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Abstract. We propose a decentralised hierarchical multi-rate control
scheme for the control of large-scale systems with state and input con-
straints. The large-scale system is partitioned into sub-systems each one
of which is locally controlled by a stabilizing linear controller which does
not account for the prescribed constraints. A higher-level controller com-
mands reference signals at a lower uniform sampling frequency so as to
enforce linear constraints on the process variables. Worst-case subsystem
interactions are modeled and accounted for in a robust manner. By opti-
mally constraining the magnitude and rate of variation of the reference
signals to each lower-level controller we prove that closed-loop stability is
preserved and the fulfillment of the prescribed constraints is guaranteed.
We apply the proposed methodology for the decentralised control of a
quadraple-tank system, known as Johansson’s system and we compare
it to a centralised control approach.

1 Introduction

1.1 Motivation and Background

Large-scale systems (such as drinking water networks and power distribution
networks) call for control strategies based on the spatial and temporal decompo-
sition of the overall dynamics so as to leverage the high computational cost of a
centralised control approach [1, 2]. In large scale systems hierarchical control is
often the basis for a decentralised control scheme [3, 4] and various decentralised
and hierarchical control schemes have been proposed in the literature for which
Scattolini [5] provides a thorough review. An overview of the current architec-
tural trends in decentralised control for large-scale interconnected systems is
provided by Bakule [6].

Drinking Water Networks (DWNs) are large-scale systems whose operation
is liable to set of operating, safety and quality-of-service constraints. The opti-
mal management of DWNs is a complex task with outstanding socio-economic
and environmental implications and has received considerable attention by the
scientific community [7, 8]. One key reason for the use of decentralised control
schemes is the need to isolate certain parts of the network for maintenance pur-
poses without the need to re-model the overall system.

Recently, Sampathirao et al. [9] proposed a control framework for large-scale
DWNs where pumping actions are computed by minimising a cost index. Such
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approaches are in the spirit of economic MPC [10], and, despite the fact that
are proven to lead to improved closed-loop behaviour, may fail to guarantee the
satisfaction of state constraints in closed loop. The proposed methodology allows
the operator to command reference signals to the sub-systems of the network
according to some cost-optimisation strategy in such a way so as to satisfy the
constraints during controlled operation.

The use of reference governors has been recommended by various authors so
as to mitigate the computational burden of a centralised approach by separating
the constraint satisfaction problem from the stabilisation problem [11]. Recently,
Kalabić and Kolmanovsky [12] proposed a methodology for the design of refer-
ence governors for constrained large-scale linear systems. Two-layer hierarchical
control systems are considered in the majority of relevant publications (see [14]
and references therein).

Multirate control schemes are quite popular as they increase the flexibility
in the quest for the desired properties (stability, optimality, constraints satis-
faction) [13–15]. A multi-rate control approach is adopted in this paper with a
quantification of the effect that the ratio of the two sampling rates has on the
control of the system. We will show that the adoption of different reference rates
in the upper and the lower control layers offers great flexibility and enables us
to strike a balance between responsiveness to set-point changes and optimality.

In this paper we propose a hierarchical multi-rate decentralised control scheme
for the control of large-scale systems whose states and inputs are subject to lin-
ear constraints. The hierarchical scheme comprises two control layers: At the
lower one, a linear controller stabilises the open-loop process without consider-
ing the constraints. A higher-level controller commands reference signals at a
lower uniform sampling frequency so as to enforce linear constraints on the pro-
cess variables. We propose a methodology for large-scale dynamically coupled
linear systems which are partitioned into interconnected subsystems with state
and input constraints. Worst-case interactions between subsystems are modeled
and accounted for in a robust manner. By optimally constraining the magni-
tude and rate of variation of the reference signals to each lower-level controller,
quantitative criteria are provided for selecting the ratio between the sampling
rates of the upper and lower layers of control at each location, in a way that
closed-loop stability is preserved and the fulfillment of the prescribed constraints
is guaranteed. This paper builds on previous work by Barcelli et al. [16, 17] and
on the ideas presented in [18].

2 Multirate Decentralised Hierarchical Control

2.1 Notation

Let R,Rn,Rn×m,N,N[k1,k2],Sn+, Sn++ denote the sets of real numbers, the n-
dimensional vectors, the n-by-m real matrices, the set of natural numbers, the
natural numbers in the interval [k1, k2], the set of symmetric positive semi-
definite and the set of positive definite n-by-n matrices respectively. The infinity-
norm of x ∈ Rn is defined as ‖x‖∞,maxi∈N[1,n]

|xi|.
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Let A ∈ Rn×m, I ⊆ N[1,n] and J ⊆ N[1,m]; we denote by AIJ ∈ R|I|×|J |
the submatrix of A formed by the rows and columns of A whose indices are in I
and J respectively and |I| stands for the cardinality of the set I. For a vector
x ∈ Rn, xI denotes the vector of R|I| formed by the elements of x whose indices
are in I. We denote by (A)i the i-th row of A, while (x)i denotes the i-th element
of x. Finally, we denote by 1n the n-vector having all entries equal to 1.

2.2 Problem Formulation

The proposed setting comprises two control layers: the lower control layer (LCL)
and the upper control layer (UCL) which operate at different sampling frequen-
cies. The lower control layer comprises m independent controllers whose role
is the stabilisation of the open-loop dynamics of the controlled system without
taking into account the prescribed state and input constraints. The lower layer
controllers operate at a higher sampling frequency, namely 1/TL, and receive
reference signals from corresponding upper layer controllers which operate at

lower sampling frequencies 1/T
〈i〉
H , i∈N[1,m]. We define N 〈i〉 , T

〈i〉
H /TL to be the

ratio between sampling frequencies of UCL and LCL which are positive integers
refereed to as reference rates. To simplify the notation, the state variable of the
system (involving all sub-systems) at the LCL sampling instants is denoted by
xk for k ∈ N (referring to all sub-systems) and the state at the UCL sampling
instants is denote by xν , xνN for ν ∈ N.

Let xk, uk, yk respectively be the state, the input and the output of the lower
layer process in discrete time and the dynamics of the system be given by:

xk+1 = Āxk + B̄uk, (1a)

yk = C̄xk + D̄uk, (1b)

where xk ∈ Rnx , yk ∈ Rnr , uk ∈ Rnu and Ā, B̄, C̄ and D̄ are given matrices of
proper dimensions.

The feedback law defining the LCL is:

uk = Fxk + Erk, (2)

where rk ∈ Rnr stands as a reference signal to be decided by the Upper Layer
Controller (ULC).

The reference-to-output gain Θ ∈ Rnr×nr of (1) under feedback control
law (2), is:

Θ , ((C̄ + D̄F )(I − Ā− B̄F )−1B̄ + D̄)E. (3)

The closed-loop system (1) can be rewritten as

xk+1 = Axk +Brk, (4a)

yk = Cxk +Drk, (4b)

where A , Ā+ B̄F , B , B̄E, C , C̄ + D̄F and D , D̄E. Additionally, matrix
E must be chosen so that (A,B) is a controllable pair.
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Fig. 1. Two-layer (LCL and UCL) decentralised hierarchical control scheme over a
network of interconnected, dynamically coupled components. Upper-layer controllers
command reference signals to the lower-layer ones which are updated at a lower fre-
quency.

The sparsity pattern of Ā in (1) can be exploited so as to decompose (1) into
m subsystems which are as decoupled as possible; the components of the state
vector are rearranged so that Ā in the new coordinates is as close as possible to

a block-diagonal form [19]. Let I〈i〉x , I〈i〉u and I〈i〉r (i ∈ N[1,m]) denote the sets of

state, input and output indices that participate in the i-th subsystem and let n
〈i〉
x ,

n
〈i〉
u and n

〈i〉
r be their cardinalities respectively. These sets are not assumed to be

necessarily disjoint as some states and input may belong to multiple subsystems.

Assumption 1 The pair (Ā, B̄) is stabilisable and F is an asymptotically sta-
bilizing gain for (Ā, B̄) and E possess the following structure:

Fs,j = 0,∀s ∈ I〈i〉u , and j /∈ I〈i〉x ,∀i ∈ N[1,m], (5)

Es,j = 0,∀s ∈ I〈i〉u , and j /∈ I〈i〉r ,∀i ∈ N[1,m]. (6)

Under Assumption 1 the LCL can be decomposed into a set of local con-

trollers whereby the i-th controller produces the control action u〈i〉 ∈ Rn〈i〉u
using state measurements only from the i-th subsystem according to:

u
〈i〉
k = F 〈i〉x

〈i〉
k + E〈i〉r

〈i〉
k , (7)

where F 〈i〉 , FI〈i〉u I〈i〉x
and E〈i〉 , EI〈i〉u I〈i〉r

and x
〈i〉
k , xI〈i〉x

, u
〈i〉
k , uI〈i〉u

and

r
〈i〉
k , rI〈i〉r

for i ∈ N[1,m].
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The dynamics of the different subsystems are described by the set of differ-
ence equations:

Σ〈i〉 : x
〈i〉
k+1 = A〈i〉x

〈i〉
k +B〈i〉r

〈i〉
k + d

〈i〉
k , (8)

where A〈i〉 , AI〈i〉x I〈i〉x
, B〈i〉 , BI〈i〉x I〈i〉r

and d
〈i〉
k is a disturbance term to com-

pensate for the unmodeled dynamics due to neglected state couplings between
the subsystem Σ〈i〉 and its neighbours. The gains F 〈i〉 are chosen so that the
subsystems Σ〈i〉 are open-loop stable (with rk ≡ 0 and dk ≡ 0).

Assumption 2 In addition to Assumption 1, for every i ∈ N[1,m] the feedback

gain F 〈i〉 stabilises subsystem Σ〈i〉.

Various methodologies have been proposed for the computation of such sparse
stabilizing gains [20, 21].

Let us define J 〈i〉x ,N[1,nx]\I
〈i〉
x , and J 〈i〉r ,N[1,nr]\I

〈i〉
r . The vectors x̃〈i〉,xJ 〈i〉x

and r̃〈i〉,rJ 〈i〉r will be referred to as neglected states and references. The pair

(Ã〈i〉, B̃〈i〉) with Ã〈i〉 , AI〈i〉x J 〈i〉x
and B̃〈i〉 , BI〈i〉x J 〈i〉r

will be used to describe

the effect of the neglected states and references on the system Σ〈i〉.
Then the UCL comprises m subcontrollers which produce the reference sig-

nals r
〈i〉
k so as to keep the state x〈i〉 and the reference r〈i〉 inside the polytope:

Z〈i〉,{[ xr ]∈Rn
〈i〉
x +n〈i〉r : H〈i〉x x+H〈i〉r r≤K〈i〉}, (9)

where H
〈i〉
x ∈ Rqi×n〈i〉x , H

〈i〉
r ∈ Rqi×n〈i〉r , and K〈i〉 ∈ Rqi . The overall set of

constraints is then defined as Z,{[ xr ]∈Rnx+nr : (x〈i〉, r〈i〉) ∈ Z〈i〉,∀i ∈ N[1,m]}.
Let A

〈i〉
0 ∈Rn

〈i〉
x ×nx be the matrix obtained by collecting the rows of A with

indices in I〈i〉x and setting to zero the elements in the columns I〈i〉x . Similarly,

we construct B
〈i〉
0 ∈Rn

〈i〉
x ×nr by collecting from B the rows indexed by I〈i〉x and

then zeroing the columns whose index is in I〈i〉r . Then, it holds that:

x
〈i〉
k+1 = A〈i〉x

〈i〉
k +B〈i〉r

〈i〉
k +A

〈i〉
0 xk +B

〈i〉
0 rk. (10)

Additionally, let us define the set Z , {(x, r) : (x〈i〉, r〈i〉) ∈ Z〈i〉,∀i ∈ N[1,m]},
which is a polytope and can be written in the form Z = {(x, r) : Hxx+Hrr ≤
K}. Let the reference vector r〈i〉 be constrained in the set:

R〈i〉,{r〈i〉∈Rn
〈i〉
r :(H〈i〉x G〈i〉+H〈i〉r )r〈i〉≤K〈i〉−∆K〈i〉},

where G〈i〉 , (I − A〈i〉)−1B〈i〉 is the reference-to-state static gain for Σ〈i〉 and

∆K〈i〉 ≥ 0. We assume that the reference signals r
〈i〉
k retain the tracking error

∆x
〈i〉
k , x

〈i〉
k −G〈i〉r

〈i〉
k in the set:

E〈i〉 = {∆x〈i〉 ∈ Rn
〈i〉
x : H〈i〉x ∆x〈i〉 ≤ ∆K〈i〉}. (11)



6 A.K. Sampathirao et al.

Notice that ∆x
〈i〉
k ∈ E〈i〉 if and only if (x

〈i〉
k , r

〈i〉
k ) ∈ Ẽ〈i〉 where:

Ẽ〈i〉 , {
[
x〈i〉

r〈i〉

]
∈ Rn

〈i〉
x +n〈i〉r : x〈i〉 −G〈i〉r〈i〉 ∈ E〈i〉}. (12)

If we set z〈i〉 , G〈i〉r〈i〉 = A〈i〉z〈i〉 + B〈i〉r〈i〉, then the dynamics of Σ〈i〉 can be
described in terms of ∆x〈i〉 = x〈i〉 − z〈i〉 as follows:

∆x
〈i〉
k+1 = A〈i〉∆x

〈i〉
k + d

〈i〉
k , (13)

where, under the assumptions that (x
〈i〉
k , r

〈i〉
k ) ∈ Z〈i〉 and ∆x

〈i〉
k ∈ E〈i〉 for all

k ∈ N and i ∈ N[1,m], the disturbance d
〈i〉
k is drawn from the polytope:

D〈i〉=

{
d〈i〉∈Rn

〈i〉
x

∣∣∣∣∣∃r ∈ Rnr ,∃x ∈ Rnx , s.t.:d〈i〉 = A
〈i〉
0 x+B

〈i〉
0 r,

and ∀j ∈ N[1,m] : (x〈j〉, r〈j〉) ∈ Z〈j〉 ∩ Ẽ〈j〉

}
. (14)

The size of this polytope determines how strongly the i-th subsystem is dynam-
ically coupled with its neighbours.

Let Ω〈i〉(0) be the maximal robustly positive invariant set for (13) under the

constraints ∆x〈i〉 ∈ E〈i〉 and for d
〈i〉
k ∈ D〈i〉 for all k ∈ N. Let Ω〈i〉(0) have the

minimal representation Ω〈i〉(0)={x∈Rn〈i〉x :H
〈i〉
0 x≤K〈i〉0 }, counting n

〈i〉
0 inequali-

ties. Under Assumption 2 this set exists and is a finitely generated polytope.

The complexity of the computation of a maximal RPI set for the overall large-
scale system can prove preventive even for offline computations. Note, however,
that the computation of the maximal RPI sets is done in a decentralised fashion.

For r ∈ R〈i〉 we define the sets Ω〈i〉(r) , {x ∈ Rn〈i〉x : x−G〈i〉r ∈ Ω〈i〉(0)}.
The following theorem is the main result of this section and provides an

invariance result for hierarchical multi-rate control systems.

Theorem 1 For all i ∈ N[1,m] let x
〈i〉
0 ∈ Ω〈i〉(r〈i〉) and assume that r

〈i〉
k =r〈i〉∈R〈i〉

for all k ∈ N. Then (x
〈i〉
k , r

〈i〉
k ) ∈ Z〈i〉 for all k ∈ N and i ∈ N[1,m].

2.3 Computation of Maximum Reference Variations

Assume that a set of fixed reference rates N 〈i〉 for i ∈ N[1,m] is given. In this
section we will compute upper bounds on the element-wise variations of the

reference rates r〈i〉 so that (x
〈i〉
k , r

〈i〉
k ) satisfies the prescribed constraints (9).

For every subsystem i ∈ N[1,m] we formulate the problem of determining the
minimum element-wise change in the reference signal that may lead the initial

state x
〈i〉
νN outside Ω〈i〉(r〈i〉,ν); the problem is stated as follows:

P〈i〉N : ρ〈i〉(N) , min
r1,r2,x0,d0,...,dN−1

‖r1 − r2‖∞, (15a)
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subject to:

r1, r2 ∈ R〈i〉, (15b)

x0 ∈ Ω〈i〉(r1), (15c)

d
〈i〉
j ∈ D

〈i〉,∀j ∈ N[0,N−1], (15d)

(A〈i〉)Nx0+Γ
〈i〉
N r2+

N−1∑
j=0

(A〈i〉)N−j−1d
〈i〉
j /∈Ω〈i〉(r2), (15e)

where Γ
〈i〉
N ,

∑N−1
j=0 (A〈i〉)jB〈i〉. The above optimisation problem can be formu-

lated as a MILP.
The value function of (15a) enjoys a very useful property: it is non-decreasing

with respect to N . If PN is infeasible for some N , this implies that for all
rν−1, rν ∈ R it is xν+1 ∈ Ω(rν) whenever xν ∈ Ω(rν−1). In this case we set
ρ(N) =∞.

The following theorem states the conditions under which the constraints are
satisfied in closed-loop. Note that, except for the last consequence of the theorem,
no convergence of the system’s trajectories to some constant value is assumed or
required. This suggests that a purely cost-driven approach can be applied where
the system’s trajectories move in an oscillatory manner leading to an econom-
ically profitable performance determined by the optimisation of a performance
criterion in a receding horizon fashion [9, 10].

Theorem 2 Let F be a (decentralised) asymptotically stabilizing gain satisfying
Assumption 2. Assume that for every subsystem i ∈ N[1,m] there is a σ〈i〉 > 0

so that the references r〈i〉,ν produced by the upper-layer controllers satisfy the
following rate constraint at all time instants ν ∈ N:

‖r〈i〉,ν − r〈i〉,ν−1‖∞ ≤ ρ〈i〉(N 〈i〉)− σ〈i〉, (16a)

r〈i〉,ν−1, r〈i〉,ν ∈ R〈i〉. (16b)

Let x
〈i〉
0 ∈ Ω〈i〉(r−1,〈i〉) for all i ∈ N[1,m]. Then the linear system (1) with the

feedback control law (2) satisfies the the constraints [ xkrk ] ∈ Z for all k ∈ N.
Additionally, if limk→∞ rk = r with r ∈ R, then limk→∞ xk = Gr.

The UCL control action can be computed by a model predictive control strat-
egy where any optimality criterion can be used so long as the constraints (16)
are satisfied.

3 Control of a System of Interconnected Tanks

3.1 System dynamics and decomposition

The proposed methodology is tested on Johansson’s quadruple-tank process [22]
where the control objective is to track given (possibly time-varying, piece-wise
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constant) references s1 and s2 for the levels of tanks 1 and 2, namely h1 and h2,
as in Fig. 2 by manipulating the inflows qa and qb. Constraints are imposed on
the maximum flow that can be achieved by each pump and on the upper and
lower allowed levels of water in the tanks.

Fig. 2. Johansson’s quadruple-tank process where the two sub-systems are denoted
with different colours.

The system is subject to state and input constraints and its dynamics is
described in [23] by the system of continuous-time nonlinear equations

S1
dh1
dt

= −a1
√

2gh1 + a3
√

2gh3 + γaqa, (17a)

S2
dh2
dt

= −a2
√

2gh2 + a4
√

2gh4 + γbqb, (17b)

S3
dh3
dt

= −a3
√

2gh3 + (1− γb)qb, (17c)

S3
dh4
dt

= −a4
√

2gh4 + (1− γa)qa. (17d)

The maximum allowed level for tanks 1 and 2 is set to 1.36 m and for tanks 3
and 4 to 1.30 m. The minimum allowed level in all tanks is 0.2 m. The maximum
flows are qa,max = 3.26 m3/h and qb,max = 4 m3/h; no negative flows are possible.
The values of the other parameters of the system are a1 = 1.31 · 10−4 m2, a2 =
1.51 ·10−4 m2, a3 = 9.27 ·10−5 m2, a4 = 8.82 ·10−5 m2, S1 = S2 = 0.06 m2, S3 =
S4 = 0.20 m2, and γa = γb = 0.5. The nonlinear system is linearised about the
steady state u0 = (2.6, 2.6)′ m3/h and x0 = (0.6545, 0.4926, 0.7852, 0.8583)′ m
and discretised with sampling period Ts = 10s. We define the discrete-time state
vector xk = (h1,k, h2,k, h3,k, h4,k)′ which comprises the levels of the four tanks,
the discrete-time input vector uk = (qa,k, qb,k)′ of manipulated variables which
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are the two flows, and the discrete output yk = xk. The linearised discrete-time
system is written in the form of (1).

3.2 Centralised versus decentralised control

We consider that the lower control layer operates at sampling time Ts = 10s.

The overall system is partitioned into two subsystems with I〈1〉x = {1, 4}, I〈2〉x =

{2, 3} and I〈1〉u = {1}, I〈2〉u = {2}. The system is controlled by means of the
proposed decentralised hierarchical control methodology which is compared to
its centralised hierarchical variant. Reference commands from the upper layer
controller are computed so that they minimise a quadratic cost function. In
particular, the UCL for subsystem 1 solves the following minimisation problem
at the UCL sampling time instant ν:

J〈1〉?(xν) = min
{rν+j1 }N−1

j=0

N−1∑
k=0

(hν+k1 −s1)2 + λ(rν+ka −rsa)2, (18)

subject to the (linearised) system dynamics, measurements from the system, the
requirement rν+k ∈ R for all k = 0, . . . , N −1, and the bounds on the maximum
reference variation that accrue from Theorem 2. In what follows, the weight λ
is fixed to 0.01. Then, the solution of problem 18 yields an optimal sequence of
references {rν+k,?1 }N−1k=0 , the first one of which – namely rν,?1 is applied to the
corresponding controlled LCL system in a receding horizon fashion. The UCL
controller for sub-system 2 works in an analogous fashion where the minimisation
problem becomes J〈2〉?(xν) = min{rν+j2 }N−1

j=0

∑N−1
k=0 (hν+k2 −s2)2 + λ(rν+kb −rsb)2,

subject to the corresponding constraints. According to Theorem 2 the closed-
loop system will satisfy the prescribed constraints.

For the decentralised control case, the dependence of the maximum reference
change ρ〈i〉 on N is presented in Figure 3. The reference rate N = 40 was selected
for which ρ〈1〉(N) = 0.0034 and ρ〈2〉(N) = 0.0063 for the decentralised control
system and ρ(N) = 0.0035 for the centralised control approach. The maximum
reference variation ρ〈i〉(N) for the two subsystems is presented in Figure 3. Notice
that for N ≥ N? = 42, it is ρ〈2〉(N) =∞. Vectors ∆K〈i〉 in (11) were chosen to
be ∆K〈i〉 = cK〈i〉, with c = 0.5.

The controlled trajectories of the tank levels are presented in Figures 4 to 5.
The tank levels h1 and h2 are steered towards four different set-points and the
set-point values are kept constant for 5.55h. In order to quantify the performance
of the three controllers, we use the following index introduced by Alvarado et
al. [23] for the same system:

J =

Ns−1∑
k=0

(h1,k−s1,k)2+(h2,k−s2,k)2 + κ((qa,k−qsa,k)2 + (qb,k−qsb,k)2), (19)

where κ = 0.01 and qsa,k and qsb,k are the steady-state values of the input variables
that correspond to the set-point defined by s1 and s2, and Ns = 8000 (22h) is
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Fig. 3. The functions ρ〈i〉(N) and q〈i〉(N) , ρ〈i〉(N)/N for the two subsystems.

Controller τs,1 (h) τs,2 (h) J

DHMPC 0.1674 0.1500 0.1495
CHMPC 0.1146 0.1458 0.1516

Table 1. Performance of a decentralised and a centralised controller for Johansson’s
system.

the simulation horizon. The values of the performance index J are presented in
Table 1.

The maximal robust positive invariant sets Ω〈i〉(0), i ∈ {1, 2} for the decen-
tralised control case were computed offline in 1.97s and 2.19s and their minimal
representations involved 5 and 4 inequalities respectively. The maximal posi-
tive invariant set Ω(0) for the centralised control system was computed in 0.60s
and its minimal representation comprised 12 linear inequalities. The associated

MILPs P〈i〉N as in (15) were solved offline in 2.12s for subsystem 1 and 2.27s for
subsystem 2 on average. The corresponding centralised computation required
6.33s on average. All reported computation times were measured in MATLAB
2013a running on a Mac OS X machine, 2.66GHz Intel Core 2 Duo, 4GB RAM.
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