,
C ′l1 ∈ {C1, cons1.C1}, 1 ≤ l1 ≤ n1,

C ′′l2 ∈ {C2, cons2.C2}, 1 ≤ l2 ≤ n2.

Similarly, a generic derivative of M̄ , denoted by M̄ ′, will be in the form

M̄ ′ = (P̄ ′1, . . . , P̄
′
m1+m2

, B̄′1, . . . , B̄
′
k, C

′
1, . . . , C̄

′
n1+n2

),

with

P̄ ′i1 ∈ {P1, put1.P1}, 1 ≤ i1 ≤ m1 +m2,

B̄′j ∈ {B, get1.B}, 1 ≤ j ≤ k,
C̄ ′l1 ∈ {C1, cons1.C1}, 1 ≤ l1 ≤ n1 + n2.

Then let us consider the relation R constructed as follows.

R =
{

(M ′, M̄ ′) | C(P1,M
′) + C(P2,M

′) = C(P1, M̄
′),

C(put1.P1,M
′) + C(put2.P2,M

′) = C(put1.P1, M̄
′),

C(B,M ′) = C(B1, M̄
′), C(get1.B,M

′) + C(get2.B,M
′) = C(get1.B1, M̄

′),

C(C1,M
′) + C(C2,M

′) = C(C1, M̄
′),

C(cons1.C1,M
′) + C(cons2.C2,M

′) = C(cons1.C1, M̄
′)
}
.

This is a dimmed bisimulation in order to show that M ∼F M̄ . Indeed, (M, M̄) ∈
R. Then, let us consider two processes (M ′, M̄ ′) ∈ R. We need to consider all
possible transition that are enabled, using the operational semantics.

We focus on the case M ′
put1−−−→M ′′. It must hold that there must be one i1,

with 1 ≤ i1 ≤ m1, such that P ′i1 = put1.P1 and one j, with 1 ≤ j ≤ k, such that
B′j = B. Then, M ′′ will be in the form

M ′′ = (P ′1, . . . , P1︸︷︷︸
pos. i1

. . . , P ′m1
, P ′′1 , . . . , P

′′
m2
, B′1, . . . , get1.B︸ ︷︷ ︸

pos. j

, . . . , B′k,

C ′1, . . . , C
′
n1
, C ′′1 , . . . , C

′′
n2

).

That is, M ′′ is syntactically equal to M ′ expect for positions i1 and j. Now,
the fact that P ′i1 = put1.P1 and B′j = B implies that C(put1.P1, M̄

′) ≥ 1 and

C(B1, M̄
′) ≥ 1. Suppose that one such put1.P1 and B1 are located in positions

ī1 and j̄, respectively, with 1 ≤ ī1 ≤ m1 + m2 and 1 ≤ j̄ ≤ k. Therefore, the

exists a transition M̄ ′
put1−−−→ M̄ ′′, with

M̄ ′′ = (P̄ ′1, . . . , P1︸︷︷︸
pos. ī1

, . . . , P̄ ′m1+m2
, B̄′1, . . . , get1.B︸ ︷︷ ︸

pos. j̄

, . . . , B̄′k, C
′
1, . . . , C̄

′
n1+n2

)

which is syntactically equal to M̄ ′ except for positions ī1 and j̄. Since (M ′, M̄ ′) ∈
R by assumption, it also holds that (M ′′, M̄ ′′) ∈ R because the changes have
involved the same subterms; that is, exactly one put1.P1 (resp. B) subterm in
M ′ and M̄ ′ have become P1 (resp. get1.B) in M ′′ and M̄ ′′.

The vice versa, i.e., assuming that M̄ ′
put1−−−→ M̄ ′′, is similar. In this case we

have that M̄ ′ must be such that there exists one ī1 such that P̄ ′
ī1

= put1.P1 and

one j̄ such that B̄′
j̄

= B1, which in turn implies that C(put1.P1, M̄
′) ≥ 1 and that

C(B1, M̄
′) ≥ 1. Now, M̄ ′′ will be syntactically equal to M̄ ′ expect for positions

ī1 and j̄, where it features P1 and get1.B1, respectively. Because of the relation
R, we have that C(put1.P1,M

′) + C(put2.P2,M
′) ≥ 1 and C(B,M ′) ≥ 1.

We now distinguish the following three cases: i) C(put1.P1,M
′) = 0, hence

C(put2.P2,M
′) = C(put1.P1, M̄

′); ii) C(put2.P2,M
′) = 0, hence C(put1.P1,M

′) =
C(put1.P1, M̄

′); iii) C(put1.P1,M
′) > 0 and C(put2.P2,M

′) > 0. The most in-
teresting case is i). Since we have that C(put2.P2,M

′) > 1, then there must be
some i2, with 1 ≤ i2 ≤ m2 such that P ′′i2 = put2.P2. Since C(B,M ′) ≥ 1, then

there exists some j, 1 ≤ j ≤ k such that B′j = B. Then, M ′
put2−−−→ M ′′ (recall

that put2 ∈ [put1]), where

M ′′ = (P ′1, . . . , P
′
m1
, P ′′1 , . . . , P2︸︷︷︸

pos. i2

, . . . P ′′m2
, B′1, . . . , get2.B︸ ︷︷ ︸

pos. j

, . . . , B′k,

C ′1, . . . , C
′
n1
, C ′′1 , . . . , C

′′
n2

).

M ′′ will be syntactically equivalent to M ′, except for positions i2 and j, where it
features P2 and get2.B. Now, it holds that (M ′′, M̄ ′′) ∈ R because although the
affected terms in the transitions from M ′′ and M̄ ′′ are different, the conditions
on the equalities between all counting functions do hold.

All other cases regarding the possible transitions from M ′ and M̄ ′ can be
treated in a similar fashion.

Example 3. Using the process definitions in the main text, we wish to show that

M := P1 ‖L P2 ‖L P3 ∼F P̄ ‖L P̄ ‖L P̄ := M̄.

To this end, let us consider the process representation as in the previous example,
that is M = (P1, P2, P3) and M̄ = (P̄ , P̄ , P̄), and the relation R defined as

R =
{(

(R1, R2, R3), (S1, S2, S3)
)
|

(R1, R2, R3) ∈ {P1, Q1} × {P2, Q2} × {P3, Q3},
(S1, S2, S3) ∈ {P̄ , Q̄} × {P̄ , Q̄} × {P̄ , Q̄},

Ri = Pi ⇐⇒ Si = P̄ , Ri = Qi ⇐⇒ Si = Q̄, 1 ≤ i ≤ 3
}
.

Then, (M,M̄) ∈ R and it is easy to check that R is a dimmed bisimulation. For

instance, suppose that (R1, R2, R3)
a13−−→ (R′1, R

′
2, R

′
3). Then, by the operational

semantics it must hold that R1 = P1 and R3 = P3. There are two cases: i)

R2 = P2 or ii) R2 = Q2. Let us consider case i), the other being similar. Then,
we have that (R′1, R

′
2, R

′
3) = (Q1, P2, Q3). By construction of R it holds that

(S1, S2, S3) = (P̄ , P̄ , P̄). There is a transition (P̄ , P̄ , P̄)
a12−−→ (Q̄, P̄ , Q̄), with

a12 ∈ [a13], and it holds that
(
(Q1, P2, Q3), (Q̄, P̄ , Q̄)

)
∈ R.

Vice versa, suppose that (S1, S2, S3)
a12−−→ (S′1, S

′
2, S
′
3). We need to sepa-

rately consider the 8 possible source states that may lead to such a transi-
tion. For instance, let us take (S1, S2, S3) = (P̄ , Q̄, P̄). Then we have that
(S′1, S

′
2, S
′
3) = (Q̄, Q̄, Q̄) and that (R1, R2, R3) = (P1, Q2, P3). This state af-

fords an a13-transition, i.e., (P1, Q2, P3)
a13−−→ (Q1, Q2, Q3), with a13 ∈ [a12] and

we have that
(
(Q1, Q2, Q3), (Q̄, Q̄, Q̄)

)
∈ R. The other cases are treated analo-

gously.

2013 © IMT Institute for Advanced Studies, Lucca

Piazza San ponziano 6, 5100 Lucca, Italy. www.imtlucca.it

