
Implementing a Distributed Mobile Calculus

Using the IMC Framework 1

Lorenzo Bettini, Rocco De Nicola

Daniele Falassi and Michele Loreti2

Dipartimento di Sistemi e Informatica
Università di Firenze

Firenze, Italy

Abstract

In the last decade, many calculi for modelling distributed mobile code have been proposed. To assess their
merits and encourage use, implementations of the calculi have often been proposed. These implementations
usually consist of a limited part dealing with mechanisms that are specific of the proposed calculus and of
a significantly larger part handling recurrent mechanisms that are common to many calculi. Nevertheless,
also the “classic” parts are often re-implemented from scratch. In this paper we show how to implement a
well established representative of the family of mobile calculi, the distributed π-calculus, by using a Java
middleware (called IMC - Implementing Mobile Calculi) where recurrent mechanisms of distributed and
mobile systems are already implemented. By means of the case study, we illustrate a methodology to
accelerate the development of prototype implementations while concentrating only on the features that are
specific of the calculus under consideration and relying on the common framework for all the recurrent
mechanisms like network connections, code mobility, name handling, etc.

Keywords: Code Mobility, Language Implementation, Network Programming

1 Introduction

Prompted by the impressive development of networks technologies, in the last

decade there has been a high number of proposals of calculi for modelling and

reasoning about distributed systems that also encompass mobility of code and pro-

cesses. These formalisms, in general, provide constructs and mechanisms at different

abstraction levels, for modelling the execution contexts of the network where ap-

plications roam and run, for coordinating and monitoring the use of resources, for

expressing process communication and mobility, and for specifying and enforcing

security policies.

1 The work presented in this report has been partially supported by EU Project Software Engineering for
Service-Oriented Overlay Computers (SENSORIA, contract IST-3-016004-IP-09).
2 Email:{bettini,denicola,falassi,loreti}@dsi.unifi.it

Electronic Notes in Theoretical Computer Science 181 (2007) 63–79

1571-0661/$ – see front matter © 2007 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2007.01.054

http://www.elsevier.com/locate/entcs

The ancestor of these calculi is the π-calculus [15], a very simple formalism

relying on a small number of combinators, that nevertheless can be used to model

non trivial systems. The π-calculus, however, does not have explicit primitives for

modelling distribution and has a somehow too basic communication mechanism.

There have thus been direct generalizations of π-calculus such as the Distributed

Join Calculus [8], the Seal Calculus [19], Nomadic Pict [18], Dπ-calculus [12], lsdπ-

calculus [16]. But also calculi based on other approaches such as the Ambient

calculus [7] or the Linda model [11]. Among the calculi based on Ambient we

mention Safe Ambients [14] and Boxed Ambients [6]. Among the calculus based on

Linda we have many variants of Klaim [2].

Very often to assess the quality of the proposed new calculi the different research

groups have also produced prototype implementations of the calculi that could be

used as kernel programming languages for mobile distributed systems. Prompted by

the growing number of experiments and from the need of easing the implementation

phase, we have implemented a generic Java framework called IMC (Implementing

Mobile Calculi) that can be used as a kind of middleware for the implementation

of different distributed calculi [3]. IMC aims at providing the necessary tools for

implementing the run-time system of new languages directly derived from calculi

for mobility. Our aim has been that of enabling the implementer of a new language

to concentrate on the parts that are really specific of his/her system, and to rely on

our framework for the recurrent standard mechanisms for distribution and mobility

thus avoiding to deal with low-level details. Java has been chosen as the production

language because it provides many useful features for building network applications

with mobile code (indeed, many existing implementations of mobile and distributed

systems are written in Java).

IMC provides means for transparent code mobility, for building communica-

tion protocols by composing sub-components dynamically and for managing node

topology. All these mechanisms are rendered as abstract as possible to ease, e.g.,

switching from a specific communication protocol to another, without modifying

the other parts of an application. IMC can be straightforwardly used if no specific

advanced feature is needed. A user can however customize parts of the framework

by providing its own implementations for the interfaces used in the package. Cus-

tomizations can take advantage of design patterns such as factory method, abstract

factory, template method and strategy [10] that are used throughout the packages.

The framework was designed to achieve both transparency and adaptability.

For instance, for code mobility, the framework provides all the basic functional-

ities for making code mobility transparent to the programmer: all issues related

to code marshalling and code dispatch are handled automatically by the classes of

the framework. Its components are designed to deal with object marshalling, code

migration, and dynamic loading of code. The framework can also be adapted to

deal with many network topologies (flat, hierarchical, peer-to-peer networks, etc.)

and with message dispatching and forwarding. To the best of our knowledge there

are no others similar general frameworks available in the literature.

In this paper we shall describe a practical use of IMC by showing how it can

L. Bettini et al. / Electronic Notes in Theoretical Computer Science 181 (2007) 63–7964

be used to implement a well established representative of the family of mobile cal-

culi, the distributed π-calculus (Dπ). We shall first use IMC to build the runtime

support for Dπ then we will use it for implementing JDpi, the generalization of the

calculus to a simple programming language. Building the run time support will

require first analyzing the distribution model, the communication mechanisms and

the mobility aspects of the calculus to determine the part of IMC to be used, and

then writing the appropriate code to interact with IMC and to implement specific

parts. The main intent of the paper is to illustrate, by means of the case study, a

possible methodology to accelerate the development of prototype implementations

while concentrating only on the features that are specific of the calculus under con-

sideration and relying on the common framework for all the recurrent mechanisms

like network connections, code mobility, name handling, etc.. Please notice that

other Dπ constructs, like parallel composition or fresh name generation, can be

implemented using standard Java primitives like, for instance, multi-threading.

The rest of the paper is organized as follows. Section 2 provides a brief overview

of IMC, Section 3 presents Dπ while in Section 4 the actual implementation of

JDpi is presented. The final section contains an example of JDpi program and

some concluding remarks.

2 The IMC framework

We now sketch the main functionalities and interfaces of the framework. For the

sake of simplicity, we will not get into deep details. IMC consists of three main

subpackages: protocols, mobility and topology that deal with communication

protocols, code mobility and network topology, respectively. We present the IMC

components in the order we suggest to use them when implementing a run-time

system for a mobile calculus. The first thing the developer should think of is the

implementation of the communication protocol; then he/she can implement the

node functionalities by using the communication protocols. Finally, he can imple-

ment the functionalities of processes that will rely on the features provided by the

implementation of nodes. Of course, this is not a mandatory schema, but we found

this path very useful when using IMC (see also Section 4).

2.1 Protocols

When implementing a distributed system, one of the system-specific issues is the

choice of the communication protocol, which may range from high-level protocols to

protocols closer to hardware resources. A generic communication framework should

permit introducing support for new protocols with little effort, without need to

re-implement a new communication library. Thus, IMC provides tools to define

customized protocol stacks, which are viewed as a flexible composition of micro-

protocols, and enables to achieve adaptable forms of communication transparency,

which are needed when implementing an infrastructure for global computing.

In IMC, a network protocol is viewed as an aggregation of protocol states: a

high-level communication protocol can indeed be described as a state automaton.

L. Bettini et al. / Electronic Notes in Theoretical Computer Science 181 (2007) 63–79 65

The programmer implements a protocol state by extending the ProtocolState

abstract class and by providing the implementation for the method enter. The

Protocol class aggregates the protocol states and, following the design patter “tem-

plate method” [10], provides the method start that will execute each state at a time,

starting from the first protocol state up to the final one (each state defines the next

state to enter). Thus, the programmer must simply provide the implementation of

each state, put them in a protocol instance, and then start the protocol.

The protocol states abstract away from the specific communication layers. This

enables re-using of a protocol implementation independently from the underlying

communication means: the same protocol can then be executed on a TCP socket,

on UDP packets or even on streams attached to a file (e.g., to simulate a protocol

execution). This abstraction is implemented by specialized streams: Marshaler

(for writing) and UnMarshaler (for reading). These streams provide high-level and

encoding-independent representations of information to be sent or received. They

are basically an extension of standard DataOutput and DataInput Java streams,

with the addition of means to send and receive mobile code (explained later) and

serialize and deserialize objects.

The data in these streams can be “pre-processed” by some customized protocol

layers that remove some information from the input and add some information to

the output: typically this information is protocol-specific headers removed from

the input and added to the output. The base class ProtocolLayer deals with

these functionalities, and can be specialized by the programmer to provide his own

protocol layer. These layers are then composed into a ProtocolStack object that

ensures the order of preprocessing passing through all the layers in the stack. Each

layer is independent and the composition of layers in a protocol stack takes place at

run-time. For instance, the programmer can add a layer that removes a sequence

number from an incoming packet and adds the incremented sequence number into

an outgoing packet. The framework also provides functionalities to easily implement

tunnels, e.g., to implement a layer to tunnel an existing protocol into HTTP. Figure 1

shows a protocol made up of 4 states that is using a protocol stack made up of 3

layers, the lowest one being the actual TCP socket layer, and the middle one being

an HTTP tunneling layer.

To read something from a stack, a protocol state must obtain an UnMarsha-

ler instance from the stack by calling the method createUnMarshaler: this allows

the stack layers to retrieve their own headers. When the state finished to read, it

must release the Marshaler by calling releaseUnMarshaler. In the same way, to

write information into a stack, the state must obtain a Marshaler instance from

the stack by calling the method createMarshaler, so that the stack layers can add

their own headers into the output. When the state finished to write, it must notify

the stack by calling the method releaseMarshaler, in order to flush the output

buffer. Typically, these stream objects will be created by the lowest layer, e.g., in

case of a TCP socket, it will be a stream attached to the socket itself, while, in case

of UDP packets, it will be a buffered stream attached to the datagram contents.

Low layers for TCP and UDP are already provided by the framework. Here are

L. Bettini et al. / Electronic Notes in Theoretical Computer Science 181 (2007) 63–7966

Fig. 1. The interaction between protocol states and protocol stack.

the typical instruction sequences for writing (left) and reading (right) by using the

mechanisms we described so far:

Marshaler m =
protocolStack.createMarshaler();

m.setMigratingCodeFactory(
new JavaByteCodeMigratingCodeFactory());

m.writeStringLine("obj");
m.writeInt(obj.size());
m.writeMigratingCode(obj);
protocolStack.releaseMarshaler(m);

UnMarshaler u =
protocolStack.createUnMarshaler();

u.setMigratingCodeFactory(
new JavaByteCodeMigratingCodeFactory());

s = u.readStringLine();
i = u.readInt();
obj = u.readMigratingCode();
protocolStack.releaseUnMarshaler(u);

In particular, writeMigratingCode and readMigratingCode deal with code mobil-

ity: this is transparently handled by the subpackage mobility that will take care

of serializing an object together with its byte-code, upon writing, and of dynam-

ically loading received byte-code, upon reading (we refer the reader to [1] for the

details of this subpackage). By providing a specialized MigratingCodeFactory, the

programmer can customize the code migration mechanism.

2.2 Nodes and Processes

A participant in a network is an instance of the class Node of the package topology.

A node is also a container of running processes that can be thought of as the

computational units. The framework provides all the means for a process to access

the resources contained in a node and to migrate to other nodes. A process is

an instance of a subclass of the class NodeProcess that implements the JavaMi-

gratingCode base class (this allows to easily migrate a process to a remote site),

and can be added to a node for execution with the method addProcess of the

class Node. Thus, a node keeps track of all the processes that are currently in

execution. A concurrent process is started by calling start on the NodeProcess

thread; the final implementation of run will initialize the process structure (not

detailed here) and then invoke execute, the abstract method in NodeProcess that

must be implemented by the programmer. Actually, a process can interact with

L. Bettini et al. / Electronic Notes in Theoretical Computer Science 181 (2007) 63–79 67

the node it is running on only through a NodeProxy, which ensures security by

restricting the node interface visibility to a subset. If the class Node is extended

by a derived class with new functionalities that we want to make available to the

processes, we will also have to extend NodeProxy (Section 4.2 uses this technique).

The framework already provides some implemented protocols to deal with ses-

sions. The concept of session is logical, since it can then rely on a physical con-

nection (e.g., TCP sockets) or on a connectionless communication layer (e.g., UDP

packets). A SessionManager instance will keep track of all the sessions. This can

be used to implement several network topology structures: a flat network where

only one server manages connections and all the clients are at the same level; a hi-

erarchical network where a client can be in turn a server and where the structure of

the network can be a tree or, in general, an acyclic graph of nodes; or, a peer-to-peer

network.

A different kind of process, called node coordinator, is allowed to execute privi-

leged actions, such as establishing a session, accepting connections from other nodes,

closing a session, etc. Standard processes are not given these privileges, and this

allows to separate processes that deal with node configurations from standard pro-

grams executing on nodes. For these processes a specialized class is provided called

NodeCoordinator.

A Session instance is identified by two SessionId objects, one indicating the

local end and the other one indicating the remote end. A SessionId contains

information about the “location” or “address” of a node; this concept depends on the

specific communication medium: for instance, for an IP communication it will be a

string of the shape IP:port. Moreover, it contains information about the specific low

level communication protocol. For instance, "udp-myhost.com:9999" represents a

UDP communication with the host "myhost.com" on port 9999. Upon establishing

a session, the SessionId is used to determine the low level communication layer.

Thus, switching from a communication layer to another is only a matter of changing

the SessionId, while all the other classes in IMC are independent from this, and

do not need to be changed. A Session can be established by using the method

connect,, of class Node, specifying the SessionId of the remote end; a session

request can be accepted by using the method accept, by specifying the local Ses-

sionId. These methods return a ProtocolStack object (where the lowest layer

is already set as explained above); this can then be customized by adding specific

ProtocolLayer objects. Finally it can be passed to a Protocol instance that will

run upon it. The following is a code snippet executed by a NodeCoordinator that

accepts a session request using a specific SessionId, adds an HTTP tunnel layer,

and starts a specific communication protocol (a NodeCoordinator on a node that

establishes the session will perform similar actions, but will use connect):

ProtocolStack s = accept(id);
s.insertLayer(new HTTPTunnelLayer());
Protocol p = new MyProtocol(s);
p.start();

Finally, inter-objects communication takes place via the event based functionali-

L. Bettini et al. / Electronic Notes in Theoretical Computer Science 181 (2007) 63–7968

Systems

M, N ::= 0 Empty

| M |N Composition

| (νe).N Restriction

| l
ˆ̂
P

˜̃
Agent

Threads

P, Q, R ::= stop Termination

| P |Q Composition

| (νe)P Restriction

| go u.P Movement

| u!〈v〉.P Output

| u?(X).P Input

| rec A.P Recursion

| A Process Identifier

| if u = v then P else Q Matching

Names

e, f ::= h, k, l, . . . Locations

| a, b, c . . . Resource

Variables

X, Y ::= x Variable

| X@z Located Pattern

Values

u, v, w ::= bv Basic Value

| e Name

| x Variable

| u@w Located Value

Table 1
Dπ syntax

ties provided by IMC. In particular, most classes of the framework are endowed with

event generation capabilities (e.g., ProtocolState, ProtocolLayer, Node, etc.).

This allows to keep the classes loosely coupled and communications among objects

in the framework highly flexible. It is then easy to intercept, e.g., new connection

requests or connection failures. In the implementation of JDpi, events are used to

deal with commands received by remote sites (see Section 4.1).

3 Dπ a Language for Distributed Processes

Dπ, introduced by Hennessy and Riely [12], is a locality-based extension of the π-

calculus [15] where processes are distributed over a set of nodes (or locations) each

of which is univocally identified by a name (or location).

Like in the π calculus, processes interact via message passing over channels.

However, only local communication is permitted: Two processes can interact only

if they are located at the same node. A process can change its execution environment

performing action go . Dπ does not assume a specific network topology. Indeed,

this aspect is subspecified in the standard calculus.

Dπ syntax is defined in Table 1. There, and in the rest of this paper, a, b, c . . .

are used as channel names, and h, k, l, . . . as location names; while e, f, . . . are used

when the distinction does not play any role.

The main syntactic category is that of systems (N , M , . . .). Intuitively a Dπ

system consists of a set of agents, l
[[
P

]]
, running independently in parallel, where l

is the location where thread P is running. 0 is used to describe the empty system,

i.e. the system where no agent is running. Systems are composed using parallel

composition (N |M), and can share private names (νe.N).

Threads (P , Q, . . .) are essentially π-calculus processes that can additionally

create new locations or names ((νe)P) and migrate to other locations (go l.P).

The conditional (if) corresponds to the matching and mismatching operators of the

L. Bettini et al. / Electronic Notes in Theoretical Computer Science 181 (2007) 63–79 69

(Comm) l
ˆ̂
a!〈v〉.P

˜̃
|l

ˆ̂
a?(X).Q

˜̃
�→ l

ˆ̂
P

˜̃
|l

ˆ̂
Q[v/X]

˜̃

(Go) l
ˆ̂
go k.P

˜̃
�→ k

ˆ̂
P

˜̃
(Par)

N �→ N ′

M | N �→ M | N ′

(Eq1) l
ˆ̂
if (u = u) then P else Q

˜̃
�→ l

ˆ̂
P

˜̃
(Eq2)

u �= v

l
ˆ̂
if (u = v) then P else Q

˜̃
�→ l

ˆ̂
Q

˜̃

(Restr)
N �→ N ′

(νe)N �→ (νe)N ′

(Cong)
N ≡ M M �→ M ′ M ′ ≡ N ′

N �→ N ′

Table 2
Reduction Relation for Dπ

l
ˆ̂
stop

˜̃
≡ 0 l

ˆ̂
P |Q

˜̃
≡ l

ˆ̂
P

˜̃
|l

ˆ̂
Q

˜̃

l
ˆ̂
recA.P

˜̃
≡ l

ˆ̂
P [recA.P/A]

˜̃
l
ˆ̂
(νe)P

˜̃
≡ (νe)l

ˆ̂
P

˜̃

M |(νe)N ≡ (νe)(M |N) if e /∈ fn(M)

Table 3
Structural Congruence for Dπ

π-calculus. The definitions of free and bound names are similar to those for the

π-calculus. By convention, go l.P |Q will stand for (go l.P)|Q. Like in π-calculus,

Dπ threads interact with each other via name passing over channels. However,

differently from π-calculus, names can be located. Indeed, a@l can be used to relate

channel a to locality l.

The semantics for Dπ is defined by reduction relation �→ defined in Table 2,

where the structural congruence induced by rules of Table 3 is used. Agent migration

is performed using rule (Go) that allows an agent located at l to migrate to location

k. This transition can occur only when k is a known locality. Rule (Comm) permits

co-located processes to interact via a channel a.

The distribution model of Dπ is an extremely simple flat locality structure. If

a node wants to spawn an agent remotely, it needs only to know the location of

the remote node. This means that the knowledge of network topology structure

is completely hidden to programmers (of Dπ processes). In [9] a variant of Dπ

in which individual nodes may fail, or the links among them may be created and

broken. The original language, Dπ, is extended with a new construct that permits

processes to detect and react to these failures. In DpiF an explicit notion of link is

introduced. Indeed, a network is evaluated considering a given topology that stores

information about the state of nodes and the connections between them.

4 From Dπ to JDpi

In this section we present the implementation of Dπ, JDpi. The implementation

of a calculus typically consists of a run-time system (a sort of abstract machine)

implemented in a language such as Java, and of a compiler that, given a program

written in the programming language based on the calculus, produces code (Java

in our case) that uses the run-time system above. In this paper we concentrate

on the implementation of the run-time system in Java using IMC. Even without

using the compiler, JDpi allows the programmer to write distributed and mobile

L. Bettini et al. / Electronic Notes in Theoretical Computer Science 181 (2007) 63–7970

Java applications based on the Dπ paradigm.

A Dπ system is implemented as a set of distributed IMC nodes, each of which

implements a Dπ location, that communicate using a specific protocol (that permits

sending a process to a remote node, and that deals with connections among nodes).

In the rest of this section we first introduce the protocol used by remote participants

to interact. Then we show how Dπ location can be implemented using the IMC

class Node. Finally, we present an implementation for Dπ threads.

4.1 Protocol

In this section we describe the protocol used by the participants of a JDpi network.

First, messages exchanged by these participants are presented, hence the Protocol

used by each network component is introduced. The implementation of this part of

the framework is considerably simplified by the use of both mobility and protocol

packages of IMC.

In Dπ two nodes can interact only when a process is spawned from one to the

other. However, in JDpi, other kinds of interactions between two nodes can occur.

For instance, two nodes interact when the topology of the network changes (a new

node gets connected or an existing one disconnects). All interactions are modelled

as a command that is sent from one node to another in order to achieve a specific

task. We thus introduce the abstract class JDpiCommand that models a generic

request. This class will be specialized to implement concrete commands.

public abstract class JDpiCommand extends JavaMigratingCode {
public void setCommandId(String id) { ... }
public String getCommandId() { ... }
public abstract JDpiReply execute(JDpiNodeProxy proxy);

}

Each JDpiCommand is identified by a string, which is set automatically by the

framework using method setCommandId when a command is sent remotely. This

identifier is used for communicating the result of command execution. A concrete

command has to implement method execute. This method is invoked when the

command is received remotely in order to achieve the command task. For instance,

in the case of a request for executing a thread remotely, the method executewill add

the spawned process to the current node. As explained in Section 2, the parameter

proxy permits using the target node without interacting directly with it. Since

a command can contain a process to execute at a remote site, where its code is

likely not to be available, it is crucial to use code mobility features; for this reason

JDpiCommand extends the IMC base class JavaMigratingCode. Then, a command,

together with its code, can be easily transmitted over the network as follows:

Marshaler m = protocolStack.createMarshaler();
m.setMigratingCodeFactory(new JavaByteCodeMigratingCodeFactory());
m.writeStringLine(command.getProtocolString());
m.writeMigratingCode(command);
protocolStack.releaseMarshaler(m);

The method execute returns a JDpiReply. This object is sent to the remote

participant that originated the command for communicating the result of the exe-

L. Bettini et al. / Electronic Notes in Theoretical Computer Science 181 (2007) 63–79 71

cution.

public class JDpiReply implements Serializable {
public boolean getResult() { ... }
public String getDetails() { ... }

}

The method getResult() returns true if the command has been executed with-

out errors, false otherwise (in this case the method getDetails() permits obtain-

ing a string representation of the occurred error).

The Protocol used by participants of a JDpi system contains three states: JDpi-

ProtocolState, CommandState and NotifyState. JDpiProtocolState is the main

state. An object of this class selects the next state of the protocol by considering

the value read from the underlying protocol stack. Accepted values are "COMMAND",

"NOTIFY" and "STOP". When the string "COMMAND" is received a CommandState is

activated. This is an inner class of JDpiProtocolState that when executed regis-

ters the command read from the protocol stack as a new event in the system. This

permits notifying all the registered components, that will execute the appropriate

handler to manage the command. After that, the protocol goes back to the main

state. The string "NOTIFY" precedes JDpiReply that contains the execution result

of a previous sent command. When such a string is received, a NotifyState is ac-

tivated. This state, using the identifier read from the protocol stack, communicates

the result of command execution to the sender of the command. Finally, when a

string "STOP" is received, the protocol terminates.

This can be easily achieved by using the protocol state compositional features

of IMC: in this case we use the class ProtocolStateSwitch that reads a request

string from the input and selects the next state corresponding to the read string (it

also deals with errors due to unrecognized requests). The user of this class has to

associate a received string with the corresponding state by using addRequestState.

Without entering into deep details, it should be straightforward to understand how

the above described JDpi protocol is implemented by the following code:

public class JDpiProtocolState extends ProtocolSwitchState {
public JDpiProtocolState(WaitingForNotification waiting, EventManager em) {

addRequestState("COMMAND", new CommandState(em));
addRequestState("NOTIFY", new NotifyState(waiting));
addRequestState("STOP", Protocol.END);
setNextState(Protocol.START);

}
...

}

4.2 Nodes

A Dπ node provides an abstraction for a computational environment that hosts

execution of Dπ threads and provides basic functionalities for thread interactions

via channel communication. The IMC framework provides the topology package,

and in particular the class Node. An object of this class implements a generic

participant in the network and acts as a container of running processes. Moreover,

IMC provides all the means for a process to access the resources contained in a

L. Bettini et al. / Electronic Notes in Theoretical Computer Science 181 (2007) 63–7972

node (via a proxy) and to migrate to other nodes.

A general implementation of a Dπ node is provided by JDpiAbstractNode.

This class extends Node by providing new primitives for process interactions and

for threads migration. To refer to a JDpiAbstractNode, class JDpiLocality is

introduced. Since this class extends class SessionId, a JDpiLocality object can

be used to retrieve information about the “location” or “address” of a remote node.

Class JDpiAbstractNode implements primitives for channel communication:

public <T> void out(JDpiChannelName<T> c, T v)
public <T> T in(JDpiChannelName<T> c)

Channels are referenced using class JDpiChannelName<T> that enables the iden-

tification of a channel used to exchange values of type T. The method out permits

sending an object of type T over the channel referenced by c. Conversely, method

in permits retrieving an object of type T from the channel referenced by c.

JDpiAbstractNode also provides support for process mobility. A process can be

spawned to be evaluated remotely using the following method:

public JDpiReply go(JDpiProcess p, JDpiLocality l) throws IMCException {
if (self.sameId(l)) {
this.addNodeProcess(p);
return new JDpiReply(true);

}
JDpiCommand command = new JDpiEvalCommand(p, l);
return sendCommand(command, l);

}

This method permits spawning a JDpiProcess (see below) to be evaluated remotely

at the node referenced by the JDpiLocality l. If l refers to the current location

(referenced by field self), the process is added to the current node. Otherwise, p

has to be evaluated remotely; in this case, the process is first encapsulated within

a JDpiEvalCommand. This class, which extends JDpiCommand, represents a request

of executing a given process.

JDpiAbstractNode provides two methods that permits sending and executing a

JDpiCommand:

protected JDpiReply sendCommand(JDpiCommand command, JDpiLocation l)
throws ProtocolException {
ProtocolStack protocolStack = getNodeStack(l);
JDpiSender sender;
sender = new JDpiSender(getNewId(), command, protocolStack);
sender.send();
return sender.getReply();

}

public JDpiReply executeCommand(JDpiCommand c) {
return c.execute(createNodeProcessProxy());

}

The method executeCommand simply invokes method execute on the command

instance c with the proxy for the current node. A command is sent remotely using

a JDpiSender. This is an object that sends a command over a given protocol stack

(sender.send()) and then waits for the result (sender.getReply()).

JDpiAbstractNode overrides method createNodeProxy() of the IMC class No-

L. Bettini et al. / Electronic Notes in Theoretical Computer Science 181 (2007) 63–79 73

de. Indeed, a JDpiNodeProxy (which extends NodeProcessProxy) is returned to

allow processes to use the additional functionalities provided by JDpiAbstractNode,

with respect to Node.

Since no specific network topology is considered, JDpiAbstractNode is an ab-

stract class that provides three abstract methods:

public ProtocolStack getNodeStack(JDpiLocality l)
public JDpiReply forwardCommand(JDpiCommand command, JDpiLocality l)
public void start()

Method getNodeStack permits retrieving the ProtocolStack (see Section 2) to

interact with the node identified by l. Please notice that the node referenced by

l might not be directly connected to the local one. In this case, the actual imple-

mentation of JDpiAbstractNode has to choose (if it exists) a remote participant

to use for communicating with l. Hence, every node could play also the role of

intermediary in a communication. To define how a node behaves when a message

(a JDpiCommand) for another node is received, abstract method forwardCommand

has to be implemented. Finally, by implementing method start the programmer

provides the initialization procedure for the node.

Now we describe how JDpiAbstractNode is used to implement two different

kinds of network topologies: a flat topology, which implements standard Dπ topol-

ogy, and a DpiF-like topology.

Flat topology

Since Dπ does not consider a specific implementation for nodes topology, a

system can be implemented as a single server that accepts connections from nodes.

This approach implements a flat topology and relies on the use of two kinds of

nodes: JDpiDomain and JDpiNode. Both these classes extend JDpiAbstractNode.

A JDpiDomain implements the central server that accept connections from the nodes

involved in the network. All the incoming connections are handled by the following

NodeCoordinator:

addNodeCoordinator(new AcceptNodeCoordinator(
new ProtocolFactory() {
public Protocol createProtocol() throws ProtocolException {

Protocol protocol = new Protocol(new JDpiProtocolState(waiting, eventManager));
return new ProtocolComposite(new ReadLocalityState(nodes), protocol);

}
}, self));

AcceptNodeCoordinator is an IMC specialized NodeCoordinator that continu-

ously waits for incoming connections: when a new connection is established this

will be handled by a thread executing the protocol created through the specified

ProtocolFactory. In this case we create an instance of the protocol described above

and compose it (through the specialized IMC protocol, ProtocolComposite) with

an initial state, ReadLocalityState (not detailed here) that reads the locality of

the connected node. Even in this case we use the protocol compositionality features

of IMC. Basically, AcceptNodeCoordinator implements a recurrent programming

pattern for implementing a multithreaded server, that can be customized by the

L. Bettini et al. / Electronic Notes in Theoretical Computer Science 181 (2007) 63–7974

programmer.

A JDpiDomain class keeps track of all the nodes available in a system by re-

lying on the functionalities already provided by the IMC class Node. Thus, the

implementation of getNodeStack uses these functionalities to enable the stack to

communicate (either directly or indirectly with the destination).

Moreover, all the communications in a system pass through the domain. When

a command is received by a domain, it simply forwards the command to the right

location:

public JDpiReply forwardCommand(JDpiCommand command, JDpiLocality location) {
return sendCommand(command, location);

}

However, a domain cannot host threads and cannot create outgoing connections.

For these reasons, some of methods in JDpiAbstractNode have been overridden to

forbid their execution:

public void addNodeProcess(JDpiProcess nodeProcess) {
throw new JDpiIllegalOperation(

"No processes can be executed at a JDpiDomain");
}

Dπ nodes that use this flat topology are implemented by means of class JDpiNode.

This class extends the JDpiAbstractNode in such a way that:

• no incoming connections are accepted;

• only one outgoing connection to a JDpiDomain can be created.

A JDpiNode cannot play the role of an intermediary in a communication. For

this reason, it provides a trivial implementation for method forwardCommand:

public JDpiReply forwardCommand(JDpiCommand command, JDpiLocality location) {
return new JDpiReply(false,"Unknown location");

}

Moreover, a JDpiNode sends all the outgoing messages to the domain. For this

reason, method getNodeStack simply returns the ProtocolStack that connects the

node to the domain.

DpiF topology

To model this kind of topology class JDpiFNode, which extends JDpiAbstract-

Node, is introduced. A JDpiFNode can get connected to and accept connections

from different nodes. Following the same interaction model proposed in DpiF, two

nodes can interact if and only if they are directly connected. A JDpiFNode behaves

exactly like a domain but for the fact that a JDpiFNode can host threads execution

and can open outgoing connections.

4.3 Threads

Dπ threads are implemented using the (abstract) class JDpiProcess, which is a

subclass of the IMC class NodeProcess that is already equipped with code mobility

support. Each process implementation must provide method body() that describes

L. Bettini et al. / Electronic Notes in Theoretical Computer Science 181 (2007) 63–79 75

behavior of the implemented process (the NodeProcess abstract method execute is

implemented in JDpiProcess in order to perform further initialization procedures).

A JDpiProcess interacts with the hosting node by using a JDpiNodeProxy described

before. Indeed, JDpiProcess simply delegates the execution of these operations to

its proxy, e.g.:

public <T> boolean out(JDpiChannelName<T> c , T v) {
return getJDpiProxy().out(c,v);

}

A process can migrate to remote locality l by invoking method go(JDpiLo-

cality l). If migration is completed successfully, process execution is terminated

locally. Otherwise, false is returned and the process continues its execution locally.

4.4 Examples

In this section we describe two simple mobile agents implemented in JDpi. However,

due to lack of space, all the implementation details are not presented here. We refer

the interested reader to [13] where IMC and JDpi, with a few simple applications

and examples, are available for downloading.

Example 4.1 The following Dπ process that, after reading a locality from channel

ex, spawns itself at the read locality:

rec X.ex?(u).go u.X

can be implemented as follows:

class MyProc extends JDpiProcess {
public void body() {
JDpiChannelName<JDpiLocality> inC = new JDpiChannelName<JDpiLocality>("ex");
JDpiLocality l = in(inC);
go(l);

}
}

Example 4.2 In this small example we show how to create and use a new fresh

channel name. We consider the Dπ process

νa.ex!a.0

Its body method can be implemented as follows:

public void body(){
JDpiChannelName<String> a = new JDpiChannelName<String>();
JDpiChannelName<JDpiChannelName<String>> outChannel =

new JDpiChannelName<JDpiChannelName<String>>("ex");
out(outChannel, a);

}

Indeed, a new channel name can be created by using the defaul constructur

JDpiChannelName<String>(): The framework will select a special name (based on

the address of the allocated object) that cannot be selected (or guessed) by other

processes.

L. Bettini et al. / Electronic Notes in Theoretical Computer Science 181 (2007) 63–7976

Example 4.3 The following is the code of an agent that migrates over a set of

localities, each of which plays the role of an electronic market, in search of the best

place where a given article (art) can be bought. At the end of the search, the agent

migrates to locality home and provides its result on channel result.

public void body() {
while (count < localities.size()) {

JDpiChannelName<Article> c = new JDpiChannelName<Article>(art, Article.class);
Article a = in(c);
if ((lowestPrice == 0)||(a.getPrice()<lowestPrice)) {
locality = localities.get(count);
lowestPrice = a.getPrice();

}
count++;
if (count < localities.size())
go(localities.get(count));

else
go(home);

}
}
JDpiChannelName<JDpiLocality> result =

new JDpiChannelName<JDpiLocality>("result" , JDpiLocality.class);
out(result , locality);

}

5 Conclusions

The implementation of a language based on a process calculus typically consists of a

run-time system (a sort of abstract machine) implemented in a high level language

like Java, and of a compiler that, given a program written in the programming

language based on the calculus, produces code that uses the run-time system above.

In this paper we have illustrated, by means of a case study, a possible methodology to

accelerate the development of prototype implementation of such a run-time system,

by relying on the IMC framework.

In particular, we have described the implementation of Dπ, a well established

representative of the family of mobile calculi. The use of IMC has permitted ac-

celerating the development of prototype implementations while concentrating only

on the features that are specific of the Dπ. The Java implementation JDpi is com-

posed only by 28 classes and about 1000 lines of code. These classes provide 152

methods, and the average number of lines per method is 3.5. All the packages and

the prototype of compiler are available for download at [13].

The framework can also be adapted to deal with many network topologies (flat,

hierarchical, peer-to-peer networks, etc.) and with message dispatching and for-

warding. Since this characteristics can be found in many different calculi, IMC

has a wide range of use: it could be a valid aid to implement entities like mem-

branes [5] or ambients [7,17]. Indeed IMC has been used to model a variant of Dπ

([9]) in which individual nodes may fail, or the links among them may be created

and broken. Moreover, a re-implementation of Klava [4] using IMC is also under

development.

In the close future we plan to use our framework to experiment with and compare

the relative merits of the new calculi for Service Oriented Computing that are now

L. Bettini et al. / Electronic Notes in Theoretical Computer Science 181 (2007) 63–79 77

being developed by many research groups.

Acknowledgement

We are grateful to all people involved in the MIKADO project, in particular, we

would like to thank M. Lacoste, L. Lopes and V. Vasconcelos that contributed to

the initial design of IMC.

References

[1] Bettini, L., A Java Package for Transparent Code Mobility, in: N. Guelfi, G. Reggio and A. Romanovsky,
editors, FIDJI 2004, Int. Workshop on scientific engineering of distributed Java applications, LNCS
3409 (2004), pp. 112–122.

[2] Bettini, L., V. Bono, R. De Nicola, G. Ferrari, D. Gorla, M. Loreti, E. Moggi, R. Pugliese, E. Tuosto
and B. Venneri, The Klaim Project: Theory and Practice, in: C. Priami, editor, Global Computing.
Programming Environments, Languages, Security, and Analysis of Systems, IST/FET International
Workshop, GC 2003, Revised Papers, LNCS 2874 (2003), pp. 88–150.

[3] Bettini, L., R. De Nicola, D. Falassi, M. Lacoste and M. Loreti, A Flexible and Modular Framework for
Implementing Infrastructures for Global Computing, in: Proc. of 5th IFIP Int. Conf. on Distributed
Applications and Interoperable Systems (DAIS), LNCS 3543 (2005), pp. 181–193.

[4] Bettini, L., R. De Nicola and R. Pugliese, Klava: a Java Package for Distributed and Mobile
Applications, Software - Practice and Experience 32 (2002), pp. 1365–1394.

[5] Boudol, G., A generic membrane model, in: Second Global Computing Workshop, 2004.
URL http://mikado.di.fc.ul.pt/repository/boudol generic-membrane-model.pdf

[6] Bugliesi, M., G. Castagna and S. Crafa, Access control for mobile agents: The calculus of Boxed
Ambients, ACM Trans. Program. Lang. Syst 26 (2004), pp. 57–124.

[7] Cardelli, L. and A. Gordon, Mobile Ambients, Theoretical Computer Science (TCS) 240 (2000),
pp. 177–213.

[8] Fournet, C., G. Gonthier, J. J. Levy, L. Maranget and D. Remy, A Calculus of Mobile Agents, in:
U. Montanari and V. Sassone, editors, Proc. of 7th Int. Conf. on Concurrency Theory (CONCUR’96),
LNCS 1119 (1996), pp. 406–421.

[9] Francalanza, A. and M. Hennessy, A Theory of System Behaviour in the Presence of Node and Link
Failures, in: CONCUR 2005, LNCS 3653 (2005), pp. 368–382.

[10] Gamma, E., R. Helm, R. Johnson and J. Vlissides, “Design Patterns: Elements of Reusable Object-
Oriented Software,” Addison-Wesley, 1995.

[11] Gelernter, D., Generative Communication in Linda, ACM Transactions on Programming Languages
and Systems 7 (1985), pp. 80–112.

[12] Hennessy, M. and J. Riely, Resource access control in systems of mobile agents, in: U. Nestmann and
B. C. Pierce, editors, Proc. of HLCL ’98: High-Level Concurrent Languages, ENTCS 16.3 (1998).

[13] JDpi home page, http://music.dsi.unifi.it/jdpi.

[14] Levi, F. and D. Sangiorgi, Controlling Interference in Ambients, in: POPL (2000), pp. 352–364.

[15] Milner, R., J. Parrow and J. Walker, A Calculus of Mobile Processes, I and II, Information and
Computation 100 (1992), pp. 1–40, 41–77.

[16] Ravara, A., A. Matos, V. Vasconcelos and L. Lopes, Lexically scoping distribution: what you see is what
you get, in: FGC: Foundations of Global Computing, ENTCS 85(1) (2003).

[17] Sangiorgi, D. and A. Valente, A Distributed Abstract Machine for Safe Ambients, in: Proc. 28th
International Colloquium on Automata, Languages and Programming (ICALP’01), LNCS 2076 (2001),
pp. 408–420.

L. Bettini et al. / Electronic Notes in Theoretical Computer Science 181 (2007) 63–7978

http://mikado.di.fc.ul.pt/repository/boudol_generic-membrane-model.pdf

[18] Unyapoth, A. and P. Sewell, Nomadic Pict: correct communication infrastructure for mobile
computation, in: POPL (2001), pp. 116–127.

[19] Vitek, J. and G. Castagna, Seal: A Framework for Secure Mobile Computations, in: Internet
Programming Languages, number 1686 in LNCS, Springer, 1999 .

L. Bettini et al. / Electronic Notes in Theoretical Computer Science 181 (2007) 63–79 79

	Introduction
	The IMC framework
	Protocols
	Nodes and Processes

	 D a Language for Distributed Processes
	From D to JDpi
	Protocol
	Nodes
	Threads
	Examples

	Conclusions
	Acknowledgement
	References

