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Abstract— Set-membership identification of Hammerstein-
Wiener models is addressed in the paper. First, it is shown that
computation of tight parameter bounds requires the solutions
to a number of nonconvex constrained polynomial optimization
problems where the number of decision variables increases with
the length of the experimental data sequence. Then, a suitable
convex relaxation procedure is presented to significantly reduce
the computational burden of the identification problem. A
detailed discussion of the identification algorithm properties
is reported. Finally, a simulated example is used to show the
effectiveness and the computational tractability of the proposed
approach.

I. INTRODUCTION

Identification of nonlinear systems has been an active
research area in the last decades. Despite the rich literature
available on the subject (see, e.g., the survey paper [1] and
the special issue [2]), nonlinear dynamic systems modeling
and identification still remains a challenging task worthy of
further studies, as remarked in some recent plenary talks
[3], [4], [5]. One of the central issues is the search for
simple and flexible model structures able to cover the most
relevant nonlinear phenomena encountered in practice. This
problem has stimulated a number of contributions about the
identification of block-structured nonlinear systems, modeled
by interconnected memoryless nonlinear gains and linear
dynamic subsystems. Thanks to their ability to embed prior
process structure knowledge like, e.g., the presence of
nonlinearity either in the actuator or in the measurement
equipment, these models are successfully employed in many
different engineering fields. Early works on identification
of block-strcutred nonlinear systems are summarized in the
survey papers [6], [7] while an up-to-date collection of
results and algorithms can be found in the recent book
[8]. The configuration we are dealing with in this note,
commonly referred to as a Hammerstein-Wiener model, is
shown in Fig. 1; it consists of a linear dynamic system
sandwiched by two static nonlinearities N1 and N2. The
identification of such a model relies solely on input-output
measurements, while the inner signals xt and zt are not
assumed to be available. A good deal of approaches can be
found in the literature which address such a problem. A two
stage algorithm based on recursive least squares and singular
values decomposition is proposed in [9], while a blind
approach is considered in [10] where a suitable procedure is
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discussed to recover all the unmeasurable internal variables
exploiting solely the output measurements. The asymptotic
properties of the least-squares estimates of Hammerstein-
Wiener models are investigated in [11] where a consistent
procedure for the estimation of the asymptotic variance of
the parameters estimate is provided. Iterative identification
schemes are proposed in [12] and [13] while an extended
stochastic gradient algorithm is presented in [14] for the
case of Hammerstein-Wiener ARMAX models. Subspace
algorithms, exploiting either open-loop [15] or closed-loop
[16] input-output data, have been recently investigated. In
all the papers mentioned above, the authors assume that the
measurement error ηt is statistically described. A worthwhile
alternative to the stochastic description of measurement
errors is the bounded-errors, or set-membership, characteri-
zation where uncertainties are assumed to belong to a given
set. The interested reader can find further details on this
approach in a number of survey papers (see, e.g., [17], [18])
and in the special issues [19], [20]. To our best knowledge,
no contribution can be found in the literature which addresses
the identification of Hammerstein-Wiener models when the
measurement error is supposed to be bounded. In this paper
we consider the identification of single-input single-output
(SISO) Hammerstein-Wiener models where the nonlinear
static gains are described by the linear combination of a finite
number of known basis functions, an output error structure
is used to model the linear dynamic part and the output
measurement errors are corrupted by bounded errors. It is
worth noting that the problem of set-membership identifi-
cation of the Hammerstein and the Wiener models, which
are particular cases of the Hammerstein-Wiener structure
considered here, is NP-hard in the size of the experimental
data sequence, as recently shown in [21]. The paper is
organized as follows. Section II is devoted to the formulation
of the identification problem. In Section III we show that
computation of tight parameters bounds requires the solution
to constrained nonconvex optimization problems where the
number of decision variables increases with the number of
measured data. A suitable relaxation procedure to reduce the
number of decision variables for such optimization problems
is presented in Section IV and a detailed analysis of its
properties is reported in Section V. A simulated example
is presented in Section VI in order to show the effectiveness
of the proposed approach.

II. PROBLEM FORMULATION

Consider the Hammerstein-Wiener model depicted in Fig.
1. The input nonlinearity N1(·) maps the input signal ut into
the unmeasurable inner signal xt through the static nonlinear
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Fig. 1. Hammerstein-Wiener system.

function

xt = N1(ut) =

nγ∑
i=1

γiψi(ut), t = 1, . . . , N, (1)

where (ψ1,.....,ψnγ ) is a known basis of nonlinear functions
and N is the length of data sequence. The output nonlinearity
wt = N2(zt) as well is a static function and, as assumed
in [10], it is a one-to-one nonlinearity so that the inverse
zt = N−1

2 (wt) exists and it is parameterized as

zt = N−1
2 (wt) =

nα∑
j=1

αjϕj(wt), t = 1, . . . , N, (2)

where (ϕ1,.....,ϕnα) is a known basis of nonlinear continuous
functions. The linear dynamic part L is modeled by a
discrete-time stable system transforming xt into the signal
zt according to the linear difference equation

zt = −
na∑
i=1

aizt−i +

nb∑
j=0

bjxt−j . (3)

Internal signals xt and zt are supposed not to be measurable,
while the measurements yt of the output signal wt are
corrupted by additive noise according to

yt = wt + ηt, (4)

where ηt is the measurement uncertainty, which is assumed
to range within given bounds ∆ηt, i.e.,

| ηt |≤ ∆ηt. (5)

The unknown parameters to be estimated are collected in
the vectors γ = [γ1, . . . , γnγ ]

T, α = [α1, . . . , αnα ]
T and θ =

[a1 . . . ana b0 b1 . . . bnb]
T ∈ Rnθ , where nθ = na +

nb + 1. It must be pointed out that the parametrization of
the structure in Fig. 1 is not unique. In fact, as shown in
[10], any parameter set aγ, b[b0, . . . , bnb] and cα, for some
constants a, b, c such that abc = 1, provides the same input-
output behavior. In order to get a unique parametrization,
two blocks have to be normalized. In this work we assume,
without loss of generality, that γ1 = 1 and α1 = 1.
In this paper we address the problem of deriving bounds
on the parameters γ, α and θ consistently with the assumed
model structure, error bounds and measurements of the input
signal ut and noise-corrupted output yt.

III. EVALUATION OF TIGHT PARAMETER
UNCERTAINTY INTERVALS

In this section we show that the evaluation of tight
parameter uncertainty intervals requires the solution to a set

of nonconvex optimization problems with nγ +nα+nθ+N
variables. By substituting (1) into (3) we get:

zt = −
na∑
i=1

aizt−i +
nb∑
j=0

bj

nγ∑
i=1

γiψi(ut−j). (6)

From eqs. (2), (4) and (6), the following relation between
the output signal yt and the input signal ut holds:

nα∑
j=1

αjϕj(yt − ηt) +

na∑
i=1

ai

nα∑
j=1

αjϕj(yt−i − ηt−i) =

=
nb∑
j=0

bj

nγ∑
i=1

γiψi(ut−j).

(7)

Then, the set D of all system parameters (γ, α, θ) and noise
samples ηt consistent with measurements, error bounds and
the assumed model structure is described by (5) and (7), i.e.

D =
{
(γ, α, θ, η) ∈ Rnγ+nα+nθ+N :

nα∑
j=1

αjϕj(yt − ηt) +
na∑
i=1

ai

nα∑
j=1

αjϕj(yt−i − ηt−i) =

=
nb∑
j=0

bj

nγ∑
i=1

γiψi(ut−j), t = na+ 1, . . . , N ;

|ηr| ≤ ∆ηr; r = 1, . . . , N ; γ1 = 1, β1 = 1
}
,

(8)

with η = [η1, . . . , ηN ]
T. Therefore, tight bounds on the

parameters γi, αj and θk can be computed by solving the
constrained optimization problems

γ
i
= min

(γ,α,θ,η)∈D
γi, γi = max

(γ,α,θ,η)∈D
γi, (9)

αj = min
(γ,α,θ,η)∈D

αi, αj = max
(γ,α,θ,η)∈D

αi, (10)

θk = min
(γ,α,θ,η)∈D

θk, θk = max
(γ,α,θ,η)∈D

θk. (11)

It must be pointed out that the number of optimization
variables of problems (9)-(11) increases with the number
of measurements N . Furthermore, problems (9)-(11) are, in
general, nonconvex since the equality constraints defining the
feasible region D involve the product between the unknown
parameters γ, α and θ and the nonlinear functions ψi(.),
which, in turn, depend on the noise variables η. Therefore,
standard nonlinear optimization tools (e.g., gradient method,
Newton method) cannot be used since they can trap in
local minima. As a consequence, the computed uncertainty
intervals are not guaranteed to contain the true parameters.
A possible solution to overcome such a problem is to relax
the identification problems (9)-(11) to convex optimization
problems, in order to numerically compute relaxed bounds
on the system parameters. It must be pointed out that when
ϕj(.) are polynomial functions, problems (9)-(11) are sparse
semialgebraic optimization problems and they can be relaxed
through a direct implementation of the LMI-relaxation for
sparse polynomial optimization proposed in [22] and [23].
Unfortunately, due to a large number of variables appearing



in (9)-(11) and a large degree of the polynomial equalities
defining the feasible set D, the relaxation of such problems
through LMI-based relaxation techniques leads to untractable
SDP-problems because of high computational burden. In the
following section we present a relaxation procedure that
significantly reduces the computation burden of identification
problems (9)-(11). Besides, the presented procedure can be
also applied when ϕj(.) are not polynomial functions.

IV. COMPUTATIONAL BURDEN REDUCTION

The key idea to reduce the computational burden of prob-
lems (9)-(11) is to construct an outer-bounding set Dss(n)

of D by considering the noise variables appearing in the
definition of D independent of each others. Indeed, in such
a way, conservativeness is introduced in the evaluation of the
parameter bounds since the correlation between consecutive
measurements is lost. In order to reduce the conservativeness
of such an approach, equality constraints are added in the
definition of the feasible set D as follows: (i) given a fixed
integer n, we consider n consecutive equality constraints
in the description of D in (8); (ii) we substitute the first
constraint in the second one obtaining a new equality that
retains correlations among the two; then, the newly obtained
equation is substituted into the third constraint. The pro-
cedure is repeated until all the n consecutive constraints
selected in (i) are nested; (iii) the new equations obtained
in (ii) are added in the description of D.
Then, D is outer-bounded by a set Dss(n) obtained by consid-
ering the noise variables appearing in the new description of
D independent of each others. In such a way, the correlation
between n consecutive measurements is not completely lost
since it is kept by the nested substitutions in (ii). Thanks to
the structure of Dss(n), computation of parameter bounds can
be formulated in terms of polynomial optimization problems
with only nγ +nα+nθ variables, unlike nγ +nα +nθ +N
variables involved in identification problems (9)-(11). Tech-
nical details of the proposed relaxation procedure are now
presented. First, the feasible set D is written as intersection of
N−na sets. In particular, for a given integer n ∈ [1, N−na],
the set D is written as D =

∩N−na
z=1 S(n)

z , where

S(n)
z =

{
(γ, α, θ, η) ∈ Rnγ+nα+nθ+N :

nα∑
j=1

αjϕj(yna+z+s−1 − ηna+z+s−1) =

= −
na∑
i=1

ai

nα∑
j=1

αjϕj(yna+z+s−1−i − ηna+z+s−1−i)+

+

nb∑
j=0

bj

nγ∑
i=1

γiψi(una+z+s−1−j),

|ηr| ≤ ∆ηr, γ1 = 1, β1 = 1;

s = 1, 2, . . . ,min{n,N − z + 1};
r = z, z + 1, . . . ,min{na+ n+ z,N}

}
.

(12)

It is worth noting that each set S(n)
z is described by the

constraints defining D in (8) obtained by at most n con-

secutive measurements. For instance, S(n)
1 is only described

by the constraints obtained by the measurements from time
t = na + 1 up to time t = na + n, S(n)

2 is described
by the constraints obtained by the measurements from time
t = na + 2 up to time t = na + n + 1, and so on, up to
S(n)
N−na that is defined only by the constraint obtained by the

measurement at time N . In this work we refer to n as the
dynamic-horizon.
On the basis of the definition of S(n)

z in (12) and from the
nested substitution process described in (ii), an alternative
description of the sets S(n)

z can be given as

S(n)
z =

{
(γ, α, θ, η) ∈ Rnγ+nα+nθ+N :

nα∑
j=1

αjϕj(yna+z+s−1 − ηna+z+s−1)+

+
na∑
h=1

[As](1, h)

nα∑
j=1

αjϕj(yna+z−h − ηna+z−h) =

=
s∑

j=1

nb+1∑
h=1

[As−jB](1, h)

nγ∑
i=1

γiψi(una+z+s−1−h);

|ηr| ≤ ∆ηr, γ1 = 1, β1 = 1;

s = 1, 2, . . . ,min{n,N − z + 1};
r = z, z + 1, . . . ,min{na+ n+ z,N}

}
,

(13)

where

A =


a1 a2 . . . ana−1 ana
1 0 . . . 0 0
0 1 . . . 0 0
...

. . . . . . . . .
...

0 0 . . . 1 0

 ∈ Rna,na, (14)

B =


b0 b1 · · · bnb
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0

 ∈ Rna,nb+1, (15)

where [R](1, h) denotes the entry in the first row and in the
h-th column of a generic matrix R. Outer-bounds Sss(n)

z and
Dss(n) of S(n)

z and D, respectively, are now constructed as
described by next results. Proofs of all results and properties
presented in this paper can be found in [24].

Result 1: Construction of an outer bound of S(n)
z



Let us define the set Sss(n)
z as

Sss(n)
z =

{
(γ, α, θ) ∈ Rnγ+nα+nθ :

nα∑
j=1

αjϕ
(
αj , yna+z+s−1

)
+

+
na∑
h=1

nα∑
j=1

[As](1, h)αjϕ
(
[As](1, h)αj , yna+z−h

)
≥

s∑
j=1

nb+1∑
h=1

[As−jB](1, h)

nγ∑
i=1

γiψi(una+z+s−1−h);

nα∑
j=1

αjϕ
(
αj , yna+z+s−1

)
+

+
na∑
h=1

nα∑
j=1

[As](1, h)αjϕ
(
[As](1, h)αj , yna+z−h

)
≤

s∑
j=1

nb+1∑
h=1

[As−jB](1, h)

nγ∑
i=1

γiψi(una+z+s−1−h);

γ1 = 1, β1 = 1; s = 1, 2, . . . ,min{n,N − z + 1}
}
.

where ϕ, ϕ : R2 → R are real-valued functions defined as

ϕ(a, yt) =


max

|ηt|≤∆ηt

ϕ(yt − ηt) if a ≥ 0,

min
|ηt|≤∆ηt

ϕ(yt − ηt) if a < 0.
(16)

ϕ(a, yt) =

 min
|ηt|≤∆ηt

ϕ(yt − ηt) if a ≥ 0,

max
|ηt|≤∆ηt

ϕ(yt − ηt) if a < 0.
(17)

Then, for every z = 1, . . . , N − na, the set Sss(n)
z is an

outer approximation of S(n)
z , i.e. S(n)

z ⊆ Sss(n)
z . �

Result 2: Construction of an outer bound of D.
The set Dss(n), defined as Dss(n) =

∩N−na
z=1 Sss(n)

z , is an
outer approximation of the set D, i.e. D ⊆ Dss(n). �

Then, for a given dynamic horizon n, and for all
i = 1, . . . , nγ , j = 1, . . . , nα and k = 1, . . . , nθ,
the parameter uncertainty intervals on γ, α and θ, de-
fined as PUI

ss(n)
γi =

[
γss(n)
i

; γ
ss(n)
i

]
, PUI

ss(n)
αj =[

α
ss(n)
j ; α

ss(n)
j

]
, PUI

ss(n)
θk

=
[
θ
ss(n)
k ; θ

ss(n)

k

]
, can be

evaluated by solving the optimization problems

γss(n)
i

= min
γ,α,θ∈Dss(n)

γi; γ
ss(n)
i = max

γ,α,θ∈Dss(n)
γi, (18)

α
ss(n)
j = min

γ,α,θ∈Dss(n)
αj ; α

ss(n)
j = max

γ,α,θ∈Dss(n)
αj , (19)

θ
ss(n)
k = min

γ,α,θ∈Dss(n)
θk; θ

ss(n)

k = max
γ,α,θ∈Dss(n)

θk. (20)

Remark 1: Only the unknown parameters γ, α and θ are
optimization variables for problems (18) and (20); on the
contrary in the original identification problems (9)-(11) also
the noise samples η are treated as variables. �

Evaluation of the intervals PUI
ss(n)
γi , PUI

ss(n)
αj and

PUI
ss(n)
θk

requires the solution to the optimization problems
(18)-(20) over the nonconvex feasible region Dss(n). In
the following we describe how to solve numerically such
problems by exploiting the particular structure of Dss(n). In
order to analyze the topological features of the set Dss(n),
we first introduce the following notation.
Let q(n) ∈ Rna(1+n) be the collection of the variables
α1, . . . , αna and [As](1, h), with h = 1, . . . , na and s =
1, . . . , n, i.e.

q(n) =
[
α1, . . . , αna, [A](1, 1), . . . , [A](1, na),

[A2](1, 1), . . . , [A2](1, na), . . . , [An](1, na)
]T
.

(21)

Let Υ be the set of all those vectors with na(1 + n)
components, each one equal to ±1. This means that Υ =
{β1, β2, . . . , βl, . . . , βL}, where L = 2na(1+n) and βl is a
vector with na(1 + n) components, each one equal to ±1
and such that βl ̸= βi if l ̸= i. For any βl ∈ Υ, let us
define the set O(βl) ⊂ Rnγ+nα+nθ as

O(βl) =
{
(γ, α, θ) ∈ Rnγ+nα+nθ :

βljq
(n)
j (α, θ) ≥ 0, j = 1, . . . , na(1 + n)

}
,

where βlj and q
(n)
j are the j-th element of vectors βl and

q(n), respectively. Note that, in all sets O(βl), the sign of
the vector q(n) components is imposed. Topological features
of Dss(n) are now highlighted by Property 1.

Property 1: The set Dss(n) is the union of at most L sets
Dss(n)

l in Rnγ+nα+nθ+N , that is Dss(n) =
∪L

l=1 D
ss(n)
l ,

where Dss(n)
l = Dss(n) ∩ O(βl).

Each set Dss(n)
l , if not empty, is a semialgebraic region in

Rnγ+nα+nθ defined by polynomial inequality constraints of
degree less or equal than n+ 1. �

Statement of the proposition follows from the fact that
in each set O(βl) the sign of the variables α1, . . . , αna

and [As](1, h), with h = 1, . . . , na and s = 1, . . . , n is
known. Therefore, in each set Dss(n)

l , the functions ϕj(.)
and ϕ

j
(.) assume a constant value, which, depending on

the set Dss(n)
l , can be equal to either max

|ηt|≤∆ηt

ϕ(yt − ηt) or

min
|ηt|≤∆ηt

ϕ(yt − ηt).

Remark 2: Since ϕj is supposed to be a continuous
function, Weierstrass theorem guarantees that ϕj achieves
its global minimum and maximum on the closed interval
[yt−∆ηt; yt+∆ηt]. Such a global minimum and maximum
must either be stationary points or lie on the boundary of
the interval [yt − ∆ηt; yt + ∆ηt] and their computation is
straightforward because ϕj is a univariate function. �

Thanks to the structure of Dss(n) highlighted by Property
1, problems (18)-(20) can be decomposed into the collection



of the following polynomial optimization problems:

γss(n)
i

= min
l=1,...,L

γss(n)
il

; γ
ss(n)
i = max

l=1,...,L
γ
ss(n)
il ; (22)

α
ss(n)
j = min

l=1,...,L
α
ss(n)
jl ; α

ss(n)
j = max

l=1,...,L
α
ss(n)
jl ; (23)

θ
ss(n)
k = min

l=1,...,L
θ
ss(n)
kl ; θ

ss(n)

k = max
l=1,...,L

θ
ss(n)

kl ; (24)

where

γss(n)
il

= min
γ,α,θ∈Dss(n)

l

γi; γ
ss(n)
il = max

γ,α,θ∈Dss(n)
l

γi; (25)

α
ss(n)
jl = min

γ,α,θ∈Dss(n)
l

αj ; α
ss(n)
jl = max

γ,α,θ∈Dss(n)
l

αj ; (26)

θ
ss(n)
kl = min

γ,α,θ∈Dss(n)
l

θk; θ
ss(n)

kl = max
γ,α,θ∈Dss(n)

l

θk. (27)

In fact, since Dss(n) can be expressed as the union of
semialgebraic sets Dss(n)

l , solving (18)-(20) over the feasible
region Dss(n) is equivalent to compute γ

ss(n)
il (γss(n)il ),

α
ss(n)
jl (αss(n)

jl ) and θ
ss(n)
kl (θ

ss(n)

kl ), respectively, over each
region Dss(n)

l for all l = 1, . . . , L; and then to compute
the minimum (maximum) over all γss(n)il (γss(n)il ), αss(n)

jl

(αss(n)
jl ) and θss(n)kl (θ

ss(n)

kl ).
Since the number of optimization variables involved in (25)-
(27), which equals the number of unknown system param-
eters, is significantly smaller than the number of variables
involved in (9)-(11), computation of relaxed solutions to
such polynomial problems by means of the LMI-relaxation
procedure proposed in [25] is computationally tractable. In
particular, for a given relaxation order δ, application of the
relaxation technique in [25] to problems (25)-(27) leads to
the convex SDP problems

γss(n,δ)

il
= min

p∈Dss(n,δ)
l

fi(p); γ
ss(n,δ)
il = max

p∈Dss(n,δ)
l

fi(p); (28)

θ
ss(n,δ)
kl = min

p∈Dss(n,δ)
l

gj(p); θ
ss(n,δ)
kl = max

p∈Dss(n,δ)
l

gj(p); (29)

θ
ss(n,δ)
kl = min

p∈Dss(n,δ)
l

hk(p); θ
ss(n,δ)
kl = max

p∈Dss(n,δ)
l

hk(p), (30)

where p is the decision variable vector of dimension(
nγ + nα + nθ + 2δ

2δ

)
. The objective functions fi(p),

gj(p) and hk(p) in (28)-(30) are linear in p and the feasible
region Dss(n,δ)

l is a convex set defined by an LMI of size(
nγ + nα + nθ + 2δ

2δ

)
and 2n(N − na) + 2 LMIs whose

maximum size is equal to
(

nγ + nα + nθ + δ − 1
δ − 1

)
. The

reader is referred to [25] for details on the relaxation of poly-
nomial optimization problems through SDP optimization.

Remark 3: The minimum allowed value δ of the LMI
relaxation order, so that (28)-(30) are well-defined, is⌈

ρ(Dss(n)
l )

2

⌉
, where ⌈·⌉ is the ceiling operator and ρ(Dss(n)

l )

denotes the maximum order of the polynomial constraints
defining Dss(n)

l . From Property 1 the maximum degree of

the polynomial constraints describing Dss(n)
l is equal to

n+ 1, therefore δ = ⌈n+1
2 ⌉. �

V. PROPERTIES OF COMPUTED PARAMETER
UNCERTAINTY INTERVALS

In this section the main features enjoyed by the computed
parameter bounds (28)-(30) are discussed.
For a given dynamic horizon n ≥ 1 and relaxation order
δ ≥ δ, let us define the δ-relaxed parameter uncertainty
intervals PUIss(n,δ)γi =

[
γss(n,δ)
i

; γ
ss(n,δ)
i

]
, PUIss(n,δ)αj =[

α
ss(n,δ)
j ; α

ss(n,δ)
j

]
, PUI

ss(n,δ)
θk

=
[
θ
ss(n,δ)
k ; θ

ss(n,δ)

k

]
,

where

γss(n,δ)

i
= min

l=1,...,L
γss(n,δ)

il
; γ

ss(n,δ)
i = max

l=1,...,L
γ
ss(n,δ)
il (31)

α
ss(n,δ)
j = min

l=1,...,L
α
ss(n,δ)
jl ; α

ss(n,δ)
j = max

l=1,...,L
α
ss(n,δ)
jl (32)

θ
ss(n,δ)
k = min

l=1,...,L
θ
ss(n,δ)
kl ; θ

ss(n,δ)
k = max

l=1,...,L
θ
ss(n,δ)
kl (33)

Then, for every dynamic horizon n ∈ [1, N − na] and
relaxation order δ ≥ δ =

⌈
n+1
2

⌉
, the intervals PUIss(n,δ)γi

enjoy the properties listed below. Similar results hold for
PUI

ss(n,δ)
αj and PUIss(n,δ)θk

.
Property 2: Guaranteed relaxed uncertainty intervals.

The interval PUIss(n,δ)γi is guaranteed to contain the true
nonlinear block parameter γi to be estimated, i.e. γi ∈
PUI

ss(n,δ)
γi . �

Property 3: Monotone convergence to parameter un-
certainty intervals PUIss(n)γi .
The parameter uncertainty interval PUI

ss(n,δ)
γi becomes

tighter as the relaxation order δ increases, that is
PUI

ss(n,δ+1)
γi ⊆ PUI

ss(n,δ)
γi . Furthermore, the computed

interval PUIss(n,δ)γi converges to PUIss(n)γi as the relaxation
order δ goes to infinity. �
It is worth remarking that, although the convergence
property in Property 3 is guaranteed as the relaxation order
goes to infinity, intervals PUIss(n)γi can be exactly obtained
in practice with a reasonably low relaxation order.

Property 4: Increasing accuracy in uncertainty
intervals evaluation
The parameter uncertainty interval PUI

ss(n,δ)
γi becomes

tighter as the dynamic horizon n increases, i.e.
PUI

ss(n+1,δ)
γi ⊆ PUI

ss(n,δ)
γi . �

VI. A SIMULATED EXAMPLE

In this section a simulated example is presented in order
to show the effectiveness of the proposed approach. The
input nonlinearity is modeled by the polynomial function
xt = N1(ut) = ut+0.4u2t −0.1u3t , the inverse of the output
nonlinearity is modeled by the function zt = N−1

2 (wt) =
wt+0.8w2

t +3.2w3
t , while the linear part is a strictly-proper

second order system with parameters θT = [a1 a2 b1 b2] =
[1.8 0.9 1.6 2.1]. The system is excited by an random input
sequence ut uniformly distributed in [−10, +10]. The output



data sequence is corrupted by random additive noises ηt,
uniformly distributed in the interval [−∆ηt, +∆ηt]. The
chosen error bounds ∆ηt are such that the signal to noise

ratio SNRw = 10 log
{ N∑

t=1

w2
t

/ N∑
t=1

η2t

}
is equal to 31 dB.

The length of the data sequence is N = 1000. Bounds on the
parameters are evaluated by solving problems (28)-(30) for
a relaxation order δ = 3. The software Gloptipoly [26] has
been used to convert identification problems (25)-(27) into
their corresponding LMI relaxed problems (28)-(30), which
are numerically solved by the SDP solver SeDuMi.
In order to show the increasing accuracy in the uncertainty
intervals evaluation as the dynamic horizon n grows, the
algorithm is performed for two different values of n, i.e. n =
2 and n = 3. Results on the evaluation of system parameters
are reported in Tables I, II and III, which show the obtained
parameter bounds, as well as the parameter uncertainties

∆γ
(n,δ)
i =

γ
ss(n,δ)
i −γss(n,δ)

i

2 , ∆α
(n,δ)
j =

α
ss(n,δ)
j −α

ss(n,δ)
j

2

and ∆θ
(n,δ)
k =

θ
ss(n,δ)
k −θ

ss(n,δ)
k

2 . The reported results show
that the true value of the parameters is always included in
the computed uncertainty intervals, as stated in Property 2.
Furthermore, as the dynamic horizon n grows, the accuracy
in the evaluation of the parameter uncertainty intervals
increases, as stated in Property 4. It is worth remarking
that the presented procedure provides satisfactory parameter
uncertainty intervals, both on the nonlinear blocks and on
the linear one, also for small values of dynamic horizon n.

TABLE I
INPUT NONLINEAR BLOCK N1 . PARAMETER BOUNDS (γss(n,δ)

i ,

γ
ss(n,δ)
i ) AND PARAMETER UNCERTAINTIES ∆γ

(n,δ)
i FOR RELAXATION

ORDER δ = 3 AND DYNAMIC HORIZON n = 2 AND n = 3.

n Parameter γss(n,δ)

i
True γ

ss(n,δ)
i ∆γ

(n,δ)
i

value
2 γ2 0.273 0.4 0.547 0.137

γ3 -0.234 -0.1 -0.043 0.095
3 γ2 0.313 0.4 0.476 0.082

γ3 -0.124 -0.1 -0.071 0.023

TABLE II
OUTPUT NONLINEAR FUNCTION N−1

2 (.). PARAMETER BOUNDS

(αss(n,δ)
j , αss(n,δ)

j ) AND PARAMETER UNCERTAINTIES ∆α
(n,δ)
j FOR

RELAXATION ORDER δ = 3 AND DYNAMIC HORIZON n = 2 AND n = 3.

n Parameter α
ss(n,δ)
j True α

ss(n,δ)
j ∆α

(n,δ)
jvalue

2 α2 0.523 0.8 1.147 0.312
α3 2.432 3.2 3.839 0.704

3 α2 0.664 0.8 0.931 0.133
α3 2.914 3.2 3.521 0.304

VII. CONCLUSION

A procedure for the evaluation of parameters bounds of
Hammerstein-Wiener systems in the presence of bounded
errors is presented in the paper. First, it is shown that system

TABLE III
LINEAR BLOCK L. PARAMETER BOUNDS (θss(n,δ)

k , θ
ss(n,δ)
k ) AND

PARAMETER UNCERTAINTIES ∆θ
(n,δ)
k FOR RELAXATION ORDER δ = 3

AND DYNAMIC HORIZON n = 2 AND n = 3.

n Parameter θ
ss(n,δ)
k True θ

ss(n,δ)
k ∆θ

(n,δ)
kvalue

2 a1 1.556 1.8 1.999 0.221
a2 0.695 0.9 0.999 0.152
b1 1.138 1.6 2.194 0.528
b2 1.572 2.1 2.718 0.595

3 a1 1.612 1.8 1.934 0.161
a2 0.785 0.9 0.968 0.092
b1 1.345 1.6 1.877 0.266
b2 1.875 2.1 2.331 0.228

parameters bounds can be computed by solving a set of non-
convex constrained polynomial optimization problems whose
size increases with the number of measurements. Due to the
large number of decision variables and the large order of the
polynomial constraints involved in the optimization prob-
lems, the LMI-based relaxation techniques for polynomial
problems available in literature lead to SDP problems which
are practically untractable. A relaxation procedure is then
proposed to significantly reduce the computational burden
of the proposed identification algorithm. The key idea of
the proposed approach is to consider a suitable outer bound
of the feasible parameter set whose description involves a
smaller number of decision variables in order to balance the
tradeoff between conservativeness and computational burden.
Such an outer bound is the union of a finite number of semi-
algebraic sets in the space of the unknown system parameters
to be estimated. As a consequence, parameters bounds can
be evaluated by solving suitable polynomial optimization
problems involving a smaller number of variables, i.e. only
the unknown parameters of the system. Then, LMI relaxation
techniques are used to approximate global optima of such
small size problems. The computed parameter uncertainty
intervals are guaranteed to contain the true Hammerstein-
Wiener system parameters to be estimated. The simulated
example shows that the presented identification can handle a
large number of measurements, providing quite satisfactory
parameters bounds.

REFERENCES
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