Controlled Drug Administration by a Fractional PID *

Pantelis Sopasakis*,** and Haralambos Sarimveis**

* IMT Institute for Advanced Studies Lucca, Piazza San Ponziano 6, Lucca 55100, Italy (Tel: +39 0583 4326 710; e-mail: pantelis.sopasakis@imtlucca.it).
** School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Street, 15780 Zografou Campus, Athens, Greece (Tel: +30 210 7723237, e-mail: hsarime@central.ntua.gr)

Abstract: Amiodarone is an antiarrhythmic drug that exhibits highly complex and non-exponential dynamics whose controlled administration has important implications for its clinical use especially for long-term therapies. Its pharmacokinetics has been accurately modelled using a fractional-order compartmental model. In this paper we design a fractional-order PID controller and evaluate its dynamical characteristics in terms of the stability margins of the closed loop and the ability of the controlled system to attenuate various sources of noise and uncertainty.

Keywords: Biomedical control; Biomedical systems; Pharmacokinetics and drug delivery; Control of physiological and clinical variables; Physiological model; Fractional control.

1. INTRODUCTION

1.1 Motivation

It is characteristic how Machado et al. [2011] open their review on the recent history of fractional calculus saying that “fractional calculus may be considered an old and yet novel topic.” Although lots of mathematicians have worked on this field, many fundamental questions remain unanswered. From the point of view of applied research the field is nowadays very active – it has been only the last few decades that the scientific community turned to fractional calculus seeking for a modeling solution for phenomena that ordinary calculus had a hard time to approach. Such complex phenomena are biological membranes, viscoelastic materials, certain electrochemical processes and biomedical phenomena (see Magin [2006]).

In 2010, Kytariolos et al. [2010] introduced fractional dynamics in the field of pharmacokinetic modelling pointing out the main reasons for the failure of the classical IVIVC (In-Vitro In-Vivo Correlations) theory. The first step to this direction was taken by Dokoumetzidis and Macheras [2009]. In practice, non-linearities, anomalous diffusion, fractional-order kinetics, diffusion across fractal manifolds, synergistic and competitive action and a great many other factors render this approach not applicable (see Dokoumetzidis and Macheras [2008]). Recently, a significant number of relevant publications has emerged; see Popović et al. [2012], Verotta [2010a,b], Pereira [2010], Dokoumetzidis et al. [2010b], Popović et al. [2010].

Fractional-order derivatives – which we shall define properly in the sequel – although seem to be a mere mathematical construction and a method of nonlinear modelling, possess, in fact, physical meaning and occur naturally through physical phenomena. Hilfer [2000a] called attention on the fact that such operators emerge naturally from the study of anomalous diffusion and other phenomena (Hilfer [2000b]).

Fractional dynamics can be cast as Physiologically Based Pharmacokinetic Models (PBPK) with fractional-order derivatives (see Dokoumetzidis et al. [2010a]) where the mass balance equations are rewritten using fractional-order derivatives. This offers a mechanistic understanding of the interplay among the main factors of drug distribution, allows us to draw individualized concentration-time profiles and study drug-drug interactions using the fractional calculus approach. The “fractionalisation” of pharmacokinetic equations though has to be done in a way so that the mass preservation holds.

The problem of drug administration is purely a control problem where the aim is to keep the drug concentration at certain organs in the body close to the desired therapeutic set-points while the concentration in other organs and tissues does not exceed certain safety limits (see Sarimveis et al. [2009]). The manipulated variable is the administered dosage and the controlled variable is the concentration of the drug in some tissue or organ of the body.

It is nowadays clear that accurate pharmacokinetic modelling is essential for the understanding of the action of a drug and is of major importance for of the establishment of an efficient therapeutic administration course. Feedback control is concededly a practice that enjoys wide acceptance in medicine (see Sopasakis and Sarimveis [2012].

* This work was funded by project 11ΣΥΝ_10_1152, which is co-financed by the European Union and Greece, Operational Program ‘Competitiveness & Entrepreneurship’, NSFR 2007-2013 in the context of GSRT-National action “Cooperation”.

Copyright © 2014 IFAC 8421
and Dua et al. [2006]), though using linear integer-order pharmacokinetic models.

In this paper we employ a fractional pharmacokinetic model to describe the distribution of Amiodarone upon intravenous administration, which has proven to be very accurate when juxtaposed to actual data. Amiodarone follows anomalous, non-exponential pharmacokinetic dynamics with major clinical implications as the drug may overaccumulate in a long-term administration course. We propose the use of a fractional PID controller and we explore the dynamical characteristics of the closed-loop system.

1.2 Fractional Dynamical Systems

The most exotic property of non-integer order derivatives is that they are not local properties. The calculation of \((D^n f)(x_0)\) with \(n \in \mathbb{N}\) requires the knowledge of \(f\) in an arbitrarily small region around \(x_0\), say \((x_0 - \varepsilon, x_0 + \varepsilon)\); this is not true for non-integer order derivatives \((D^{\alpha} f)(x_0)\) (with \(\alpha \in \mathbb{R}\)). This property proves invaluable when modeling phenomena with memory or other complex dynamics. Using fractional calculus, one obtains some peripheral vision in contrast to the local approach that ordinary derivatives offer and the process is now modeled using integro-differential equations.

Let us first define the generalised Riemann-Liouville fractional-order integral operator which extends the \(n\)-th order \((n \in \mathbb{N})\) integral \(I^n\) which is given by the Cauchy formula:

\[
(I^n f)(t) = \frac{1}{(n-1)!} \int_0^t (t-\tau)^{n-1} f(\tau) d\tau, \quad t \geq 0.
\]

Using the property of the Gamma function that \(\Gamma(n) = (n-1)\Gamma(n-1)\) for all \(n \in \mathbb{N}\) we arrive at the following generalised integral of real order \(\alpha \in \mathbb{R}\):

\[
(I^\alpha f)(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t-\tau)^{\alpha-1} f(\tau) d\tau, \quad t \geq 0.
\]

For \(\alpha \in \mathbb{R}\) let us denote by \(m = [\alpha]\) the smallest natural number \(m\) so that \(m \geq \alpha\). The following operator is known as the Caputo derivative of order \(\alpha\):

\[
(D^\alpha f)(t) = I^{m-\alpha}D^mf(t) = \frac{d^m}{dt^m}I^{m-\alpha}f(t).
\]

This operator enjoys a number of good properties such that it extends the integer-order derivative to arbitrary real orders, it preserves analyticity, it is a linear operator, it has the semigroup property (i.e., \(D^\alpha D^\beta f = D^{\alpha+\beta} f\) and \(D^0\) is the identity operator. It is of central importance that the Laplace transformation of the Caputo fractional derivative can be calculated by the following formula:

\[
\mathcal{L}[D^\alpha f](s) = s^\alpha F(s) - \sum_{k=0}^{m-1} s^\alpha-k \frac{d^k f}{dt^k} \bigg|_{t=0},
\]

where \(F(s) = (\mathcal{L}f)(s)\).

Such generalized derivation operators give rise to the corresponding class of functional relations known as fractional differential equations and have the general form:

\[
F(t, x, D^\alpha x, \ldots, D^n x) = 0.
\]

Dynamical systems with fractional derivatives can be represented in the following form:

\[
H(D^{\alpha_1}, \ldots, D^{\alpha_n})u = T(D^{\beta_1}, \ldots, D^{\beta_m})u
\]

where \(x\) and \(u\) stand for the output and input variables. In this paper we consider the case of linear fractional dynamical systems, i.e., we assume that \(H\) and \(T\) are linear functions. Linear fractional dynamical systems can be represented in the Laplace domain in terms of their transfer functions:

\[
G(s) = \frac{X(s)}{U(s)} = \frac{P(s)}{Q(s)},
\]

where \(P\) and \(Q\) are fractional polynomials, i.e., functions of the form \(P(s) = \sum_{i=0}^{n} a_i s^i\) with \(b_i > 0\) for all \(i = 0, \ldots, n\), and \(X(s) = (\mathcal{L}e^c)(s)\) and \(U(s) = (\mathcal{L}u)(s)\). A very interesting fact is that the achievement of equilibrium for the output of the system (i.e., \(z(t) = 0\)) does not imply that the input is also in equilibrium (i.e., \(u(t) = 0\)). This, however, does not hinder us from studying the stability of such systems in the BIBO (Bounded-Input Bounded-Output) sense. To this end, let us define the open-loop transfer function of the system:

\[
G_{ol}(s) = G(s)G_c(s),
\]

where \(G_c\) is the transfer function of the controller. The closed-loop transfer function, which relates the set-point \(x^p\) with the response \(x\), is:

\[
G_{cl}(s) = \frac{G_c(s)G(s)}{1 + G_c(s)G(s)}.
\]

Various stability criteria have been postulated; in this paper we shall use a Bode-type criterion which applies to \(G_{ol}\) (see Monje et al. [2010]):

Criterion 1. (BIBO Stability Criterion). Assume there exists a frequency \(\omega_{co} > 0\) so that \(\arg G_{ol}(\omega_{co}) = -\pi\) (This will be referred to as the crossover frequency of the system). If \(|G_{ol}(\omega_{co})| < 0\)db, then \(G_{cl}\) is BIBO-stable.

1.3 Numerical Simulations

In certain simple cases, the solution of fractional differential equations and initial value problems can be performed analytically – usually in terms of the Mittag-Leffler special function:

\[
E_{a,b}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(ak+b)}.
\]

For instance, it is:

\[
\mathcal{L}^{-1} \frac{s^{a-b}}{s^a - \lambda} = \frac{\lambda^{-1}}{\lambda} E_{a,b}(\lambda t^a).
\]

In a more general case, however, it is not possible to derive analytical expressions for the solution. Aoua et al. [2004] provide a thorough review of numerical methods for the solution of fractional differential equations. A very widespread approach consists in approximating the fractional dynamics by some integer one. The Oustaloup filter (see Oustaloup et al. [2000], Merrikh-Bayat [2012]) is a well-established technique for the approximation of fractional transfer functions by integer ones in a specified range of operating frequencies.

1.4 Fractional-PID Controllers

Fractional PID controllers were introduced by Podlubny [1999] and are generalisations of the standard PID. A
fractional PID controller, or PI$^\alpha$D$^\beta$ has a transfer function of the following form:

$$G_c(s) = K_p + \frac{K_i}{s} + K_ds^\beta,$$ \hspace{1cm} (12)

where K_p, K_i, K_d, λ and μ are positive tuning parameters, and it produces the control action:

$$u(t) = K_px(t) + K_i\int x(t) + K_ds^\beta x(t),$$ \hspace{1cm} (13)

where $x(t)$ is the input deviation of the system’s output from the set-point $x_0(t)$ defined as $x(t) := x_0(t) - x(t)$. A fractional PID controller involves 5 tuning parameters so it offers greater flexibility by enabling us to determine both its low and high-frequency gains. One of the most well-established methods for the tuning of fractional PID controller is the minimisation of a performance index involving the step response of the closed-loop system. A standard choice is the ITAE (Integral Time Absolute Error) index defined as:

$$J_{\text{itae}} := \int_0^\infty \tau e(\tau) d\tau.$$ \hspace{1cm} (14)

This leads to the formulation of the following optimisation problem:

$$J^*_{\text{itae}} := \min_{K_p,K_i,K_d,\lambda,\mu} J_{\text{itae}},$$ \hspace{1cm} (15)

provided that the choice of parameters leads to a stable closed-loop system. Such optimisation problems are non-convex and their numerical solution depends on the initial estimate; it is therefore recommended to try a multiplicity of initial values. Monje et al. [2010] suggest that there may be more than one acceptable parabratization.

The optimisation of the ITAE criterion can be carried out along with some additional requirements so as to guarantee certain desirable dynamical characteristics for the closed-loop. Valério and da Costa [2006] prescribe a set of 5 requirements for the tuning of fractional PID controllers which attenuate the in-loop noise and damp external noises. Noise rejection in the closed loop is guaranteed by the following condition:

$$M_h := |G_c(\omega_h)| < \eta,$$ \hspace{1cm} (16)

where ω_h is an arbitrarily chosen high frequency and η is a design parameter. We also require that there should be a crossover frequency ω_c and the gain margin be equal to a given value (greater than 1). What is the same we postulate a similar requirement for the phase margin. The controller has also to compensate parametric uncertainties that can be the cause of inaccurate modelling or time-varying dynamics of the controlled process. To enforce this robustness qualification we require that:

$$M_z := \left| \frac{d}{d\omega} \arg(G_c(\omega)) \right|_{\omega = \omega_c} < \zeta,$$ \hspace{1cm} (17)

where $\zeta > 0$ is a design parameter. Finally, the closed-loop system has to compensate for output disturbances, which are in principle of low frequency (see Aström [2002]). To this end, we require that the sensitivity function of the system, defined as:

$$G_{\text{sens}}(s) := \frac{1}{1 + G_c(s)},$$ \hspace{1cm} (18)

exhibit low gain at low frequencies, i.e.,

$$M_t := |G_{\text{sens}}(\omega_t)| < \theta$$ \hspace{1cm} (19)

where ω_t is some, arbitrarily chosen, low frequency ω and θ is a properly small design parameter.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.5870</td>
</tr>
<tr>
<td>k_{10}</td>
<td>1.9413</td>
</tr>
<tr>
<td>k_{12}</td>
<td>2.9522</td>
</tr>
<tr>
<td>k_{21}</td>
<td>0.4854</td>
</tr>
</tbody>
</table>

These requirements need to be taken into account while tuning a fractional PID controller. This way, the optimisation problem (15) is solved subject to the nonlinear constraints (16) to (19).

2. FEEDBACK CONTROL OF AMIODARONE

ADMINISTRATION

Amiodarone is an antiarrhythmic agent (see Kühlkamp et al. [1999]) which can be administered either intravenously (i. v.) or orally. Amiodarone is well-known for its highly nonlinear non-exponential dynamics and singular long-term accumulation pattern. Recently, Dokoumetzidis et al. [2010a] modelled the pharmacokinetic distribution of Amiodarone with a fractional compartmental model following a single i. v. and a single oral dose. The compartmental topology of the model is presented in Figure 1.

Let A_1 and A_2 be the amounts of Amiodarone (in ng) in the plasma and the tissues respectively and u be the administration rate (in ng/day). We assume that the drug is administered directly into the central (plasma) compartment while the control objective is the concentration of the drug in the tissues attains a prescribed value (set-point). The fractional dynamical model we employ reads as follows:

$$\frac{dA_1}{dt} = -(k_{12} + k_{10})A_1 + k_{21} \cdot D^{1-a} A_2 + u,$$ \hspace{1cm} (20a)

$$\frac{dA_2}{dt} = k_{12}A_1 - k_{21} \cdot D^{1-a} A_2,$$ \hspace{1cm} (20b)

with $a < 1$. The terms “$k_{21} \cdot D^{1-a} A_2$” correspond to the fractional-order diffusion of Amiodarone from the tissues to the central compartment, the term “$k_{12}A_1$” is the rate at which Amiodarone is transferred from the central compartment to the tissues and “$k_{10}A_1$” defines the excretion rate. This dynamics is graphically presented in Fig. 1. The parameters of the aforementioned model are presented in Table 1. The transfer function of the system which links the administration rate $U(s) = Lu(t)$ to the concentration of Amiodarone in the tissues $A_2(s)$ is:

$$G(s) = \frac{1}{k_{10} + \left(\frac{1}{k_{21} \cdot s^{a} + 1} \right)}$$ \hspace{1cm} (21)

Before the commencement of the administration course we assume that the initial concentration of Amiodarone in the organism is zero, i.e., $A_1(t) = A_2(t) = 0$ for all $t \leq 0$.

We tuned a fractional PID controller for the control of the concentration of Amiodarone in the central compartment the parameters of which were chosen using the ITAE criterion along with the additional constraints outlined above. We chose the characteristic frequencies $\omega_c = 0.01\text{rad/day}$, and $\omega_c = 100\text{rad/day}$ and required that $\theta = -10\text{db}$, $\eta = -20\text{db}$ and we also imposed the robustness requirement.
Table 2. Optimal Tuning Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_p</td>
<td>50.5197</td>
</tr>
<tr>
<td>K_i</td>
<td>151.0551</td>
</tr>
<tr>
<td>K_d</td>
<td>0.0756</td>
</tr>
<tr>
<td>λ</td>
<td>0.9170</td>
</tr>
<tr>
<td>μ</td>
<td>0.7590</td>
</tr>
</tbody>
</table>

The optimal tuning parameters of the fractional controller are given in Table 2. The optimal value of J_{itae} following the excitation of the system with a step pulse of amplitude $x^{sp} = +0.1$ was found to be 3.9713×10^{-4}ng. Using the Bode diagram of G_{ol} shown in Fig 4, we calculated the phase and gain margins of the closed loop as well as the crossover frequency. A gain margin as high as 43.9 db should be considered excellent and implies that the closed loop will remain stable even in presence of delay element as it is well away from instability. We may draw the same conclusion observing the high phase margin of 98°. The phase margin translates into the maximum delay that the closed-loop can take remaining stable; this is calculated by the formula:

$$\tau_{d,max} = \frac{M_p}{\omega_1} = 3.37 \text{ day} \quad (22)$$

where $\omega_1 = 0.43 \text{ rad/day}$ is the frequency at which $|G_{ol}(\omega_1)| = 0$ db and M_p is the phase margin in rad.

As one can see in Fig. 5, the closed-loop transfer function exhibits very low gain (<60 db) at high frequencies ($>\omega_h$), thus filtering out high-frequency noise signals in the closed loop and/or noise that comes with the set-point. Despite of the quite high values of the stability margins, the system responds satisfactorily fast. Due to the high gain margin, we can increase the controller’s gain so as...
In this paper we designed a fractional-order PI\(^d\)D\(^n\)-type controller for the stabilisation of the concentration of Amiodarone whose pharmacokinetic distribution in the organism is described by a fractional-order model and we presented closed-loop simulations. The designed controller not only has a high gain margin but also exhibits excellent behaviour with respect to noise rejection in the closed loops and attenuation of externally applied disturbances. The proposed control approach is a good candidate for the control of other drugs that follow such fractional-order dynamics such as Mibefradil (Fuite et al. [2002]) or Diclofenac (Popović et al. [2010]).

REFERENCES

