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Weighted scale-free networks exhibit two types of degree-strength relationship: linear and nonlinear rela-
tionships between them. To understand the mechanism underlying such empirical relationships, theoretical
evolution models for weighted scale-free networks have been introduced for each case. However, those models
have not yet been tested with empirical data. In this study, we collect temporal records of several online
bulletin board systems and a movie actor network. We measure the growth rates of degree and strength of each
vertex and weight of each edge within the framework of preferential attachment �PA�. We also measure the
probability of creating new edges between unconnected pairs of vertices. Then, based on the measured rates,
linear and nonlinear growth models are constructed. We find that indeed the dynamics of creating new edges
and adding weight to existing edges in a nonlocal manner is essential to reproduce the nonlinear degree-
strength relationship. We also find that the degree-driven PA rule is more appropriate to real systems rather than
the strength-driven one used for the linear model.
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I. INTRODUCTION

The Barabási and Albert �BA� model �1�, recently intro-
duced for scale-free �SF� networks, is a distinct model com-
pared with the random graph �2�, the small-world model �3�,
and the static model �4�, in the perspective that the network
is evolving, i.e., the total number of vertices increases with
time. In the BA model, the preferential attachment �PA� rule
was introduced, where a new vertex is attached to existing
vertices with the probability linearly proportional to the de-
gree of the target vertices. Later, the PA rule was justified
using the empirical data of the coauthorship network �5�.
These pioneering studies were limited to binary networks
and were later extended to weighted networks in order to
model real networks. For example, the coauthorship network
contains edges with weights that represent the number of
papers written together between two coauthors. The dialogue
network of an online bulletin board system �BBS� has edge
weight, which is the frequency of dialogues between two
people. The edge weight in the worldwide airport network is
the number of passengers traveling between two cities. In
such weighted networks, strength si, defined as the sum of
weights on the edges connected to a given vertex i, is a
physical quantity that is as important as the degree ki. In
general, strength and degree are related to each other in a
nonlinear fashion, si�ki

� �6–11�. The exponent � can be ei-
ther 1 �called the linear case� or not �called the nonlinear
case�, depending on the systems. The linear and nonlinear
cases have been found in the scientific coauthorship network
and the worldwide airport network, respectively �6�.

The linear case was modeled by Barrat, Barthelemy, and
Vespignani �BBV� �12�. The BBV model is generally similar

to the BA model, however, they are different in that the PA
rule is applied to the strength instead of the degree in the
BBV model. Hereafter, the former �latter� PA rule is called
the strength-driven �degree-driven� PA. Once a new connec-
tion is made, the updating of the edge weight is followed
locally at the edges connected to the target vertex. This local
updating rule yields a linear relationship between the degree
and strength. On the contrary, it was suggested that the non-
linear relationship can be achieved by the nonlocal updating
of the edge weight �13�. This idea has been embodied in a
few evolution models �14,15�. In the model proposed by Bi-
anconi �14� �Wang et al. �15��, a target vertex is selected by
the degree-driven �strength-driven� PA rule. Moreover, the
edge weight is strengthened or reinforced at selected internal
edges for both models. However, the dynamics of a new
connection of edges between existing, but as yet uncon-
nected vertices was not taken into account. While the two
models are successful in generating a nonlinear relationship
between the degree and strength, they have not yet been
tested with empirical data. In this paper, we test the elements
proposed in the two above-mentioned papers with empirical
data. For this purpose, we measure the key quantities that
drive the evolution of weighted networks from the empirical
data, which are the growth rates of the degree and strength of
each vertex, and the weight of each edge as a function of
time, i.e., the total number of vertices. Indeed, we find that
the nonlocal updating of the edge weight is an important
element in obtaining the nonlinear relationship between the
degree and strength. Moreover, based on the obtained results,
we modify the previous model to include the case where the
total number of edges increases nonlinearly with respect to
the number of vertices. We find that the result obtained from
the degree-driven PA rule can fit better with the empirical
data, and the dynamics of adding edges between uncon-
nected pairs of vertices must be taken into account.*hjeong@kaist.ac.kr
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II. ANALYSIS OF EMPIRICAL DATA

Our data set is comprised of four real networks, three
BBSs �loco, bar, and Google� �16,17�, and movie actor net-
works �18�. A BBS is an online social communication system
where users post messages and others reply to them. The
BBS data contain the information of user names in the from
and to fields and the posting date of each message. This
yields a weighted network where vertices are users and a pair
of users is connected if the users exchange at least one mes-
sage. The weight wij of the edge between two users i and j is
determined as the number of messages they communicate.
The movie data include information on movie titles, actors,
and production years. In this network, the vertices are actors
and the edges between two actors i and j are connected if
they act in the same movie. The weight wij between the
vertices i and j is the number of co-starring movies. The
strength si of a vertex i is defined by si=� j�nn�i�wij, where
nn�i� is the nearest neighbor of the vertex i. For the BBS
�loco and bar� networks, the strength distributions exhibit
heavy-tailed behaviors, which were also shown in our previ-
ous works �17�. Other networks show similar behaviors.
Table I shows the summary of the structural features of the
weighted networks.

We examine the evolution pattern of the weighted net-
works in the real world, particularly focusing on the three
evolution processes �Fig. 1�:

�i� Addition of a new vertex: A new vertex is introduced
and edges are created from the new vertex to the existing
vertices. �ext denotes the probability of connecting edge to
the vertex. This process is regarded as an occurrence during
a unit time interval.

�ii� Creation of internal edges: Internal edges are created
between existing vertices that are unconnected. �int is the
probability of connecting the two vertices.

�iii� Reinforcement of edge weight: The weights of the
selected existing edges are increased by a unit weight.

Both processes �i� and �iii� are proposed in Refs. �14,15�,
but �ii� is introduced here.

To be specific, the number of vertices at a given instant �
is regarded as time t. Let Lext�t�, Lint�t�, and Wrei�t� be the
numbers of edges at time t created from processes �i�–�iii�,
respectively. Empirical measurements show that these quan-

tities increase in power law as Lext�t�� pt�1, Lint�t��qt�2,
and Wrei�t��rt�3 asymptotically. p, q, and r are constants,
and the exponents �1, �2, and �3 vary depending on the
systems, as listed in Table I. For all networks, �2 and �3 are
nontrivial, indicating that the internal activity in the form of
creating internal edges and strengthening edge weights is not
negligible in BBS networks. It is noteworthy that these ex-
ponents are larger than 1 for the loco, bar BBS, and movie
actor networks, indicating that these systems become more
densely connected with an increasing time; this is called ac-
celerated growth. For the Google BBS network, however, the
exponents �1 and �2 are close to 1, suggesting a linear
growth. The exponent �3 is less than 1.

To understand the evolution mechanism microscopically,
we measure the increasing rates of each quantity, and obtain
kernels � that drive the dynamics for each evolution process
�i�–�iii�.

The kernel function � determines the attachment prob-
ability for topological growth and the probability of weight
increase for link weight reinforcement. For the degree
growth resulting from adding new vertices, the kernel func-
tion is reduced to that of preferential attachment. The func-
tion �ext�k� is described by

TABLE I. Summary of the statistics of the evolution of network structure for the weighted networks. ��
is the temporal resolution of the data. T is the period for observation. Other quantities are defined in the text.

Loco Bar Google Movie

Size 7435 3988 39918 752682

�� 1 day 1 day 1 day 1 year

T 1670 days 1575 days 1259 days 117 years

p 0.51�0.01 0.82�0.01 0.84�0.01 0.01�0.002

q 0.0068�0.0005 0.026�0.001 0.66�0.02 0.00084�0.00028

r 0.0017�0.0001 0.11�0.01 0.084�0.006 0.016�0.007

�1 1.12�0.002 1.07�0.001 1.04�0.002 1.61�0.02

�2 1.85�0.008 1.70�0.005 0.99�0.004 1.85�0.04

�3 2.28�0.009 1.81�0.012 0.84�0.01 1.55�0.05
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FIG. 1. �Color online� Schematic illustration of the evolution
dynamics of a weighted network. �a� Initial configuration. �b� A new
vertex n is introduced to the system and connects to an existing
vertex i with probability �ext �external growth�. �c� Two existing
vertices k and j that are still unconnected are connected with prob-
ability �int �internal growth�. �d� Edge weight between existing
vertices i and j is increased by one with probability �rei �edge-
weight reinforcement�.
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�ext�k,t� =

�
i

�ki

n�k,t�
� C�t�k�, �1�

where �ki is the number of new links that attach to vertex i
with degree k during �t, and n�k , t� is the number of vertices
with degree k at time t. Because of the data fluctuation, we
use a time-average kernel function. That is, �ext
= ��ext�k , t�	. The increasing rate of degree ki of a vertex i by
the attachment of a new edge from a new vertex is measured
as follows:

dki

dt
= m1�ext,k�ki� , �2�

where m1= �dLext /dt	 is the average number of edges at-
tached from a new vertex during a unit time interval. �¯	 is
the average over different times. It was found that �ext,k�ki�
�ki

�1,k with �1,k�0.94 for the loco BBS network. The in-
creasing rate of degree ki can also be measured as a function
of strength,

dki

dt
= m1�ext,s�si� . �3�

It was found that �ext,s�si��si
�1,s with �1,s�0.64 for the loco

BBS network. The measured values of the exponents �1,k
and �1,s for other systems are listed in Table II.

The increasing rate of quantity kij, which is the average
number of links newly connected between unconnected ver-
tices i and j, is measured as a function of kikj,

dkij

dt
= m2�int,k�kikj� , �4�

and measured as a function of sisj,

dkij

dt
= m2�int,s�sisj� , �5�

where m2= �dLint /dt	 is the average number of internal edges
attached between unconnected vertices during a unit time
interval. It was found that �int,k�kikj���kikj��2,k with �2,k
�0.83 and �int,s�sisj���sisj��2,s with �2,s�0.41 for the loco
BBS network. The measured values of the exponents �2,k
and �2,s for other systems are listed in Table II.

The increasing rate of edge weight wij is

dwij

dt
= m3�rei�wij� , �6�

where m3= �dWrei /dt	 is the average number of reinforced
weights during a unit time interval. It was found that
�rei�wij��wij

�3,w with �3,w�0.87 for the loco BBS network.
The measured values of the exponents �3,w for other systems
are listed in Table II. Notice that to calculate �ext,k�ki�, we
calculate the increment of the degree �ki

ext��� of each vertex
i at a given instant � using only the connection from an
introduced vertex. If the total number of edges generated
from the new vertex at a given instant � is �Lext���, then
�ext,k�ki ,��=�ki

ext��� /�Lext���. Since we are interested in the
degree dependence of the kernel �ext,k�ki�, we take the aver-
age over time and vertex indices with the same degree. To
reduce the noise level, we use the cumulative function de-
fined as ��c��x�=−
	

x ��y�dy, as shown in Fig. 2. The other
kernels �ext, �int, and �rei are determined in the same man-
ner and shown in Figs. 2�a�–2�c�, respectively. We found that
�rei�wij� is almost independent of kikj and sisj in Fig. 2�d�
since it follows �rei

�c��x��x, which corresponds to �rei�x�
=const. The numerical results suggest that a relationship be-
tween the degree and strength exists in the form of s�k�

with ��1.4 for the loco BBS network. Thus, �1,k���1,s and
�2,k��2�2,s.

III. LINEAR GROWTH MODEL

Based on the numerical data, we construct a linear growth
model for the weighted network, where the total numbers of
vertices and edges linearly increase with time. This case can
be seen in the Google BBS network. The dynamic rule for
the model is as follows: �i� At each time step, a new vertex is
introduced into the system and it attaches �1 edges to the

TABLE II. Numerical values of the exponents defined in the
kernels.

Loco Bar Google Movie

�1,k 0.94�0.08 1.25�0.13 1.36�0.14 0.64�0.06

�1,s 0.64�0.05 0.77�0.09 1.14�0.09 0.62�0.06

�2,k 0.83�0.08 0.67�0.1 0.70�0.08 0.50�0.03

�2,s 0.41�0.02 0.27�0.04 0.62�0.08 0.48�0.03

�3,w 0.87�0.08 0.87�0.09 1.40�0.07 1.01�0.08
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FIG. 2. �Color online� Cumulative functions of the kernels de-
fined in Eqs. �2�–�4� as functions of their argument for the loco BBS
network. �a� �ext for the process �i�. �b� �int for the process �ii�. �c�
�rei as a function of weight wij for the process �iii�. The straight
lines are guidelines with slopes of 1.87 �d� �rei as functions of kikj

or sisj. The dashed lines are guides to the eye showing slope 1.
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existing vertices selected by the linear PA rule applying to
the degree. The target vertices are selected with the probabil-
ity linearly proportional to their degrees. Here, we use the
degree-driven PA rule only to solve the problem analytically.
A minimal weight w0=1 is assigned to each new edge. �ii� At
the same time, �2 edges are created between those numbers
of unconnected pairs of existing vertices i and j, selected
with a probability linearly proportional to the product of their
degrees, i.e., kikj. �iii� �3 existing edges are selected and their
weights are increased by w0. The selection is made following
the linear PA rule applied to the weight wij. The above rules
are repeated until there are N vertices in the system. This
linear growth model enables us to understand the dynamic
process analytically.

The dynamic equation for processes �i� and �ii� is given as
�19�

�ki

�t
= ��1 + 2�2�

ki

�
j

kj

, �7�

where � jkj is given by 2��1+�2�t. The solution is given as

ki�t� = �1�t/ti�
1, �8�

where 
1= ��1+2�2� /2��1+�2� and ti is the time at which
vertex i was introduced into the system.

The dynamic equation for process �iii� is

�wij

�t
= 2�3w0

wij

�
m,m�

wm,m�

. �9�

Then, the solution is

wij = w0�t/ti,j�
2, �10�

where the exponent 
2=�3 / ��1+�2+�3� and ti,j is the time at
which the edge �i , j� is created.

Combining Eqs. �7� and �10�, the dynamic equation for
the strength evolution is written as

�si

�t
= �

j�nn�i�

�wij

�t
+

�ki

�t
�11�

=2�3w0 �
j�nn�i�

wij

�
m,m�

wm,m�

+
�ki

�t
�12�

=
�3

��1 + �2 + �3�t
si +

�1 + 2�2

2��1 + �2�t
�1�t/ti�
1. �13�

We find that in a long time limit

si � �ki if 
1 � 
2,

ki ln ki if 
1 = 
2,

ki

2/
1 if 
1  
2.

 �14�

Consequently, the model generates a degree-strength rela-
tionship that is linear when 
1�
2, but nonlinear when 
1

2. The above result is reduced to that of the model intro-
duced by Bianconi �14� where step �ii�, the creation of new
internal links, is ignored, i.e., �2=0. Further, the selection
rule for step �iii� is slightly different. In Ref. �14�, once a
vertex is chosen with the probability proportional to its
strength �i=si /� jsj, then its partner for connection is chosen
with a probability proportional to its weight �ij =wij /��wi�,
where the index � is the nearest neighbor of i. However, in
the proposed model, we choose target edges with the prob-
ability given by Eq. �9�. However, the two methods reduce to
the same result.

Next, using the relation �=1+1 /
 previously derived in
Ref. �20� for the linear kernel case, we obtain the exponents
associated with the power-law decaying behaviors of the de-
gree and edge-weight distributions. They are obtained as �k
=2+�1 / ��1+2�2� and �w=2+ ��1+�2� /�3, respectively. Then
the exponent associated with the power-law decaying behav-
ior of the strength distribution is obtained using Eq. �14� as
�s=�k when 
1�
2 and �s=�w when 
1
2.

We compare the analytic results with the empirical data
obtained from the Google BBS network, of which �1��2
�1. Even though the kernels of �ext and �int for the Google
BBS depend nonlinearly on the degree and the product of the
degrees, the analytic solutions fit well with the empirical
results, as shown in Fig. 3.

IV. NONLINEAR GROWTH MODEL

Here, we study the nonlinear evolution case where the
total number of edges increases nonlinearly as a function of
the total number of vertices. We use the degree-driven and
strength-driven PA rules, with the respective measured val-
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FIG. 3. �Color online� The distributions of several physical
quantities—strength �a�, degree �b�, weight �c� for the Google BBS
�red square with solid line�—and the comparison with those ob-
tained from the linear model �black square with solid line�. The
degree-strength relationship is also compared �d�. The numerical
data are averaged over 30 network configurations with the same
size as N=39 918 of the Google BBS.
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ues of ��1,k, �2,k� and ��1,s ,�2,s� of the loco BBS network in
Table II, and compare the respective results with the empiri-
cal data.

The growth of the network starts from an initial configu-
ration composed of N0=10 vertices, which are sparsely con-
nected, for example, forming a ring, allowing for internal
edge connections at a later stage. Otherwise, the internal
edge growth becomes trivial. Each edge has a preassigned
weight w0=1. The network evolves under three evolution
dynamics: �i� the addition of a new vertex and its connection
to the existing vertices, �ii� the creation of internal edges, and
�iii� the reinforcement of the weights of existing edges. For
steps �i� and �ii�, degree-driven and strength-driven PA rules
are applied, respectively. Thus, two types of networks result.
To be specific, the construct rules are as follows:

�i� At each time step, a new vertex is introduced in the
system. Depending on time step t, the number of edges ema-
nating from the new vertex varies as �1�t�= pt�1 − p�t−1��1. p
and �1 are chosen from Table I in order to compare the
resulting network with the empirical data. The target vertex i
for each edge is chosen with the probability,

�ext�x1,i� =
x1,i

�1

�
j

x1,j
�1

, �15�

where x1,i can be ki �si� for the degree-driven �strength-
driven� case. Then, �1 is given as �1,k and �1,s in Table II,
respectively. The initial weight of each new edge is given as
w0=1. This process reflects the dialogues between the new
user and the existing users.

�ii� �2�t�=qt�2 −q�t−1��2 edges are created between un-
connected pairs of vertices, where q and �2 are given in
Table I. The pair of target vertices for each edge is chosen
with the probability

�int�x2,ij� =
x2,ij

�2

�
i,j

x2,ij
�2

, �16�

where x2,ij is kikj �sisj� for the degree-driven �strength-
driven� case. Correspondingly, �2 is �2,k and �2,s adopted
from Table II, respectively. The addition of multiple edges to
the same pair of vertices is not allowed. The weight of each
new edge is also given as w0=1. This process reflects the
dialogues between the existing users who have not ex-
changed any messages previously.

�iii� �3�t�=rt�3 −r�t−1��3 edges are chosen from all con-
nected pairs of vertices with the probability given below, and
their weights are strengthened by w0=1. r and �3 are given
in Table I. The probability is given as

�rei�wij� =
wij

�3

�
i,j

wij
�3

, �17�

where �3 is given in Table II. Multiple additions of edge
weights to the same pair are allowed in this process. This
process reflects the additional message exchange between us-
ers who have exchanged messages previously.

This nonlinear model is reduced to the linear model when
�1=�2=�3=1 and �1=�2=�3=1 for the degree-driven case
only. Numerical simulations were performed with the mea-
sured parameters listed in Tables I and II for the loco BBS
network and the other networks. The results of the degree,
strength, and edge weight distribution for the model network
are shown in Fig. 4, where the degree-driven �strength-
driven� case is denoted by a solid line �dotted line�. The
strength and edge-weight distributions obtained from the
simulations are in good agreement with the empirical data
for the loco BBS network, but the degree distributions ob-
tained from the model based on both the degree-driven and
strength-driven PA slightly deviate from the corresponding
empirical one.

We examined the degree-strength relationship s�k�

�6–11� for the model network in Fig. 5�a� and compared it
with the empirical data obtained from the loco BBS network.
The two versions of the model network exhibit different val-
ues of �. The degree-based model, i.e., with the degree-
driven PA rule, produces a closer value �k�1.56 to the value
�loco�1.40 obtained from the loco BBS network than the
value �s�1.81 obtained from the strength-based model. In
addition, we calculated the confidence interval using the
bootstrap procedure to compare the measured values of �
from the empirical data, the degree based model, and
strength based model. The 95% confidence interval of � for
the loco BBS data runs from 1.36 to 1.43. Those obtained
from the degree-based and the strength-based models run
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FIG. 4. �Color online� The distribution of several quantities—
strength �a�, degree �b�, and weight �c� for the loco BBS network.
The empirical data �red square with solid line� are compared with
the results obtained from the models with the degree-driven �solid
line� and the strength-driven �dotted line� PA rule. The simulation
data are averaged over 30 network configurations of the same size
of the loco N=7435.

EVOLUTION OF WEIGHTED SCALE-FREE NETWORKS IN … PHYSICAL REVIEW E 77, 056105 �2008�

056105-5



from 1.52 to 1.59, and from 1.76 to 1.86, respectively. This
result supports our conclusion that the degree-based model
fit better than the strength-based model to reproduce the em-
pirical result. We also examined the heterogeneity of the
weights on the edges connected to a given vertex introduced
in Refs. �21–23�. We measured Yi

2=� j�wij /si�2�ki
−� �21�. If

the weights are homogeneous, then it would be Yi
2�1 /ki. If

a dominant edge with weight wi,j �si exists, then Yi
2�O�1�.

As shown in Fig. 5�b�, the empirical data of the weight het-
erogeneity for the loco network is more closely reproduced
by the degree-based model than by the strength-based model
as �loco�0.66, �k�0.66, and �s�0.50. We obtained a 95%
confidence interval of � for the loco BBS data that runs from
0.63 to 0.70 from the empirical loco data using the bootstrap
procedure. This range is close to that �0.65,0.68� obtained
from the degree-based model, but deviates from that
�0.48,0.52� obtained using the strength-based model. The re-
sults for other BBS networks showed similar behaviors.
Therefore, we conclude that the degree-based model is better

than the strength-based model for reproducing the structural
features of BBS networks.

V. CONCLUSION

We have analyzed the evolution records of real weighted
BBS networks to understand the growth mechanism of
weighted networks. We measured the growth rates of the
degree and strength of each vertex and the weight of each
edge as a function of time, that is, the total number of verti-
ces. Based on the measured results, we constructed two
evolving weighted network models. The models had three
common elements: �i� The addition of new vertices, �ii� the
addition of new internal edges between two previously un-
connected vertices, and �iii� the strengthening of weights on
existing edges. Processes �ii� and �iii� were applied indepen-
dently of �i�, so that the dynamics arising on the edges oc-
curred in a nonlocal manner. In processes �i� and �ii�, the
degree-driven PA rule performs better than the strength-
driven PA rule in reproducing the features of real systems as
a rule of choosing target vertices. Depending on the ratio
between the growth rates of the numbers of vertices and
edges, we established linear and nonlinear growth models.
The Google BBS network can be reproduced using the linear
growth model and the other two BBS networks and movie
actor network can be reproduced through the nonlinear
growth models. Our study is meaningful from the perspec-
tive that the existing concepts and models for weighted net-
works are tested with empirical data. We find that the exist-
ing models are overall successful in reproducing the
empirical results; however, the nonlinear growth model must
be used to match the empirical results.
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