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Abstract

Over the last two decades, water smart metering programs have been launched

in a number of medium to large cities worldwide to nearly continuously monitor

water consumption at the single household level. The availability of data at such

very high spatial and temporal resolution advanced the ability in characteriz-

ing, modeling, and, ultimately, designing user-oriented residential water demand

management strategies. Research to date has been focusing on one or more of

these aspects but with limited integration between the specialized methodolo-

gies developed so far. This manuscript is the first comprehensive review of the

literature in this quickly evolving water research domain. The paper contributes

a general framework for the classification of residential water demand model-

ing studies, which allows revising consolidated approaches, describing emerging

trends, and identifying potential future developments. In particular, the future

challenges posed by growing population demands, constrained sources of water

supply and climate change impacts are expected to require more and more inte-

grated procedures for effectively supporting residential water demand modeling

and management in several countries across the world.
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1. Introduction1

World’s urban population is expected to raise from current 54% to 66% in2

2050 and to further increase as a consequence of the unlikely stabilization of3

human population by the end of the century (Gerland et al., 2014). By 20304

the number of mega-cities, namely cities with more than 10 million inhabitants,5

will grow over 40 (UNDESA, 2010). This will boost residential water demand6

(Cosgrove and Cosgrove, 2012), which nowadays covers a large portion of the7

public drinking water supply worldwide (e.g., 60-80% in Europe (Collins et al.,8

2009), 58% in the United States (Kenny et al., 2009)).9

The concentration of the water demands of thousands or millions of people10

into small areas will considerably raise the stress on finite supplies of available11

freshwater (McDonald et al., 2011a). Besides, climate and land use change will12

further increase the number of people facing water shortage (McDonald et al.,13

2011b). In such context, water supply expansion through the construction of14

new infrastructures might be an option to escape water stress in some situa-15

tions. Yet, geographical or financial limitations largely restrict such options16

in most countries (McDonald et al., 2014). Here, acting on the water demand17

management side through the promotion of cost-effective water-saving technolo-18

gies, revised economic policies, appropriate national and local regulations, and19

education represents an alternative strategy for securing reliable water supply20

and reduce water utilities’ costs (Gleick et al., 2003).21

In recent years, a variety of water demand management strategies (WDMS)22

has been applied (for a review, see Inman and Jeffrey, 2006, and references23

therein). However, the effectiveness of these WDMS is often context-specific24

and strongly depends on our understanding of the drivers inducing people to25

consume or save water (Jorgensen et al., 2009). Models that quantitatively26

describe how water demand is influenced and varies in relation to exogenous27

uncontrolled drivers (e.g., seasonality, climatic conditions) and demand man-28
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agement actions (e.g., water restrictions, pricing schemes, education campaigns)29

are essential to explore water users’ response to alternative WDMS, ultimately30

supporting strategic planning and policy design.31

Traditionally, water demand models focus on different temporal and spatial32

scales. At the lowest resolution, studies have been carried out, mostly in the33

1990s, to model water demand at the urban or block group scale, using low34

time resolution (i.e., above daily) consumption data retrieved through billing35

databases or experimental measurement campaigns on a quarterly or monthly36

basis. The main goal of these works is to inform regional water systems plan-37

ning and management on the basis of estimated relationships between water38

consumption patterns and socio-economic or climatic drivers (e.g., House-Peters39

and Chang, 2011).40

The advent of smart meters (Mayer and DeOreo, 1999) in the late 1990s41

made available new water consumption data at very high spatial (household)42

and temporal (from several minutes up to few seconds) resolution, enabling43

the application of data analytics tools to develop accurate characterizations of44

end-use water consumption profiles. Similarly to the recent developments in45

integrated smart solutions (Hilty et al., 2014; Laniak et al., 2013), the use of46

smart meters provides essential information to construct models of the individ-47

ual consumers behaviors, which can be employed for designing and evaluating48

consumer-tailored WDMS that can more effectively modify the users’ attitude49

favoring water saving behaviors. In particular, smart meters themselves consti-50

tute technologies that promote behavioural changes and water saving attitudes51

via tailored feedbacks (Fielding et al., 2013).52

A general procedure to study residential water demand management rely-53

ing on the high-resolution data nowadays available can be structured in the54

following four phases (see Figure 1): (i) data gathering, (ii) water end-uses55

characterization, (iii) user modeling, (iv) design and implementation of person-56

alized WDMS. In the literature, a number of tools and techniques have been57

proposed for each of these steps, with many works focused either on the data58

gathering process (e.g., Cordell et al., 2003; Boyle et al., 2013) or on the anal-59
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ysis of WDMS (e.g., Inman and Jeffrey, 2006). Yet, to the authors’ knowledge,60

a systematic and comprehensive review of residential water demand modeling61

and management is still missing. This review contributes the first effort of clas-62

sification and critical analysis of 134 studies that in the last 25 years (Figure63

2) contributed new methodologies and tools in one or more of the steps of the64

above procedure (see Table 1).65

The review is structured according to the procedure shown in Figure 1:66

the current status, research challenges, and future directions associated to each67

phase are discussed in Sections 2-5, while the last section reports final remarks68

and directions for follow up research.69

2. Data gathering70

Residential water consumption data gathering (box 1 in Figure 1) represents71

the first step needed to built the baseline upon which the water demand is72

estimated and management strategies are designed. Depending on the sampling73

frequency, we distinguish two main classes, namely low-resolution and high-74

resolution data, which delimit the type of the analysis that can be performed.75

2.1. Low resolution data76

Periodically billed data are characterized by a low level of resolution and77

recording frequency. Although water consumption is detected with the precision78

of kilolitres, readings are generally recorded with the frequency of the quarter79

of year at most (Britton et al., 2008). This low resolution restricts the use of80

these data to regional planning, where statistical analysis estimating the amount81

of domestic water consumption can be used to forecast the aggregated water82

demand at the municipal or district level. In particular, such data have been83

widely used to study the effect of economic variables and seasonality on the water84

use at the regional scale since the seminal works by Howe and Linaweaver (1967);85

Young (1973); Berk et al. (1980); Howe (1982); Maidment and Parzen (1984);86

Thomas and Syme (1988) (for a review see House-Peters and Chang, 2011,87
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and references therein). Those approaches relied on simple econometric models88

and time series models based on multivariate regression, and required limited89

datasets and low computational resources. Their main drawback is related to90

their limited capability of representing the spatial and temporal heterogeneity of91

residential water demand, which can be understood and modelled using higher92

resolution data. While data resolution depends on the installed meter, the93

logging time can be shortened without installation of smart meters but simply94

increasing the traditional reading frequency by the users. However, so far only95

ad-hoc studies systematically collected and analyzed data at daily resolution96

(e.g., Olmstead et al., 2007; Wong et al., 2010) and few water companies (e.g.,97

Water Corporation in Western Australia and Thames Water in London) started98

increasing their reading frequency by direct involvement of their customers,99

who are invited to self-read their consumption and communicate it online to100

the water company (e.g., Anda et al., 2013).101

2.2. High resolution data102

The advent of high resolution sensors, with their ability of sampling water103

consumption on sub-daily basis, opened up a new potential to better character-104

ize domestic water consumption. Two distinctive metering approaches can be105

distinguished: intrusive metering, which ensures direct estimates of the residen-106

tial water end-uses by installing high resolution sensors on-device, namely one107

sensor for each water consuming appliance (e.g., washing machine, toilet flush,108

shower-head); non-intrusive metering, which registers the total water flow at109

the household level over one single detection point for the whole house.110

Intrusive metering (see Rowlands et al., 2014, and references therein) is gen-111

erally considered inapplicable in real-world, large-scale analysis as the number112

of sensors to be installed makes this approach resource intensive, costly, and113

hardly accepted by household occupants (Cordell et al., 2003; Kim et al., 2008).114

On the contrary, non-intrusive metering represents a more acceptable, though115

less accurate, alternative (Mayer and DeOreo, 1999). However, this approach116

requires disaggregation algorithms to breakdown the total consumption data at117
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the household level into the different end-use categories (see Section 3).118

119

Several types of sensors have been developed (Table 2) by exploiting different120

technologies and physical properties of the water flow (for a review see Arregui121

et al., 2006, and references therein):122

• Accelerometers (e.g., Evans et al., 2004), which analyze vibrations in a123

pipe induced by the turbulence of the water flow. A sampling frequency124

of 100 Hz of the pipe vibrations allows reconstructing the average flow125

within the pipe with a resolution of 0.015 liters (Kim et al., 2008).126

• Ultrasonic sensors (Mori et al., 2004), which estimate the flow velocity,127

and then determine the flow rate knowing the pipe section, by measuring128

the difference in time between ultrasonic beams generated by piezoelec-129

tric devices and transmitted within the water flow. The transducers are130

generally operated in the range 0.5-2 MHz and allow attaining an average131

resolution around 0.0018 liters (e.g., Sanderson and Yeung, 2002).132

• Pressure sensors (Froehlich et al., 2009, 2011), which consist in steel de-133

vices, equipped with an analog-digital converter and a micro-controller,134

continuously sampling pressure with a theoretical maximum resolution135

of 2 kHZ. Flow rate is related to the pressure change generated by the136

opening/close of the water devices valves via Poiseuille’s Law.137

• Flow meters (Mayer and DeOreo, 1999), which exploit the water flow to138

spin either pistons (mechanic flow meters) or magnets (magnetic meters)139

and correlate the number of revolutions or pulse to the water volume140

passing through the pipe. Sensing resolution spans between 34.2 and 72141

pulses per liter (i.e., 1 pulse every 0.029 and 0.014 liters, respectively)142

associated to a logging frequency in the range of 1 to 10 seconds (Kowalski143

and Marshallsay, 2005; Heinrich, 2007; Willis et al., 2013).144

So far, only flow meters and pressure sensors have been employed in smart145

meters applications because ultrasonic sensors are too costly and the use of146
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accelerometers requires an intrusive calibration phase with the placement of147

multiple meters distributed on the pipe network for each single device of inter-148

est (Kim et al., 2008). It is worth noting that the “smartness” of these sensors149

is related both to their high sampling resolution and to their integration in150

efficient systems combining data collection, transfer, storage, and analysis. Al-151

though sensors can be equipped with data loggers requiring human intervention152

to retrieve the data directly from the sensors (Mayer et al., 2004), bluetooth153

and wireless connections have been recently exploited for improving data man-154

agement. For example, Froehlich et al. (2009) installed a network of pressure155

sensors communicating via bluetooth with a laptop deployed at each household,156

which runs a custom data logger to receive, compress, and archive data. These157

latter are then uploaded to a web server at 30-minute intervals.158

2.3. Research challenges and future directions159

While smart meters are becoming easily available, we identified a list of160

open research and technical challenges that need to be addressed to promote161

the coherent use of this wide range of technologies:162

1. The first open research question relates to the management of the me-163

tered high resolution flow data. In particular, the development of robust,164

automated processes to transfer the generated big data requires further165

elaborations, both in terms of hardware and software performance due166

to existing issues with respect to wireless network reliability, black spots,167

power source and battery life (Stewart et al., 2010; Little and Flynn, 2012).168

All these aspects appear key also because the possibility of integrating wa-169

ter and energy meters and using the same data loggers and transmission170

systems is expected to enhance the diffusion of high resolution water sen-171

sors (Benzi et al., 2011; Froes Lima and Portillo Navas, 2012).172

2. The second open challenge concerns the design of centralized or distributed173

information systems to store the data collected by the smart meters (Ora-174

cle, 2009). A centralized system would allow checking the accuracy of the175

collected data, which can then be made easily available for data processing176
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and analysis. On the contrary, a distributed solution would reduce trans-177

mission costs and facilitate providing immediate feedbacks to customers,178

who can use this information to make decisions about their water use.179

3. A third open question is how householder privacy is impacted by collec-180

tion and communication of detailed water-use information. Although such181

issues are currently underestimated as in many communities (e.g., in Aus-182

tralia) severe water shortages have led to a permissive attitude to conserve183

water (Giurco et al., 2010), it is likely that the collection of information on184

both water use and behavior change over time implies increased privacy185

risks (McIntyre, 2008; Chen et al., 2014).186

4. Finally, a challenge is posed by the actual deployment of large-scale high-187

resolution metering network in the real world. While literature presents188

a number of trials (e.g., Mayer et al. (2004); Heinrich (2007); Froehlich189

et al. (2009)) that exploit smart sensors with extremely fine resolutions190

(sub-minute), cost, privacy, and regulations may limit their scalability to191

large-scale continuos operative smart meter installations. For example,192

data protection and data security issues are being seriously considered by193

the European Union, which is imposing some strict guidelines to utilities194

willing to deploy smart meter solutions for their customers and many wa-195

ter utilities collect data at lower resolution than the minute (e.g., Thames196

Water in London reads data at 15-minute resolution, EMIVASA in Valen-197

cia and SES in Switzerland at 1-hour resolution). This implies that the198

theoretical capabilities of smart metering technologies may not be fully199

exploited, potentially limiting the accuracy in characterizing the residen-200

tial water consumption as studies relying on medium/low resolution data.201

Large-scale smart-meters application would therefore benefit from a bet-202

ter understanding of the consequences of different time resolutions on the203

models accuracy and on the effectiveness of WDMS.204
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3. Water end-uses characterization205

Non-intrusive metering requires disaggregation algorithms to breakdown the206

total consumption data registered at the household level into the different end-207

use categories (second block of Figure 1). In the water research literature,208

several studies have been conducted in the last two decades using a variety209

of single or mixed disaggregation methods, such as household auditing, diaries,210

high resolution flow meters and pressure sensors (see Table 3). According to the211

methodology adopted, we can identify two main approaches for disaggregating212

smart metered water data at very high temporal resolution: decision tree algo-213

rithms, namely Trace Wizardr (DeOreo et al., 1996) and Identiflowr (Kowalski214

and Marshallsay, 2003), and machine learning algorithms, namely HydroSense215

(Froehlich et al., 2011) and SEQREUS (Beal et al., 2011a). Recently, the disag-216

gregation of medium resolution water data (i.e., hourly data) has been explored217

by means of water use signature patterns method (Cardell-Oliver, 2013a,b),218

namely a combination of feature selection, unsupervised learning, and cluster219

evaluation.220

3.1. Trace Wizard221

Trace Wizard (DeOreo et al., 1996) is a commercial software (recently re-222

placed by an on-demand service developed and managed by Aquacraft Inc)223

which applies a decision tree algorithm to interpret magnetic metered flow data224

based on some basic flow boundary conditions (e.g., minimum/maximum vol-225

ume, peak flow rate, duration range, etc.). The disaggregation process is struc-226

tured in the following steps:227

1. Conduct a detailed water device stock inventory audit for each household228

to determine the efficiency rating of each household appliance/fixture;229

2. Household occupants should complete a diary of water use events over a230

one-week period to gain information on their water use habits;231

3. Analysts use water audits, diaries, and sample flow trace data for each232

household to create specific templates that serve to match water end-use233

patterns depending on some basic flow boundary conditions.234
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4. Based on the developed templates, stock survey audit, diary information235

and analysts’ experience, the individual water end-uses are disaggregated.236

It is worth noting that the human resource effort required by Trace Wizard237

makes the overall process extremely time and resource intensive, with the quality238

of the results that is strongly dependent on the experience of the analyst in239

understanding flow signatures. It has been estimated that the classification of240

two weeks of data approximatively requires two hours of works by the analyst241

and attains an average classification accuracy of 70% (Nguyen et al., 2013a). In242

addition, the prediction accuracy of Trace Wizard is significantly reduced when243

more than two events occur concurrently (Mayer and DeOreo, 1999). However,244

Trace Wizard still has an edge on disaggregation techniques and has been used245

in several research works and projects (DeOreo and Mayer, 1994; Mayer and246

DeOreo, 1995; DeOreo et al., 1996; Mayer and DeOreo, 1999; DeOreo and Mayer,247

2000; Loh et al., 2003; Mayer et al., 2004; Roberts, 2005; Heinrich, 2007; Mead248

and Aravinthan, 2009; Willis et al., 2009a,b; Aquacraft Inc., 2011; DeOreo et al.,249

2011).250

3.2. Identiflow251

Similar to Trace Wizard, Identiflow (Kowalski and Marshallsay, 2003) re-252

lies on a decision tree algorithm to perform a semi-automatic disaggregation253

of the total water consumption at the household level. Identiflow uses fixed254

physical features of various water-use devices (e.g., volume, flow rate, duration,255

etc.) to classify the different end-use events. Although Identiflow has shown256

better performance than Trace Wizard (i.e., 74.8% accuracy in terms of the257

correctly classified volume over 3870 events (Nguyen et al., 2013a)), its classifi-258

cation accuracy strongly depends on the physical features used to describe each259

fixture/appliance. Two different water events are likely classified into the same260

category if they exhibit similar physical characteristics. Moreover, it fails to261

classify events when old devices are replaced by modern ones, since the physical262

characteristics of these latter might be completely different compared to the old263

ones.264
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3.3. HydroSense265

HydroSense (Froehlich et al., 2011) is a probabilistic-based classification ap-266

proach which relies on data collected through pressure sensors. Water end-use267

events are classified with respect to the unique pressure waves that propagate268

to the sensors when valves are opened or closed. Specifically, when a valve is269

opened or closed, a pressure change occurs and a pressure wave is generated in270

the plumbing system. Based on the pressure wave (which depends on the valve271

type and its location), water end-use events are classified by using advanced pat-272

tern matching algorithms and Bayesian probabilistic models. HydroSense has273

been demonstrated to attain very high levels of classification accuracy, namely274

90% and 94% with one or two pressure sensors, respectively (Froehlich et al.,275

2011). However, the calibration of the algorithm requires an intrusive moni-276

toring period with the installation of a much larger number of pressure sensors277

connected to each water device (i.e., Froehlich et al. (2011) used 33 sensors in278

a single household). This requirement significantly constrains the portability of279

this approach to a wide urban context as it would entail large costs and privacy280

issues.281

3.4. SEQREUS282

The SEQREUS approach (Beal et al., 2011a) proposes a combination of283

Hidden Markov Models (HMMs), Dynamic Time Warping (DTW), and time-of-284

day probability to automatically categorize the collected data at the household285

level into particular water end-use categories. To minimize the intrusiveness of286

the approach, the ground truth for the calibration (i.e., a set of disaggregated287

end-use events) is obtained using Trace Wizard. Then, the SEQREUS approach288

works as follows:289

1. The disaggregated data are used for training multiple HMMs, one for each290

end-use category (excluding the inconclusive event);291

2. The physical characteristics of each end-use category are used to refine292

the estimate given by the HHMs (e.g., any shower event with a volume293
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less than 7 liters or any bathtub event with duration less than 4 minutes294

is placed in the inconclusive event for future analysis);295

3. A DTW algorithm determines if any event in the inconclusive dataset296

is similar to an event in categories having clearly defined consumption297

patterns, namely the washing machine and dishwasher cycles;298

4. Time of day probability is used to assign inconclusive events to an end-use299

category.300

Testing on three independent households located in Melbourne (Australia)301

demonstrated a high prediction accuracy, namely between 80% and 90% for302

the major end-use categories (Nguyen et al., 2014). However, the method still303

requires human input to achieve such levels of recognition accuracy (e.g., for304

the classification of inconclusive events supported by DTW and for manually305

classifying combine events) (Nguyen et al., 2013a,b).306

3.5. Research challenges and future directions307

Given the small number of algorithms for disaggregating water flow data,308

there is still a large room for developing new methods addressing the major309

limitations of the existing approaches:310

1. First, most of the approaches used in the water sector requires time con-311

suming expert manual processing and intensive human interactions via312

surveys, audits and water event diaries, while the development of auto-313

matic procedures is fundamental to further extend the application of these314

methods beyond experimental trials and research projects (Stewart et al.,315

2010). Moreover, the existing methods have limited accuracy in identify-316

ing overlapping events.317

The disaggregation problem has been addressed in other research fields as318

a general problem of blind identification, or output-only system identifi-319

cation (Reynders, 2012). The real state of the system (i.e., the set of the320

working states and water consumption of each single fixture in the house-321

hold) is unknown and only observations of the system output (i.e., the322

12



total water consumption) are available. Starting from the 1990s, several323

techniques have been proposed to address blind identification problems324

in different research field, such as signal processing, data communication,325

speech recognition, image restoration, seismic signal processing (see Abed-326

Meraim et al., 1997, and references therein).327

With the development of smart electricity grids (Kramers et al., 2014;328

Niesse et al., 2014), this problem has been largely studied in the energy329

sector to develop automatic disaggregation methods, also known as Non330

Intrusive Load Monitoring (NILM) algorithms, which aim at decomposing331

the aggregate household energy consumption data collected from a single332

measurement point into device-level consumption data (for a review, see333

Zeifman and Roth, 2011; Zoha et al., 2012; Carrie Armel et al., 2013,334

and references therein). These methods show promising results and seem335

effective also up to 6-10 appliances (Figueiredo et al., 2014; Makonin et al.,336

2013). Yet, the portability of such techniques in the water field has not337

been assessed. Some additional challenges in characterizing water end-338

use events might be introduced by the larger human dependency than339

the one of electric appliances, which are more automatic. These concerns340

primarily involve manually controlled fixtures (e.g., bathtubs, showers,341

faucets), which might be used not at the maximum capacity (Froehlich342

et al., 2009).343

2. The second main open question relates to the acquisition of the ground344

truth for initial calibration. All the algorithms used for disaggregating345

water data, but also the majority of the ones used for energy data, need an346

intrusive period to collect a dataset of disaggregated end-use events, which347

incurs extra cost and human effort, ultimately challenging their large-348

scale application. Researchers are actively looking to devise completely349

unsupervised or semi-supervised methods that avoid the effort of acquiring350

the calibration ground truth data (e.g., Gonçalves et al., 2011; Parson351

et al., 2014).352

3. Finally, most of the approaches developed in the energy sector are cur-353
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rently focused on correctly characterizing the on/off status of the devices354

and, possibly, the fraction of total energy assigned correctly, while their355

performance in reproducing the timings and frequencies of each device356

are lower (Batra et al., 2014). Yet, timings and frequencies represent key357

information to understand consumers behaviors and design personalized358

demand management strategies (e.g., deferring the use of some appliances359

to peak-off hours). Accordingly, knowledge about use frequencies, timing360

and peak-hours in the water sector would constitute crucial information for361

identifying both typical consumption behaviours and patterns, as well as362

consumption anomalies (e.g., leakages (Loureiro et al., 2014; Ponce et al.,363

2014; Pérez et al., 2014; Perez et al., 2014)). This knowledge would aid364

the activities of water utilities at different levels: demand management,365

network maintenance, and strategic planning.366

4. User modeling367

The user modeling phase (third block in Figure 1) aims at representing368

the water demand at the household level, thus preserving the heterogeneity369

of the individual users in the modelled community, possibly as determined by370

natural and socio-psychographic factors as well as by the users’ response to371

different WDMS. In the literature, two distinctive approaches exist (see Table372

4): descriptive models, which limit their extent to the analysis of water con-373

sumption patterns, and predictive models, which provide estimate of the water374

consumption at the individual (household) level as determined by natural and375

socio-psychographic factors, and in response to different WDMS.376

4.1. Descriptive models377

The first class of models, namely descriptive models, aims at analyzing the378

observed water consumption behaviors of water users. Depending on the res-379

olution of the data available, the analysis can focus on identifying aggregated380

consumption patterns or on defining users’ profiles on the basis of the disaggre-381

gated end-uses (e.g., Loh et al., 2003; SDU, 2011; SJESD, 2011; Gato-Trinidad382
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et al., 2011; Willis et al., 2011; Beal et al., 2011b, 2013; Cardell-Oliver and383

Peach, 2013; Cole and Stewart, 2013; Beal and Stewart, 2014; Beal et al., 2014;384

Gurung et al., 2014, 2015).385

The construction of descriptive models allows studying historical trends386

(Agudelo-Vera et al., 2014; Kofinas et al., 2014) to build a user consumption pro-387

file that constitutes the baseline for identifying the most promising areas where388

conservation efforts may be polarized (e.g., restriction on irrigation practices389

in case gardening represents the dominant end-use). However, the majority of390

these models cannot be used to predict the water savings potential of alterna-391

tive WDMS, unless combined with control group experiments to observe user392

responses (Cahill et al., 2013).393

4.2. Predictive models394

The second class of models, namely predictive models, aims at estimating395

the water demand at the individual (household) level. Some works developed396

predictive models that mostly provide short-term forecast of the water demand397

on the basis of time series analyses (e.g., Homwongs et al., 1994; Molino et al.,398

1996; Altunkaynak et al., 2005; Alvisi et al., 2007; Nasseri et al., 2011). Yet,399

these approaches are ineffective in supporting the design and implementation400

of WDMS as the predicted water consumption of a user is not related to his401

socio-psychographic factors or his response to different WDMS. An alternative402

approach can be structured in the following two sub-steps: (i) multivariate403

analysis, which consists in the identification and selection of the most relevant404

inputs to explain the preselected output, and (ii) behavioral modeling, which405

means model structure identification, parameter calibration and validation.406

The multivariate analysis phase (i.e., variable selection as called in data-407

driven modeling (George, 2000)) is a fundamental step to build predictive mod-408

els of urban water demand variability in space and time. In most of the works,409

the identification of the most relevant drivers relies on the results of data min-410

ing techniques (e.g., correlation analysis) between a pre-defined set of variables411

(candidate drivers) and the water consumption data. This approach is also re-412

15



ferred to as inductive modelling (Cahill et al., 2013). An alternative to this413

data-driven approach is the deductive construction of models according to em-414

pirical or theoretical causality (Cahill et al., 2013). Depending on the specific415

domains from which the candidate drivers are extracted, which is often delim-416

ited by data availability (Arbués et al., 2003), we can distinguish the following417

three main approaches:418

• economic-driven studies, which focus on studying the correlation between419

water consumption and purely economic drivers, such as water tariff struc-420

tures or water price elasticity (e.g., Schneider and Whitlatch, 1991; Espey421

et al., 1997; Brookshire et al., 2002; Dalhuisen et al., 2003; Olmstead et al.,422

2007; Olmstead and Stavins, 2009; Rosenberg, 2010; Qi and Chang, 2011);423

• geo-spatial studies, which assess the correlation between hydro-climatic424

variables and seasonality with water consumption (e.g., Miaou, 1990; Grif-425

fin and Chang, 1991; Zhou et al., 2000, 2002; Fullerton and Elias, 2004; Aly426

and Wanakule, 2004; Gato et al., 2007; Balling and Gober, 2007; Balling427

et al., 2008; Lee and Wentz, 2008; Praskievicz and Chang, 2009; Corbella428

and Pujol, 2009; Chang et al., 2010; Polebitski and Palmer, 2010; Lee and429

Wentz, 2010; Lee et al., 2011);430

• psycographic-driven studies, which infer the influence of users’ personal431

attributes on their water consumption, including income, family compo-432

sition, lifestyle, and households physical characteristics (e.g., number of433

rooms, type, presence of garden) (e.g., Syme et al., 2004; Wentz and Gober,434

2007; Fox et al., 2009; Jorgensen et al., 2009; Russell and Fielding, 2010;435

Grafton et al., 2011; Willis et al., 2013; Suero et al., 2012; Matos et al.,436

2014; Talebpour et al., 2014; Romano et al., 2014).437

Note that this classification is not stringent, in the sense that hybrid ap-438

proaches dealing with more than one of the mentioned domains have already439

been developed (e.g., Makki et al., 2015). Similarly to the descriptive models440

discussed in the previous section, the development of predictive models could441
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significantly benefit from smart metering technologies and high-resolution wa-442

ter consumption data. Indeed, the availability of high-resolution and end-use443

characterization of the water consumption allows predicting the effects of cus-444

tomized WDMS focused on specific end-uses (e.g., Makki et al. (2013)). In445

most of the literature, the user modeling is limited to the multivariate analysis,446

which however provides only qualitative information to water managers, water447

utilities, and decision makers. Only few works completed the second phase (i.e.,448

behavioral modeling) and provide a quantitative prediction of the water demand449

at the household level, thus representing better decision-aiding tools as they can450

use these models to develop what-if analysis as well as scenario simulation and451

analysis.452

The construction of behavioral models aims at the identification, calibra-453

tion, and validation of mathematical models, which describe the water demand454

(i.e., output variable) as a function of the drivers identified in the multivariate455

analysis. In the behavioral modeling literature, we can identify a first class of456

models, named single-user models, which describe the consumption behavior457

of individual users considered as isolated entities. These works (e.g., Lyman,458

1992; Gato, 2006; Kenney et al., 2008; Maggioni, 2015) generally rely on dy-459

namic models based on sampling of statistical distributions describing average460

users and end-uses (e.g., number of people per household and their ages, the461

frequency of use, flow duration and event occurrence likelihood). Water demand462

patterns can be then estimated via model simulation and comparison of the re-463

sults with the observed data. Yet, this approach often reduces the heterogeneity464

of the water users, which can be preserved by running Monte Carlo simulations465

that sample also the extreme values of the associated statistical distributions466

(Rosenberg et al., 2007; Blokker et al., 2010; Cahill et al., 2013). Recently,467

different approaches (Bennett et al., 2013; Makki et al., 2013, 2015) combining468

non-parametric statistical tests and advanced regression models to identify key469

water consumption drivers and forecast urban water consumption have been470

demonstrated to successfully identify the main drivers of water consumption471

and to attain good forecast accuracy levels.472
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A second class of behavioral models, named multi-user models, instead focus473

on studying the social interactions and influence/mimicking mechanisms among474

the users. The majority of these works relies on multiagent systems (Shoham475

and Leyton-Brown, 2009), where each water user (agent) is defined as a com-476

puter system situated in some environment and capable of autonomous actions477

to meet its design objectives, but also able to exchange information with the478

neighbor agents and change its behavior accordingly (Wooldridge, 2009). The479

adoption of agent-based modeling offers several advantages with respect to other480

approaches (Bonabeau, 2002; Bousquet and Le Page, 2004): (1) it provides a481

more natural description of a system, especially when it is composed of multiple,482

distributed, and autonomous agents, (2) it relaxes the hypothesis of homogene-483

ity in a population of actually heterogeneous individuals, (3) it allows an explicit484

representation of spatial variability, and (4) it captures emergent global behav-485

iors resulting from local interactions. As a consequence, multiagent systems can486

be employed to study the role of social network structures and mechanisms of487

mutual interaction and mimicking on the behaviors of water users (e.g., Rixon488

et al., 2007; Galán et al., 2009), to estimate market penetration of water-saving489

technologies (e.g., Chu et al., 2009), and to simulate the feedbacks between490

water consumers and policy makers (e.g., Kanta and Zechman, 2014).491

4.3. Research challenges and future directions492

Given the current status of user modeling studies and the room for improve-493

ment given by the use of high resolution, smart metered data, several research494

challenges and future directions emerge:495

1. The first open question in terms of descriptive models concerns matching496

the analysis of the water consumption patterns with the potential drivers497

generating the observed users’ behaviors. This would allow validating the498

results of the classification of the users on the basis of their consumption499

and understanding if this latter is a good proxy representing different500

characteristics of the users.501
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2. The use of spatially explicit models to take advantage of the high tem-502

poral and spatial resolution of smart metered data is often hindered by503

the aggregation of individual household data to a larger spatial scale to504

protect customers’ privacy as well as by the difficulties in collecting and505

sharing data coming across multiple water authorities and administrative506

institutions (House-Peters and Chang, 2011).507

3. The third major challenge relates to the validation of the agent-based be-508

havioral models. As in the construction of complex process-based models,509

accurately describing the single user (agent) behavior and connecting mul-510

tiple users within an agent-based model does not ensure the validity of the511

results, although these latter are contrasted with observed data. In addi-512

tion, given the large number of assumption and parameters, the problem513

of equifinality (i.e., the potential existence of multiple, alternative pa-514

rameterization leading to same simulation outcomes) has to be addressed515

(Ligtenberg et al., 2010).516

4. It is worth noting that the type of candidate drivers considered in the517

user modeling phase impacts the statistical representativeness of the re-518

sults. The construction of sufficiently large datasets to estimate the re-519

lationships between water consumption data and the uncontrolled drivers520

(i.e., hydro-climatic and psychographic variables) is generally easy, pro-521

vided that the time period is long enough and the number of involved522

users is sufficiently high. On the contrary, in most of the cases there is523

a single historical realization of the controllable drivers, namely the ones524

subject to human decisions (e.g., the existing pricing scheme). In such525

cases, the response of the users to different options is generally estimated526

via economics principles or surveys. Yet, economic principles introduce a527

priori general rules that might be inaccurate in characterizing the specific528

users under study, and the surveys provide only a static snapshot of the529

system conditions. The potential for using experimental trials (e.g., Gilg530

and Barr, 2006; Borisova and Useche, 2013; Fielding et al., 2013) and gam-531

ification platforms (e.g., Mühlhäuser et al., 2008) to validate behavioral532
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models results by retrieving information to the real users in large-scale533

applications has not been tested yet.534

5. Finally, a major opportunity is represented by the development of in-535

tegrated models that cross-analyze water and water-related energy con-536

sumption data to improve residential water demand models (Abdallah and537

Rosenberg, 2014; Escriva-Bou et al., 2015b,a).538

5. Personalized water demand management strategies539

Literature reports of a variety of management policies acting on the demand540

side of residential water consumption, designed with the purpose of improving541

water conservation and safeguarding water security in urban contexts. Accord-542

ing to Inman and Jeffrey (2006), they can be classified in the following five543

categories (Table 5): technological, financial, legislative, maintenance, and edu-544

cational. These strategies differ in the time scales they act on: price and pre-545

scriptive (i.e., command-and-control) approaches have been shown to achieve546

significant reductions of water demand in the short-period, but also have some547

drawbacks (such as equity issues and limits in consumers’ price elasticity) that548

may limit the effectiveness of such strategies in the long term, if not integrated549

with other water conservation interventions (Fielding et al., 2013; Renwick and550

Green, 2000). In contrast, users’ awareness and educational approaches allow551

for smaller reductions in the short period, but appear to be crucial to pursue552

reductions on the long run, as they require a change in users’ behaviors (Geller,553

2002).554

Technological strategies involve the installation of water efficient household555

appliances (e.g., Mead and Aravinthan, 2009; Suero et al., 2012; Carragher et al.,556

2012; Froes Lima and Portillo Navas, 2012; Gurung et al., 2015). This option of-557

fers great potential for reducing indoor and outdoor water consumption (Mayer558

et al., 2000, 2003, 2004; DeOreo, 2011). Yet, the benefits associated to these559

advanced systems are inconstant (Maggioni, 2015). For example, an incorrect560

use of automatic sprinkler may consume more water than manually operated561
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irrigation systems (Syme et al., 2004), thus requiring educational programs to562

ensure an appropriate use.563

Financial strategies, (also called market-based or price approaches (Olm-564

stead and Stavins, 2009)), consist in water tariffs control associated to analysis565

of water demand elasticity (e.g., Dandy et al., 1997; Dalhuisen et al., 2003;566

Arbués et al., 2003; Kenney et al., 2008; Cole et al., 2012; Molinos-Senante,567

2014; Maggioni, 2015). Even though some authors claim that price-based strate-568

gies are more cost effective than other conservation programs (Olmstead and569

Stavins, 2009), the effectiveness of this strategies seems uncertain as water de-570

mand has been shown to be relatively price inelastic (Worthington and Hoff-571

man, 2008) and to rebound to the same or even higher levels after an initial572

decrease (Kanakoudis, 2002). Yet, a careful assessment of the effectiveness of573

these strategies would benefit from longer dataset gathered in multiple jurisdic-574

tions and contexts (Worthington and Hoffman, 2008). In addition, the are also575

concerns about the equity of raising prices (Duke et al., 2002).576

Legislative strategies correspond to mandatory regulations and restrictions577

on water use, particularly in case of drought (e.g., Kenney et al., 2004; Hensher578

et al., 2006; Brennan et al., 2007; Kenney et al., 2008; Grafton and Ward, 2008).579

Restrictions applied to specific water uses, such as car washing or irrigation,580

have been demonstrated to reduce water consumption up to 30% (Renwick and581

Archibald, 1998; Kanakoudis, 2002). However, they require policy intervention582

to be implemented (Maggioni, 2015) and may be resisted by the community583

(Steg and Vlek, 2009).584

Maintenance strategies consist in operations aiming at reducing or eliminat-585

ing leakages in the water supply networks (e.g., Britton et al., 2008, 2013), which586

generally account for a significant fraction of the water consumption (e.g., EEA587

(2001) estimated losses due to leakage equal to 30% in Italy and 50% in Bul-588

garia). The identification and repair of leakages, which are often associated to589

a small number of households (Roberts, 2005; Mayer and DeOreo, 1999; Mayer590

et al., 2004), allows substantial increase in the efficiency of the water supply591

systems at lower costs with respect to augmenting the water supplied without592
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repairing the network (Garcia and Thomas, 2001; Brooks, 2006).593

Educational strategies aim at engaging the water users by means of public594

awareness and education campaigns (e.g., Geller, 2002; Steg and Vlek, 2009;595

Froes Lima and Portillo Navas, 2012; Anda et al., 2013; Fielding et al., 2013;596

Stewart et al., 2013). The effectiveness of these approaches is case-dependent:597

for example, it is estimated that information campaigns successfully led to a598

reduction of water demand equal to 8% in the period 1989-1996 in California599

(Renwick and Green, 2000), while no impact was observed in UK, where, al-600

though a large campaign involving direct mailing as well as newspaper and radio601

advertisements, only 5% of the 8000 residences involved noticed the campaign602

(Howarth and Butler, 2004). Recent studies however suggest that a relevant wa-603

ter saving potential can be obtained by providing feedbacks to the users about604

their water consumption or suggestions on customized water savings practices605

(e.g., Kenney et al., 2008; Willis et al., 2010; Froehlich et al., 2012; Sonderlund606

et al., 2014).607

Regardless the type of demand-side management strategy implemented, the608

availability of high-resolution data appears crucial both for the design and for609

an accurate evaluation of the effects of such interventions. Studies like Mayer610

et al. (2000) and Mayer et al. (2003), for instance, demonstrate that smart611

metered data and end-use characterization are crucial tools for evaluating the612

effects of retrofitting interventions both in terms of consumption reduction for613

particular end-uses and changes in consumption patterns (i.e., use frequencies614

and volumes). The same stands for price-based approaches, as smart metered615

data can be exploited to differentiate the price elasticity in relation to different616

uses (e.g., outdoor and indoor water consumption), allowing for the design of617

new price schemes, such as Time of Use Tariffs (Cole et al., 2012). In turn, if618

we consider educational campaigns, there is evidence of the potential of high-619

resolution metering in supporting the design of effective feedbacks and assess620

behavioural changes (Froehlich et al., 2012; Stewart et al., 2013; Sonderlund621

et al., 2014).622
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5.1. Research challenges and future directions623

Given the recent improvements in characterizing water users’ behaviors, a624

list of open research challenges exists to improve the designed of personalized625

WDMS:626

1. The first challenge is the identification of more effective strategies for in-627

fluencing the users behaviors. Technological strategies mostly impact on628

a limited number of end-uses (e.g., clothes or dish washers), whereas are629

less effective in inducing water savings in more human-controlled end-uses,630

such as showering or tap water. Moreover, investment inefficiencies can631

limit the effectiveness of these strategies causing the Efficiency Gap that632

is well-known in the energy field (Allcott and Greenstone, 2012). Educa-633

tional intervention and programs can be more effective in controlling these634

latter, for example by providing feedbacks to the users as already applied635

in the energy sector (e.g., Abrahamse et al., 2007; Costanza et al., 2012).636

Yet, there are still open questions on the use of feedbacks to reduce water637

(or energy) consumption, particularly with respect to the most effective638

feedback format, whether the effect persists over time, as well as assess-639

ments of costs and benefits of feedback (Strengers, 2011; Desley et al.,640

2013).641

2. The second main open question relates to the long-term effect of WDMS,642

especially for educational programs and awareness campaigns (e.g., Peschiera643

et al., 2010; Pereira et al., 2013). Although they showed promising results644

during the program and some months afterwards, their effect eventually645

dissipated and water consumption returned to pre-intervention levels after646

approximately 12 months (Fielding et al., 2013).647

3. Finally, further effort should be devoted to examine the role of social648

norms and social influence in promoting water conservation (Rixon et al.,649

2007; Van Der Linden, 2013; Schultz et al., 2014). In particular, the po-650

tential for using gamification platforms and social applications to allow651

users monitoring their consumption coupled with normative information652
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about similar households in their neighborhood should be assessed (Bo-653

gost, 2007; Rizzoli et al., 2014; Harou et al., 2014; Clifford et al., 2014;654

Curry et al., 2014; Savić et al., 2014; Vieira et al., 2014; Kossieris et al.,655

2014; Magiera and Froelich, 2014; Laspidou, 2014). Water utilities can656

indeed take advantage of people’s tendency to mimic the behavior of their657

neighbors in order to target their efforts to “early adopters” and encourage658

technology diffusion (Janmaat, 2013).659

6. Discussion and conclusions660

Designing and implementing effective water demand management strategies661

is becoming more and more important to secure reliable water supply and re-662

duce water utilities’ costs over the next years. The advent of smart meters made663

available new water consumption data at very high spatial and temporal res-664

olution, enabling a more detailed description of the drivers inducing people to665

consume or save water. A better understanding of water users’ behaviors is in-666

deed fundamental to promote water savings actions as it allows (i) selecting the667

specific behaviors to be changed, (ii) examining the factors causing those behav-668

iors, (iii) applying well-tuned interventions, and (iv) systematically evaluating669

the effects of these interventions on the resulting behaviors (Geller, 2002).670

In this paper, we reviewed 134 papers (Table 1) that contributed new method-671

ologies and tools in one or more of the blocks underlying the general 4-step pro-672

cedure represented in Figure 1. A “roadmap” of the main research challenges673

that need to be addressed in order to move the application of smart meters674

forward over the next decade is shown in Table 6 and summarized below:675

1. Data gathering: (i) how to efficiently and reliably manage the big data676

generated by the acquisition of high resolution smart metered flow data;677

(ii) understanding the best information system architecture (i.e., central-678

ized or distributed) to store the data collected by the smart meters; (iii)679

how householder privacy is impacted by collection and communication of680

detailed water-use information;681
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2. Water End-uses characterization: (i) development of automatic proce-682

dures for disaggregating water consumption data at the household level to683

reduce the manual processing and intensive human interactions required684

by current methods; (ii) development of unsupervised methods that avoid685

the effort of acquiring the ground truth for training the algorithms; (iii)686

enhancing the accuracy of the methods in reproducing the timings and687

frequencies of each device usage.688

3. User modeling: (i) matching the analysis of the observed water consump-689

tion profiles identified in the descriptive models with the potential drivers690

generating the observed users’ behaviors; (ii) better exploit the high spa-691

tial resolution of smart metered data to identify water use patterns across692

geographic areas; (iii) validation of the agent-based behavioral models’693

simulation against observed data; (iv) testing of experimental trials and694

gamification platforms to support the validation of the behavioral models695

as well as to retrieve information from the water users; (v) developing696

integrated models for water and water-related energy.697

4. Personalized water demand management strategies: (i) identification of698

more effective strategies for influencing the users behaviors, particularly699

by means of customized feedbacks to the water users providing information700

about their water consumption or suggestions on water savings practices;701

(ii) how to ensure a long-term effect of the implemented water demand702

management strategies, especially for educational programs and awareness703

campaigns; (iii) a better understanding of the role of social norms and704

social influence in promoting water conservation;705

Despite the large number of papers published over the last years, the analysis706

of the studies discussed in this review highlights a clear need to shift research707

efforts from the development of specialized methodologies within each step of708

the procedure toward a more integrated approach that covers all the four phases.709

Indeed, the majority of the studies reviewed (i.e., 89% over 134 papers) provides710

contribution to a single step, whereas only few works go across multiple steps.711
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Moreover, we can observe that the case study locations are not homoge-712

neously distributed: 79% of the papers reviewed are applied in the United States713

(36%) or Australia (43%), while the remaining studies were developed in Eu-714

rope (13%) or Asia (6%) and a single application found in South America and715

no one in Africa. However, we expect that the challenges posed by climate716

change impacts, growing population demands, and constrained sources of wa-717

ter supply will call for the application of integrated residential water demand718

modeling and management in several countries across the world. Finally, we719

foresee that the investments for smart technologies in fields other than urban720

water management (e.g., Fernndez et al., 2014; Niesse et al., 2014; Kramers721

et al., 2014; Rezgui et al., 2014; Zarli et al., 2014) will create opportunities for722

collaborations and common actions among different spheres. Residential wa-723

ter demand modelling and management can benefit from these collaborations724

because smart technologies and networks have already been deployed in other725

fields, like domestic energy, thus representing a benchmark for learning and in-726

tegration. Moreover, the existing nexus between energy and water is expected727

to foster synergies and cross-influences for addressing future demands (WWAP,728

2014; Escriva-Bou et al., 2015b). Integrated, interdisciplinary science will thus729

support policy makers and planners addressing the major sustainability chal-730

lenges placed by modern urban contexts and their evolution towards smart cities731

(Hilty et al., 2006; Laniak et al., 2013; Letcher et al., 2013).732
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gathering end-uses modeling WDMS

Anda et al. (2013) Australia x
Boyle et al. (2013) N/A x
Willis et al. (2013) Australia x x
Froehlich et al. (2011) N/A x x
Wong et al. (2010) Hong Kong x
Froehlich et al. (2009) N/A x
Kim et al. (2008) N/A x
Heinrich (2007) New Zeland x x
Olmstead et al. (2007) USA x x
Kowalski and Marshallsay (2005) UK x x
Evans et al. (2004) N/A x
Mayer et al. (2004) USA x x x
Mori et al. (2004) N/A x
Cordell et al. (2003) Australia x
Sanderson and Yeung (2002) N/A x
Mayer and DeOreo (1999) USA x x
Nguyen et al. (2014) Australia x
Nguyen et al. (2013a) Australia x
Nguyen et al. (2013b) Australia x
Cardell-Oliver (2013a) Australia x
Cardell-Oliver (2013b) Australia x
Aquacraft Inc. (2011) USA x
Beal et al. (2011a) Australia x
DeOreo et al. (2011) USA x
Mead and Aravinthan (2009) Australia x
Willis et al. (2009a) Australia x
Willis et al. (2009b) Australia x
Roberts (2005) Australia x x
Kowalski and Marshallsay (2003) UK x
Loh et al. (2003) Australia x x
DeOreo and Mayer (2000) USA x
DeOreo et al. (1996) USA x
Mayer and DeOreo (1995) USA x
DeOreo and Mayer (1994) USA x
Makki et al. (2015) Australia x
Beal et al. (2014) Australia x
Kanta and Zechman (2014) N/A x
Beal and Stewart (2014) Australia x
Matos et al. (2014) Portugal x
Talebpour et al. (2014) Australia x
Romano et al. (2014) Italy x
Cardell-Oliver and Peach (2013) Australia x
Beal et al. (2013) Australia x
Bennett et al. (2013) Australia x
Cahill et al. (2013) USA x
Cole and Stewart (2013) Australia x
Makki et al. (2013) Australia x
Beal et al. (2011b) Australia x
Gato-Trinidad et al. (2011) Australia x
Grafton et al. (2011) 10 OECD countries x
House-Peters and Chang (2011) N/A x
Lee et al. (2011) USA x
Nasseri et al. (2011) Iran x
Qi and Chang (2011) USA x
SDU (2011) USA x
SJESD (2011) USA x
Willis et al. (2011) Australia x
Blokker et al. (2010) Nederland x
Chang et al. (2010) USA x
Lee and Wentz (2010) USA x
Polebitski and Palmer (2010) USA x
Rosenberg (2010) Jordan x
Russell and Fielding (2010) N/A x
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Table 1: (Continued) Details of the papers reviewed.

Reference Location Data Water User Personalized
gathering end-uses modeling WDMS

Chu et al. (2009) China x
Corbella and Pujol (2009) N/A x
Fox et al. (2009) UK x
Galán et al. (2009) Spain x
Jorgensen et al. (2009) N/A x
Olmstead and Stavins (2009) N/A x
Praskievicz and Chang (2009) Korea x
Balling et al. (2008) USA x
Lee and Wentz (2008) USA x
Alvisi et al. (2007) Italy x
Balling and Gober (2007) USA x
Gato et al. (2007) Australia x
Rosenberg et al. (2007) Jordan x
Wentz and Gober (2007) USA x
Gato (2006) Australia x
Altunkaynak et al. (2005) Turkey x
Fullerton and Elias (2004) USA x
Aly and Wanakule (2004) USA x
Syme et al. (2004) Australia x
Brookshire et al. (2002) N/A x
Zhou et al. (2000) Australia x
Zhou et al. (2002) Australia x
Espey et al. (1997) N/A x
Molino et al. (1996) Italy x
Homwongs et al. (1994) USA x
Lyman (1992) USA x
Griffin and Chang (1991) USA x
Rixon et al. (2007) Australia x
Schneider and Whitlatch (1991) USA x
Miaou (1990) USA x
Maggioni (2015) USA x
Sonderlund et al. (2014) N/A x
Molinos-Senante (2014) Spain x
Britton et al. (2013) Australia x
Fielding et al. (2013) Australia x
Stewart et al. (2013) Australia x
Carragher et al. (2012) Australia x
Cole et al. (2012) Australia x
Froehlich et al. (2012) USA x
Froes Lima and Portillo Navas (2012) Brazil x
DeOreo (2011) USA x
Willis et al. (2010) Australia x
Mead and Aravinthan (2009) Australia x
Steg and Vlek (2009) N/A x
Britton et al. (2008) Australia x
Grafton and Ward (2008) Australia x
Worthington and Hoffman (2008) N/A x
Brennan et al. (2007) Australia x
Brooks (2006) N/A x
Hensher et al. (2006) Australia x
Inman and Jeffrey (2006) N/A x
Howarth and Butler (2004) UK x
Arbués et al. (2003) N/A x
Duke et al. (2002) USA x
Geller (2002) N/A x
Garcia and Thomas (2001) France x
Kanakoudis (2002) Greece x
Renwick and Green (2000) USA x
Renwick and Archibald (1998) USA x
Dandy et al. (1997) Australia x
Gurung et al. (2015) Australia x x
Gurung et al. (2014) Australia x
Suero et al. (2012) USA x x
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Table 1: (Continued) Details of the papers reviewed.

Reference Location Data Water User Personalized
gathering end-uses modeling WDMS

Giacomoni and Berglund (2015) USA x x
Escriva-Bou et al. (2015a) USA x x
Escriva-Bou et al. (2015b) USA x x
Kenney et al. (2008) USA x x
Kenney et al. (2004) USA x
Dalhuisen et al. (2003) N/A x x
Mayer et al. (2003) USA x x x
Mayer et al. (2000) USA x x x
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Table 2: Studies contributing in the data gathering step. Studies gathering data with a

sub-daily resolution are considered as high-resolution, low-resolution otherwise.

Reference Location Resolution Sensor Type Resolution[liters]

Olmstead et al. (2007) USA low - -

Wong et al. (2010) Hong Kong low - -

Anda et al. (2013) Australia low - -

Boyle et al. (2013) N/A high - -

Cordell et al. (2003) Australia high - -

Kim et al. (2008) N/A high accelerometer 0.0150

Mayer and DeOreo (1999) USA high flow meter 0.014-0.029

Evans et al. (2004) N/A high accelerometer 0.0150

Mori et al. (2004) N/A high ultrasonic 0.0018

Sanderson and Yeung (2002) N/A high ultrasonic 0.0018

Froehlich et al. (2009) N/A high pressure 0.0600

Froehlich et al. (2011) N/A high pressure 0.0600

Kowalski and Marshallsay (2005) UK high flow meter 0.014-0.029

Heinrich (2007) New Zeland high flow meter 0.014-0.029

Willis et al. (2013) Australia high flow meter 0.014-0.029

Mayer et al. (2004) USA high flow meter 0.014-0.029

Mayer et al. (2000) USA high flow meter 0.014-0.029

Mayer et al. (2003) USA high flow meter 0.014-0.029
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Table 3: Studies contributing in the water end-uses characterization step.

Reference Location Disaggregation algorithm Number of households

Froehlich et al. (2011) N/A HydoSense 5

Heinrich (2007) New Zeland Trace Wizard 12

Mayer et al. (2004) USA Trace Wizard 33

DeOreo et al. (1996) USA Trace Wizard N/A

Kowalski and Marshallsay (2003) UK Identiflow 250

Kowalski and Marshallsay (2005) UK Identiflow N/A

Beal et al. (2011a) Australia SEQREUS 1500

DeOreo and Mayer (1994) USA Trace Wizard 16

Mayer and DeOreo (1995) USA Trace Wizard 16

DeOreo and Mayer (2000) USA Trace Wizard 10

Loh et al. (2003) Australia Trace Wizard 720

Roberts (2005) Australia Trace Wizard 100

Mead and Aravinthan (2009) Australia Trace Wizard 10

Willis et al. (2009a) Australia Trace Wizard 200

Willis et al. (2009b) Australia Trace Wizard 151

Aquacraft Inc. (2011) USA Trace Wizard 209

Nguyen et al. (2014) Australia SEQREUS 3

Nguyen et al. (2013a) Australia SEQREUS 252

Nguyen et al. (2013b) Australia SEQREUS 3 (out of 252)

Mayer et al. (2000) USA Trace Wizard 37 (out of 1188)

Mayer et al. (2003) USA Trace Wizard 33

DeOreo (2011) USA Trace Wizard 1000

Cardell-Oliver (2013a) Australia Water Use Signature Patterns 11000

Cardell-Oliver (2013b) Australia Water Use Signature Patterns 187
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Table 4: Studies contributing in the user modeling step. Legend for multi-

variate analysis approaches: E = economic-driven; GS = geo-spatial; P =

psychographic driven; AR = autoregressive. Legend for behavioural models

approach: single = single user model; multi = multi-user model.

Reference Location Modeling Multivariate Behavioural Spatial
approach analysis model scale

Loh et al. (2003) Australia descriptive - - household
Gato-Trinidad et al. (2011) Australia descriptive - - household
SDU (2011) USA descriptive - - household
SJESD (2011) USA descriptive - - household
Cardell-Oliver and Peach (2013) Australia descriptive - - household
Beal et al. (2013) Australia descriptive - - household
Beal and Stewart (2014) Australia descriptive - - household
Gurung et al. (2015) Australia descriptive - - household
Gurung et al. (2014) Australia descriptive - - household
Beal et al. (2014) Australia descriptive - - household
Cole and Stewart (2013) Australia descriptive - - household
Willis et al. (2011) Australia descriptive - - household
Beal et al. (2011b) Australia descriptive - - household
Maggioni (2015) USA predictive E+GS+P single household
Makki et al. (2015) Australia predictive E+P single household
House-Peters and Chang (2011) N/A predictive E+GS+P single+multi N/A
Schneider and Whitlatch (1991) USA predictive E - district
Lyman (1992) USA predictive E+GS+P single household
Espey et al. (1997) N/A predictive E - N/A
Dalhuisen et al. (2003) N/A predictive E - N/A
Miaou (1990) USA predictive GS - urban
Polebitski and Palmer (2010) USA predictive GS - census tracts
Lee et al. (2011) USA predictive GS - household
Olmstead et al. (2007) USA predictive E - household
Willis et al. (2013) Australia predictive P - household
Homwongs et al. (1994) USA predictive AR - urban
Molino et al. (1996) Italy predictive AR - urban
Altunkaynak et al. (2005) Turkey predictive AR - urban
Alvisi et al. (2007) Italy predictive AR - household
Nasseri et al. (2011) Iran predictive AR - urban
Brookshire et al. (2002) N/A predictive E - N/A
Olmstead and Stavins (2009) N/A predictive E - N/A
Rosenberg (2010) Jordan predictive E - household
Qi and Chang (2011) USA predictive E - urban
Griffin and Chang (1991) USA predictive GS - district
Zhou et al. (2000) Australia predictive GS - urban
Zhou et al. (2002) Australia predictive GS - district
Fullerton and Elias (2004) USA predictive GS - urban
Aly and Wanakule (2004) USA predictive GS - urban
Gato et al. (2007) Australia predictive GS - urban
Balling and Gober (2007) USA predictive GS - urban
Balling et al. (2008) USA predictive GS - census tracts
Lee and Wentz (2008) USA predictive GS - census tracts
Praskievicz and Chang (2009) Korea predictive GS - urban
Corbella and Pujol (2009) N/A predictive GS - N/A
Chang et al. (2010) USA predictive GS - household
Lee and Wentz (2010) USA predictive GS - urban
Syme et al. (2004) Australia predictive P - household
Wentz and Gober (2007) USA predictive P - household
Fox et al. (2009) UK predictive P - household
Russell and Fielding (2010) N/A predictive P - N/A
Grafton et al. (2011) 10 OECD countries predictive P - household
Suero et al. (2012) USA predictive P - household
Matos et al. (2014) Portugal predictive P - household
Talebpour et al. (2014) Australia predictive P - household
Romano et al. (2014) Italy predictive P - water utility
Gato (2006) Australia predictive GS single urban
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Table 4: (Continued) Studies contributing in the user modeling step.

Reference Location Modeling Multivariate Behavioural Spatial
approach analysis model scale

Rosenberg et al. (2007) Jordan predictive GS+P single household
Blokker et al. (2010) Nederland predictive P single household
Cahill et al. (2013) USA predictive P single household
Bennett et al. (2013) Australia predictive GS+E+P single household
Rixon et al. (2007) Australia predictive E+P multi household
Galán et al. (2009) Spain predictive P multi household
Chu et al. (2009) China predictive E+P multi household
Kanta and Zechman (2014) N/A predictive GS+P multi household
Jorgensen et al. (2009) N/A predictive P - household
Kenney et al. (2008) USA predictive E+GS+P single household
Makki et al. (2013) Australia predictive E+P single household
Giacomoni and Berglund (2015) USA predictive GS multi urban
Escriva-Bou et al. (2015a) USA predictive P single household
? USA predictive P single household
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Table 5: Studies contributing in the personalized WDMS step. Different WDMS are consid-

ered: E = educational; F = financial; L = legislative; M = maintenance; T = technological.

Reference Location Type of WDMS Personalized

Maggioni (2015) USA L+T+F x

Inman and Jeffrey (2006) N/A T+F+L+M+E

Britton et al. (2008) Australia M x

Dalhuisen et al. (2003) N/A E

Mayer and DeOreo (1999) USA M x

Mayer et al. (2004) USA T+M x

Roberts (2005) Australia M x

Suero et al. (2012) USA T x

Mayer et al. (2000) USA T x

Mayer et al. (2003) USA T x

DeOreo (2011) USA T x

Dandy et al. (1997) Australia F

Arbués et al. (2003) N/A F

Molinos-Senante (2014) Spain F

Worthington and Hoffman (2008) N/A F

Kanakoudis (2002) Greece F

Duke et al. (2002) USA F

Hensher et al. (2006) Australia L x

Brennan et al. (2007) Australia L

Grafton and Ward (2008) Australia L

Renwick and Archibald (1998) USA L x

Steg and Vlek (2009) N/A L-E x

Britton et al. (2013) Australia M x

Garcia and Thomas (2001) France M

Brooks (2006) N/A M

Fielding et al. (2013) Australia E x

Renwick and Green (2000) USA E

Howarth and Butler (2004) UK E x

Geller (2002) N/A E x

Willis et al. (2010) Australia E x

Froehlich et al. (2012) USA E x

Sonderlund et al. (2014) N/A E x

Kenney et al. (2004) USA L

Kenney et al. (2008) USA L+F+E x

Mead and Aravinthan (2009) Australia T x

Froes Lima and Portillo Navas (2012) Brazil T+E x

Carragher et al. (2012) Australia T x

Cole et al. (2012) Australia F x

Stewart et al. (2013) Australia E x

Gurung et al. (2015) Australia T x

Giacomoni and Berglund (2015) USA L+T

Escriva-Bou et al. (2015a) USA T+E

Escriva-Bou et al. (2015b) USA T+E
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Table 6: Main research challenges for the use of smart meters in residential water demand

modeling and management.

1) Data gathering 2) Water end-uses characterization 3) User modeling 4) Personalized WDMS

1.1) Management of big 2.1) Automatic 3.1) Matching observed 4.1) More effective behavioral

data disaggregation water consumption profiles influence via customized

procedures (i.e., no with potential drivers of feedbacks

manual processing) users’ behaviors

1.2) Centralized or 2.2) Unsupervised 3.2) Identification of spatial 4.2) Long-term effect of WDMS

distributed information disaggregation patterns across geographical

system algorithms (i.e., no areas

ground truth)

1.3) Impacts on 2.3) Higher accuracy in 3.3) Validation of the agent- 4.3) Social norms and social

household privacy reproducing timings and based behavioral models influence

frequencies

1.4) Real world scalability 3.4) Testing experimental

of high-resolution networks trials and gamification

platforms

3.5) Developing integrated

models for water and

water-related energy
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Figure 1: Flowchart of the general procedure for studying residential water demand manage-

ment.
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Figure 2: Five-years count of the 134 publications reviewed in this study.
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