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Abstract— We propose a model predictive control (MPC)
approach for the operation of islanded microgrids that takes
into account the stochasticity of wind and load forecasts. In
comparison to worst case approaches, the probability distri-
bution of the prediction is used to optimize the operation of
the microgrid, leading to less conservative solutions. Suitable
models for time series forecast are derived and employed to
create scenarios. These scenarios and the system measurements
are used as inputs for a stochastic MPC, wherein a mixed-
integer problem is solved to derive the optimal controls. In the
provided case study, the stochastic MPC yields an increase of
wind power generation and decrease of conventional generation.

I. INTRODUCTION

Worldwide, decentralized renewable energy production is
growing [1]. The power infeed of many of these distributed
sources fluctuates, depending on weather conditions. One
way to cope with the changed, distributed power generation
and the increasing fluctuations over a large network is to
partition the grid into small electrical networks, called mi-
crogrids (MGs) [2]. To increase the reliability of supply, MGs
can be operated in an electrically isolated (islanded) mode,
for example, if problems within the transmission network
occur [3]. Electrical networks that are always operated in
isolated mode due to geographical reasons, e.g., on islands
or in rural areas also fit into the class of islanded MGs. In this
operation mode, generation, storage and consumption must
be balanced locally. Especially in MGs with increased share
of intermittent renewable energy sources (RES), providing
optimal power setpoints for the units while considering local
power balance as well as power and energy constraints is
challenging due to high uncertainty of RES infeed.

A natural approach to cope with the uncertainty is to
employ forecasts. For load, many solutions based on time-
series analysis exist. An overview of five short-term load
forecast techniques is given in [4]. Further, in [5] an expert
system that connects weather and load for a 24 h ahead
forecast is proposed. For the short-term prediction of wind
time-series also various models were presented, e.g., in [6].
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For the operation control of MGs various MPC approaches
that employ forecasts have been proposed. The main reason
for MPC is the flexibility to incorporate forecasts, and the
state of charge of storage devices, as well as the availability
of all units. In [7] a two stage stochastic optimization
approach for the operation of grid-connected MGs was
proposed. A scenario-based approach for grid-connected
MGs can be found in [8]. For islanded MGs, in [9] a
scheme that uses a robust forecast interval for load, and RES
and allows limiting RES infeed was proposed. To decrease
conservativeness, [10] extended the approach by considering
the dependence of the controls on the predicted states.

The approaches pursued by [7], [8] both suffer of the fact
that they are only applicable to grid-connected MGs where
the transmission network acts as a slack node. Further, they
do not allow to capture the fact that RES could be limited. In
contrast, [9], [10] propose schemes for islanded MGs that use
the forecast intervals of load and RES and allow a limitation
of RES infeed. Even though in [10] the run time costs could
be decreased, the approach still leads to conservative results
as the forecast probability distribution is not considered.

Combining ideas from time-series based forecasting [11],
scenario reduction [12], stochastic optimization [13], and
the MG model from [9], our contribution is a scenario-
based stochastic MPC for islanded MGs. Taking into account
the stochasticity of RES and load forecasts, we provide a
solution that reduces the conservativeness of [10].

The remainder of the paper is structured as follows.
Moving along the blocks in Fig. 1, in Section II we introduce
models used for wind and load forecasts. In Section III,
scenario reduction is discussed and in Section IV a scenario-
based stochastic MPC approach is described. The numerical
case study in Section V then compares the new scheme with
the approach from [10] and a reference with perfect forecast.

A. Notation

We define the set R0+ = {x ∈ R|x ≥ 0}. The set of
natural numbers N in the closed interval [k1, k2] is denoted
by N[k1,k2] and the set of Boolean variables by B = {0, 1}.
Let diag(a1, . . . , an) be the diagonal matrix of size n × n
and diagonal entries ai, i = 1, . . . , n. Further, 0nm is the
n×m matrix of all zeros, 1nm the n×m matrix of all ones
and In the n×n identity matrix. Accordingly, the n×1 zero
vector is 0n1 and the n× 1 vector of ones 1n1.

Backshift notation: For a given time-series of data
w1, w2, . . . the backshift operator B with (Bw)k = wk−1

for k ∈ N[2,∞] is used to refer to past values. For j ≥ 2,
Bj = BBj−1 and hence (Bjw)k = wk−j .
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Fig. 1. Forecast with scenario reduction, scenario-based stochastic MPC (SMPC) and MG.

II. FORECAST

SARIMA model: As indicated by [11], seasonal autoregres-
sive integrated moving average SARIMA(p, d, q, s, P,Q)
models, with p, d, q, s, P,Q ∈ N ∪ {0} have the form
(φ(B)Φ(B)(1−B)d(1−Bs)w)k = c+(θ(B)Θ(B)e)k, (1)

where ek = wk − ŵk is the model error between wk from
the training set and the forecast value ŵk. The polynomial
φ(B) = (1−φ1B

1− . . .−φpB
p), φ1, . . . , φp ∈ R represents

the autoregressive and Φ(B) = (1−Φ1B
1 − . . .−ΦPB

P ),
Φ1, . . . ,ΦP ∈ R the seasonal autoregressive part. In (1),
(1 − B)d stands for an integrator, (1 − Bs) for seasonality
and c for trend. Further, θ(B) = (1 + θ1B

1 + . . . + θqB
q),

θ1, . . . , θq ∈ R, is the moving average part and Θ(B) =
(1 + Θ1B

1 + . . . + ΘQB
Q), Θ1, . . . ,ΘQ ∈ R the seasonal

moving average part of the model.
To reduce the complexity and derive a model whose

parameters have high statistical significance (indicated by
the t-statistic), it can be useful to exclude several lags
by setting some coefficients of φ(B), Φ(B), θ(B) and
Θ(B) to zero if they have minor influence and then re-
train the model [11]. The model is then referred to as
SARIMA(χp, d, χq, s, χP , χQ), where χp ⊆ N[1,p] is the
set of indices of coefficients φi, that are not forced to zero
and p ∈ χp. The same holds for χq ⊆ N[1,q] with q ∈ χq ,
χP ⊆ N[1,P ] with P ∈ χP and χQ ⊆ N[1,Q] with Q ∈ χQ.
SARIMA models without seasonality and P = Q = 0 will
be denoted by ARIMA(χp, d, χq).

A. Wind forecast

Motivated by [6] and [11], for wind speed forecasting a
ARIMA model was chosen. The parameters were selected,
using the Akaike information criterion (AIC) [11] to evaluate
the quality of different models, trained with a dataset of
5000 samples of 30 min mean values from the Azores Island
Graciosa, provided by [14]. For the given data, the minimum
AIC was found for an ARIMA(χp, 0, χq) model with χp =
{1, 3, . . . , 7, 9} and χq = {1, . . . , 4}. The Ljung-Box test
[11] for uncorrelatedness of residuals ek passed with p-value
0.65 . Hence, the proposed model is of adequate complexity.
The normality assumption of the residuals of the model
could not be confirmed by the Kolmogorov–Smirnov test
[11], which failed at the 5 % significance level. Therefore,
subsequently Monte Carlo (MC) simulations are used to
estimate the forecast probability distribution.

For each MC simulation, random residuals from the train-
ing dataset are drawn and added to the forecast. This way,
for a high number of simulations, the forecast distribution

comes close to the residuals observed in the training. Hence,
the forecast probabilities can be expressed without the need
to assume normality of the errors. This leads to a purely
data-driven setting where no assumptions on the probability
density function of the uncertainty need to be imposed.

Forecast evaluation: To test the forecast performance,
the trained ARIMA(χp, 0, χq) model was used to perform
1000 predictions over a horizon J = 24, i.e., 12 h. From the
wind speed forecast v̂k+j|k, j = 0, . . . , J , the wind power
ŵk+j|k predicted at time k for k + j was calculated with

ŵk+j|k(v̂k+j|k) =


v̂3
k+j|k
123 if v̂k+j|k ∈ [2.5m/s, 12m/s),

1 if v̂k+j|k ∈ [12m/s, 25m/s),
0 else,

motivated by [15]. The saturation for values less than 2.5 m/s
is an economical optimization by the wind turbine manufac-
turers. Further, if the nominal power is reached at 12 m/s the
maximum infeed, i.e., 1 pu is reached. If the wind-speed is
above 25 m/s, wind turbines are turned off for security reasons.

The results of the forecast ŵk+j|k (see Fig. 2 left) were
then compared with the test set values wk+j . To assess the
forecast quality, the prediction root mean squared error

PRMSEJ(k) =
√

1
J

∑J
j=1(wk+j − ŵk+j|k)2

was calculated for 103 predictions with horizon J = 24
and the probability distribution of all PRMSEJ was used.
The error distribution of all forecasts performed with the
ARIMA(χd, 0, χq) model is shown in Fig. 3. As reference
a ARIMA(2, 0, 0) model, as proposed by [6], as well as
a naïve forecast with ŵk+j|k = wk were chosen. With
mean PRMSE24 = 0.035 pu, (standard deviation: 0.040 pu),
the mean PRMSE24 of the ARIMA(χd, 0, χq) model is
about 13 % smaller and the standard deviation about 22 %
less than with the naïve method. The ARIMA(2, 0, 0) with
mean PRMSE24 = 0.037 pu, (standard deviation: 0.040 pu)
lies between the other two approaches. Still, the higher
forecast quality of the ARIMA(χd, 0, χq) approach justifies
the additional computational effort.

B. Load forecast
Because of the highly seasonal nature of electric load a

SARIMA model was chosen. The parameters of the model
were selected using the AIC with training data set of one
year of 30 min instantaneous load power values. A minimum
AIC was found for a SARIMA(χp, d, χq, s, χP , χQ) model
with χp = {1, . . . , 15}, d = 1, χq = {1, . . . , 15}, s =
7 · 48, χP = {48}, χQ = {48, 7 · 48}. The coefficients of
the model were identified at a high statistical significance,
quantified by the t-statistic. The Ljung-Box test passed with



Fig. 2. Wind forecast with ARIMA(χp, 0, χq) and load prediction with
SARIMA(χp, d, χq , s, χP , χQ) model over a horizon of 12 h. The sce-
nario fan was generated using MC simulations with 500 seeds. The scenario
tree was determined using a branching factor b = (8, 2, 2, 1, . . . , 1).

p-value 0.82 indicating an adequate complexity of the model.
Further, the normality of the residuals could not be confirmed
by the Kolmogorov–Smirnov test which failed at the 5 %
significance level. Therefore, MC simulations with residuals
from the load model fit were used to produce the forecast
probability distribution.

Forecast evaluation: As test set, 73 days of 30 min instan-
taneous values were used to assess the quality of 3504 fore-
casts with horizon J = 24. One SARIMA forecast is shown
in Fig. 2. Simple seasonal naïve forecast ŵk+j|k = wk+j−s,
with seasonality of one week (s = 7 · 48), and one day (s =
48) were used as reference. The seasonal naïve forecast with
s = 7 · 48 leads to a mean PRMSE24 = 0.050 pu, (standard
deviation: 0.019 pu) which is better than the seasonal naïve
forecast with s = 48. The best results could be achieved
with the SARIMA model, where the mean PRMSE24 =
0.041 pu is about 23 % less and standard deviation 0.015 pu
about 25 % lower than with the seasonal naïve method for
s = 7 · 48. Thus, the increased computational effort of the
SARIMA model pays off.

The fact, that the residuals of both forecasts did not pass
the Kolmogorov–Smirnov test for normality (see Fig. 3)
motivated us to use a scenario-based approach. In this
approach, the forecast distribution is derived through MC
simulations with random residuals from the model fit.

III. SCENARIO REDUCTION

Branches of forecast scenarios (scenario fans) were cre-
ated in Section II. To obtain a good representation of
the probability distribution, a big number of scenarios is
desirable. In contrast, for the MPC in Section IV a small
number of scenarios is wanted, to keep the computing effort
manageable. To comply with both needs, a scenario fan with
a high number of MC forecasts is generated and then reduced
to a scenario tree wherein scenarios are not equiprobable.

A way to create scenario trees is the forward selection al-
gorithm introduced in [12]. Roughly speaking, neighbouring
scenarios are clustered together to form a tree-like structure,
known as a scenario tree, which naturally imposes time-
causality to this representation of uncertainty. The algorithm
offers a computationally tractable way to obtain a scenario
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Fig. 3. Error distribution of all SARIMA(χp, d, χq , s, χP , χQ) load and
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tree whose distance (in the Wasserstein-Kantorovitch sense)
from the original probability distribution, described by the
fan, is approximately minimized [12]. In Fig. 2 the scenario
fans with the corresponding trees are shown on the right.

The node of a probability tree at time k|k is called root
and those at stage k+J |k the leaves. Scenarios are sequences
of admissible wind power and load values spanning from the
root node to the leaves. The number of nodes at k + j|k is
denoted by ν(k+ j|k) for all j = 0, . . . , J and the set of all
nodes by S. Non-leaf nodes have a set of children; we denote
the set of child nodes of the l-th node at stage k + j|k by
ch(l, k+j|k) ⊆ N[1,ν(k+j+1|k)]. The probability to visit node
l at k + j|k starting from the root node is p

(l)
k+j|k. Clearly,∑ν(k+j|k)

l=1 p
(l)
k+j|k = 1, and

∑
m∈ch(l,k+j|k) p

(m)
k+j+1|k =

p
(l)
k+j|k. The control actions δ

(l)
k+j|k and u

(l)
k+j|k at k + j|k

for node l are causal control strategies and depend on the
systems state at k+j|k and the scenario tree running through
that node.

Naturally, forecasts in the near future are more accurate
than long term predictions. Therefore, using a tree with
less nodes in the beginning is advantageous. To obtain this
behaviour the branching factor b = (b1, b2, . . . , bJ), that
determines the maximum number of children per stage, can
be used. Note that due to the non-linear relation in wind
speed and power, the scenario tree is generated at every time
the optimization problem is solved.

IV. STOCHASTIC MPC

In this section, a SMPC approach is presented to find the
optimal control inputs for islanded MGs w.r.t. the scenario
trees obtained beforehand. We start with some assumptions.

A. Assumptions

Subsequently, we assume that a) DC power flow can
be used; the storage units’ self discharge and conversion
losses are negligible and that the error introduced by this
simplification is small compared to the uncertainty that
comes from the load and the RES; b) thermal and storage
units can form the grid and run as parallel voltage sources,
providing voltage and frequency; if they run in parallel, they
share the deviations (driving them away from their power
setpoint) that are caused by load and RES, in a decentralized
manner, e.g., through droop control as in [16]; this power
sharing is assumed to be instantaneous; c) the non-negligible
time constants of the storage dynamics that describe the
charging and discharging are in the range of several minutes;



TABLE I
EFFECTIVE DISTURBANCE FOR DIFFERENT SETPOINTS

Case a) b) c)

w̄
(1)
i,k+j|k 0 w̃

(1)
i,k+j|k − u

(1)
i,k+j|k w̃

(1)
i,k+j|k − u

(1)
i,k+j|k

w̄
(2)
i,k+j|k 0 0 w̃

(2)
i,k+j|k − u

(1)
i,k+j|k

thus, repeating the control action at the same time scale is
sufficient.

B. Microgrid model
We use the MG model introduced by [9]. Hence, we work

in a discrete-time framework with a sampling interval ts.
The observable state vector xk represents the energy that
the storage units contain at time kts. The real valued input
uk = (uT

T,k, u
T
S,k, u

T
R,k)

T ∈ Rv with uT,k ∈ Rt, uS,k ∈ Rs

and uR,k ∈ Rr depict the power set points for the thermal,
storage and RES units, respectively with v = t + s + r.
Similarly, the Boolean input δk = (δTT,k, δ

T
S,k, δ

T
R,k)

T ∈
Bv with δT,k ∈ Bt, δS,k ∈ Bs and δR,k ∈ Br indicates
which thermal, storage and RES units are connected to
the islanded MG. The input variables share the dependency
δi,k = 0 ⇒ ui,k = 0 for i ∈ N[1,t+s+r]. The disturbances are
wk = (wT

D,k, w
T
R,k)

T , where wD,k ∈ Rd denotes the error
introduced by the load and wR,k ∈ Rr the disturbances
coming from the RES.

C. Disturbance modelling
The disturbances from load and RES are of different

nature. The predicted infeed ū
(m)
i,k+j|k of RES unit i is limited

by the set point u(l)
i,k+j|k for m ∈ ch(l, k+ j|k). In this case,

the predicted effective disturbance w̄
(m)
i,k+j|k is the difference

between the limit u(l)
i,k+j|k and the predicted infeed ū

(m)
i,k+j|k.

Naturally, if the predicted RES power w̃(m)
i,k+j|k is above the

limit u(l)
i,k+j|k, the effective disturbance is zero as the power

infeed equals the limitation. This can be described by

w̄
(l)
i,k+j|k = min(0, w̃

(m)
i,k+j|k − u

(l)
i,k+j|k). (2a)

If there are, for instance, two disturbances w̃
(1)
i,k+j|k,

w̃
(2)
i,k+j|k and the predicted setpoint of the machines is

u
(1)
i,k+j|k then the effective disturbances w̄

(1)
i,k+j|k, w̄

(2)
i,k+j|k

change as indicated by Table I: a) if the power limit of the
RES unit u(1)

i,k+j|k is below both w̃
(1)
i,k+j|k and w̃

(2)
i,k+j|k, then

the predicted effective disturbances are zero as the infeed
in both scenarios can be guaranteed and equals u

(1)
i,k+j|k;

b) if u
(1)
i,k+j|k is between the two scenarios, the effective

disturbance is w̄
(1)
i,k+j|k ≤ 0, as the unit’s predicted infeed is

below u
(1)
i,k+j|k and as w̃(2)

i,k+j|k is above u
(1)
i,k+j|k, w̄(2)

i,k+j|k is

zero; and c) if both w̃
(1)
i,k+j|k and w̃

(2)
i,k+j|k are below u

(1)
i,k+j|k,

both predicted effective disturbances equal the difference
between setpoint and forecast.

In contrast, the predicted load power cannot be influenced
by any input. Therefore,

w̄
(l)
D,k+j|k = w̃

(l)
D,k+j|k. (2b)

D. Power and power sharing

In islanded mode, to ensure the local power balance, the
grid-forming units adapt their power output ū

(m)
k+j|k with

respect to the disturbances w̄
(m)
k+j|k. Therefore, the predicted

power of the units is composed of the setpoint u(l)
k+j|k and a

share of the disturbances (H
(l)
k+j|kw̄

(m)
k+j|k) as follows.

ū
(m)
k+j|k = u

(l)
k+j|k +H

(l)
k+j|kw̄

(m)
k+j|k, (3a)

for all m ∈ ch(l, k + j|k), l ∈ S. As disabled units cannot
adjust their power, their corresponding rows in H

(l)
k+j|k

have entries zero. Enabled units adjust their power with
respect to a weighting vector uH ∈ Rv

0+ that is chosen,
for instance, corresponding to the units’ nominal power.
With UH = diag (uH) this behaviour can be modelled by
choosing H

(l)
k+j|k in (3a) to be the following.

H
(l)
k+j|k = −

UHδ
(l)
k+j|k

uT
Hδ

(l)
k+j|k

1T(d+r)1 + diag
(
0(t+s)d, Ir

)
, (3b)

where the first summand represents the power sharing of
grid-forming units and the second the change of RES power
[10]. The effective power of the units ū

(m)
k+j|k, is bounded by

umin, umax ∈ Rv if the corresponding unit is enabled, i.e.,
for all m ∈ ch(l, k + j|k),
diag

(
umin

)
δ
(l)
k+j|k ≤ ū

(m)
k+j|k ≤ diag (umax) δ

(l)
k+j|k. (3c)

E. System dynamics

The system dynamics is given by

x
(m)
k+j+1|k = Ax

(l)
k+j|k +Bū

(m)
k+j|k, (4a)

for all m ∈ ch(l, k + j|k), and x
(1)
k|k = xk. To model the

dynamics of the storage units, we choose A = Is and B =
−ts(0st, Is, 0sr). The states are bounded by xmin, xmax ∈ Rs

that result from the limited storage capacity. Hence,

xmin ≤ x
(m)
k+j+1|k ≤ xmax. (4b)

To ensure feasibility of the problem (4b) is imposed as a soft
constraint.

F. DC power flow

DC power flow (see [10], [17]) is used to link the power
at the bus bars ū

(m)
k+j|k and w̄

(m)
D,k+j|k with the power flow

over the lines o
(m)
k+j|k, given by

o
(m)
k+j|k = F · ((ū(m)

k+j|k)
T , (w̄

(m)
D,k+j|k)

T , 0Tn1)
T , (5a)

with F ∈ Re×(h+d+n), where e is the number of edges in
the grid, and n the number of passive network nodes. The
power flow is limited by omin ∈ Re and omax ∈ Re, i.e.,

omin ≤ o
(m)
k+j|k ≤ omax. (5b)

To ensure a local power balance, additionally

0 = 1Tv1 · ((ū
(m)
k+j|k)

T , (w̄
(m)
D,k+j|k)

T , 0Tn1)
T (5c)

must hold.

G. Optimal control problem

The generator costs were modelled according to [18]. The
cost function for m, l ∈ M, where M ⊂ S is the set of all
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nodes of the tree except the root, and a ∈ S is given by

J
(m)
k+j|k = p

(m)
k+j|k(c

T
0 δ

(l)
k+j|k + cT1 ū

(m)
k+j|k+

(ū
(m)
k+j|k − ud)T diag (c2) (ū

(m)
k+j|k − ud)+

(δ
(l)
k+j|k − δ

(a)
k+j−1|k)

T diag (csw) (δ
(l)
k+j|k − δ

(a)
k+j−1|k)), (6)

where m ∈ ch(l, k + j|k) and l ∈ ch(a, k + j − 1|k).
Further, p(m)

k+j|k ∈ R is the probability of disturbance w̃
(m)
k+j|k,

c0, c1, c2 ∈ Rv are weights and ud ∈ Rv is a vector with
ud = (0T

(t+s)1, (u
d
R)

T )T , where ud
R is the desired RES

infeed, i.e., in normal operation the nominal value of the
unit. The last line of (6) represents the costs for switching a
machine on or off with csw ∈ Rv .

The overall costs are the weighted sum over all stages,
for all m ∈ M with a weighting factor γ ∈ (0, 1) ⊂ R to
emphasize near decisions over those in the far future. A MPC
strategy is used to find the optimal inputs at instant k and ap-
ply the resulting (uk, δk) = (u

(1)
k|k, δ

(1)
k|k) = f(w̃, p̃, xk, δk−1)

to the system. Naturally, this leads to a receding horizon
control strategy. With J

(m)
k+j|k from (6) and the stage(m)

function that indicates the optimization time instant j of
node m the corresponding optimal control problem reads as
follows.

Problem 1 (Scenario-based SMPC): Find the optimal in-
puts (u

(m)
k+j|k, δ

(m)
k+j|k)

∗ for j ∈ N[1,J] that minimize

Jc =
∑

m∈M
γjJ

(m)
k+j|k with j = stage(m) and (7)

subject to the constraints (2)–(5).

V. CASE STUDY

To assess the performance, the proposed SMPC will be
compared to the minimax MPC (MMPC) presented in [10]
and a control policy based on a hypothetical perfect forecast
that is used as a reference. A certainty-equivalence approach
where the mean value of a non-perfect forecast is employed
was not considered as it led to significant violations of
constraints in the operation in [9]. Subsequently, all values
are normalized to a power of 1 pu and a time of 1 h.

The MG used (see Fig. 4) comprises a load with wD,k, a
thermal generator with power ūT,k, a RES with ūR,k and a
storage unit with ūS,k and stored energy xS,k. Hence, ūk =
(ūT,k, ūS,k, ūR,k)

T , wk = (wD,k, wR,k)
T and xk = xS,k.

The limits are umin = (0.4 ,−1 , 0 )T , umax = (1 , 1 , 2 )T ,
xmin = 0 and xmax = 6 as well as omax

i = −omin
i = 1.3

for i = 1, . . . , 5. A sampling time of tS = 30min was
chosen, leading to B = (0 ,−0.5 , 0 ). Further, A = 1 and
uH = (1 , 1 , 0 )T . The initial conditions δ−1 = (0, 1, 1)T and
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Fig. 5. Thermal, storage, renewable and load power as well as stored
energy with different MPC approaches.

x0 = 2 were assumed. To cover a full charge or discharge of
the storage unit, J = 12 for all MPC schemes. For the ob-
jective function, the generator running costs from [18] were
normed to the size of the unit, i.e., c0 = (0.1178 , 0, 0)T ,
c1 = (0.7510 , 0, 0) and c2 = (0.0048 , 0, 0.2). Further,
ud = (0, 0, 2), γ = 0.95 and csw = 0.3 were chosen.

To speed up the computation, the binary variables of the
SMPC were fixed for optimization time instants j > 3. For
j ≤ 3, binaries exist. For all j > 3 all entries of δ are fixed
to one, and the minimum power of the thermal units is set
to zero. Further, a branching factor of b = (8, 2, 2, 1, . . . , 1)
was employed. As extensive simulation studies showed that
storage and RES units are always turned on, their switching
variables were fixed to δS,k = 1 and δR,k = 1 for all k ∈ N0.
Consequently, only the thermal unit is switched on and off.

The number of MC forecast scenarios was set to 500 and
the robust interval of the MMPC was chosen such that it
contains 99 % of the forecast scenarios. A sensitivity study,
using the 95 % confidence interval for the MMPC showed
only a slight decrease of 0.1 % in terms of costs, compared
to the 99 % interval and more constraint violations with the
smaller interval. Hence, the choice is reasonable.

The scheme in Fig. 1 was implemented in MATLAB R©

using the econometrics toolbox, Yalmip [19], and Gurobi as
a numerical solver. The maximum runtime for one execution,
including forecast, scenario reduction and optimization was
less than 2 min for all steps with an Intel R© Core

TM
i5-3320M

processor @ 2.6 GHz and 8 GB RAM. As this time is



Fig. 6. Sensitivity analysis of SMPC, where load and RES of the
model were altered for every time step with a random, normally distributed
disturbance of ±5 % of their nominal value.

significantly smaller than the sampling interval of 30 min,
the optimization is adequately fast and hence applicable.

The sensitivity analysis in Fig. 6 showed that the SMPC
approach may lead to small constraint violations of less than
3 % of the nominal value. For the case study in Fig. 5, a total
of 19 violations occurred during one week because the SMPC
approach can only assure that the probability of violations is
small. The occurrence could be minimized by using a more
complex scenario tree or tighten the constraints. For now, as
the violations are very small, it is assumed that they lie in
the power and energy tolerances that the units can handle.

Comparing the MMPC from [10] with the SMPC over
7 days in Table II, the renewable infeed could be increased
by 2 %. Further, thermal energy could be decreased by 13 %
and the gap to the reference with perfect forecast knowledge
could be reduced significantly. Additionally, the number of
switching actions was decreased, which leads to a decrease
of maintenance costs. This also shows in the reduction of
the accumulated operation costs of 7 % that were calculated
with (6) and the MG’s simulated power values.

VI. CONCLUSIONS

This paper studied the scenario-based model predictive op-
eration control of islanded MGs. A new stochastic approach,
composed of a forecast, a scenario reduction and stochastic
optimization was presented. The provided numerical case
study indicates that the new approach leads to a significant
decrease of running costs. Future work will address the

TABLE II
OVERALL RENEWABLE AND THERMAL INFEED OF SIMULATION

Perfect forecast SMPC MMPC

Operation costs 158.7 160.5 172.1
Renewable energy in pu h 150.6 149.2 146.7

Thermal energy in pu h 53.1 54.6 62.7
Thermal switching 5 9 39

prediction of solar power. Also, a combination of a worst
case and a stochastic approach to ensure safe operation will
be considered. Additionally, the scalability of the approach
will be investigated to see if it can be used to operate MGs
with more nodes.
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