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Abstract

In this paper we propose a tube-based robust model predictive control scheme for fractional-order discrete-
time systems of the Grünwald-Letnikov type with state and input constraints. We first approximate the infinite-
dimensional fractional-order system by a finite-dimensional linear system and we show that the actual dynamics
can be approximated arbitrarily tight. We use the approximate dynamics to design a tube-based model predictive
controller which endows to the controlled closed-loop system robust stability properties.
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I. INTRODUCTION

A. Background and Motivation

Non-integer order derivatives and integrals (known as fractional) are natural extensions of the standard integer-
order ones which enjoy certain favourable essential properties; for example they are linear operators, preserve
analyticity, and have the semigroup property [1], [2]. However, fractional derivatives are non-local operators, that
is, unlike their integer-order counterparts, they cannot be evaluated at a points x solely by knowing how the
function behaves in a neighbourhood of this point [1].

Their popularity in pharmacokinetics and pharmacodynamics is particularly interesting. The work of Kytariolos
et al. introduced fractional dynamics in the field of pharmacokinetic modelling pointing out the main reasons
for the failure of the classical in-vitro-in-vivo correlations theory [3]. Often, non-linearities, anomalous diffusion,
deep tissue trapping, diffusion across fractal manifolds, synergistic and competitive action and a great many
other factors give rise to fractional-order pharmacokinetics [4]. Such fractional pharmacokinetic dynamics can
be cast as physiologically-based pharmacokinetic models (PBPK) (see [5]) where the mass balance equations
are properly rewritten using fractional-order derivatives. Recently, it seems that there is increasing attention on
modelling and control of such systems [5]–[7], especially in presence of state and input constraints.

Overall, fractional-order dynamical systems have been proven to be powerful modelling tools used to describe
dynamics with infinite memory and are becoming increasingly popular as it is becoming evident that they can
compactly describe rather complex dynamics.

Very recently, fractional systems were combined with the model predictive control (MPC) framework [8]–[12];
this seems to be a very active and emerging topic of research and has a great potential for applications [13], [14].
Domek proposed an MPC setting for Takagi-Sugeno fuzzy fractional-order systems [15] and switched MPC of
fractional-order systems [16]. Deng et al. [10] proposed a predictive control scheme for the power regulation of
a solid oxide fuel cell. A common denominator of all approaches in the literature is that they approximate the
actual fractional dynamics by integer-order dynamics and design controllers for the approximate system using
standard techniques. Although, these approaches seem to work in practice, no theoretical guarantee is provided
for the stability of the closed-loop system. Additionally, MPC is often employed in order to address constraints
on the state and input of the system, but no theoretical guarantees for their satisfaction exist in the literature.
The main contribution of this paper is a design methodology for a model predictive control scheme which steers
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the system’s state towards a small neighbourhood of the origin while it guarantees the satisfaction of state and
input constraints.

Two approaches can be identified in the literature in regard to the stability analysis of discrete-time fractional
systems. The first one considers the stability of a finite-dimensional linear time-invariant system, known as
practical stability, but fails to provide conditions for the actual fractional-order system to be (asymptotically)
stable [17], [18]. This approach is tacitly pursued in many applied papers [12], [19]. On the other hand, fractional
systems can be treated as infinite-dimensional systems for which various stability conditions can be derived (See
for example [20, Thm. 2]), but conditions are difficult to verify in practice let alone to use for the design of
model predictive controllers.

In this paper we discretise linear continuous-time fractional dynamics using the Grünwald-Letnikov scheme
which leads to infinite-dimensional linear systems. We use a finite-dimensional approximation to arrive at a linear
time-invariant system with an additive uncertainty term which casts the discrepancy with the infinite-dimensional
system. We then introduce a tube-based MPC control scheme which is known to steer the state to a neighbourhood
of the origin which can become arbitrarily small as the complexity of the approximation of the fractional-order
system increases. In our analysis, we consider both state and input constraints which we show that are respected
by the MPC-controlled system.

B. Mathematical preliminaries

For the paper to be self-contained, in this section we introduce some notation and definitions that will be useful
throughout the whole paper. Let N, Rn, R+, Rm×n denote the set of non-negative integers, the set of column
real vectors of length n, the set of non-negative numbers and the set of m-by-n real matrices respectively. For
any nonnegative integers k1 ≤ k2 the finite set {k1, . . . , k2} is denoted by N[k1,k2]. Let x be a sequence of real
vectors of Rn. The k-th vector of the sequence is denoted by xk and its i-th element is denoted by xk,i. We
denote by Bnε = {x ∈ Rn : ‖x‖ < ε} the open ball of Rn with radius ε and we use the shorthand Bn = Bn1 . We
define the point-to-set distance of a point z ∈ X from A as dist(z,A) = infa∈A ‖z − a‖.

The space of bounded real sequences is denoted by `∞ and is a Banach space with norm ‖z‖∞ = supk∈N |zk|.
We define the space `∞n of all sequences of real n-vectors z so that (zk,i)k ∈ `∞ for i ∈ N[1,n] which, equipped
with the norm ‖z‖∞ = maxi=1,...,n ‖zk,i‖∞, becomes a Banach space.

Let Γ be a topological real vector space and A,B ⊆ Γ. For λ ∈ R we define the scalar product λC = {λc :
c ∈ C} and the Miknowski sum A ⊕ B = {a + b : a ∈ A, b ∈ B}. The Minkowski sum of a finite family
of sets {Ai}Ki=1 will be denoted by

⊕K
i=1Ai. The Minkowski sum of a sequence of sets {Ai}i∈N is denoted

as
⊕

i∈NAi and is defined as the Painlevé-Kuratowski limit (see [21]) of
⊕K

i=1Ai as K→∞. The Pontryagin
difference between two sets A,B ⊆ Γ is defined as A 	 B = {a ∈ A : a + b ∈ A, ∀b ∈ B}. A set C is called
balanced if for every x ∈ C, −x ∈ C.

II. FRACTIONAL-ORDER SYSTEMS

A. Discrete-time fractional operators

Let x : R → Rn be a uniformly bounded function, i.e., there is a M > 0 so that ‖x(t)‖ ≤ M for all t ∈ R.
The backward Grünwald-Letnikov fractional-order difference of x of order α > 0 and step size h > 0 is defined
as the linear operator [13] B∆α

h : `∞n → `∞n :

B∆α
hx(t) =

∞∑
j=0

(−1)j
(
α

j

)
x(t− jh), (1)

and its forward counterpart is defined as F∆α
hx(t) = B∆α

hx(t+ h), or

F∆α
hx(t) =

∞∑
j=0

(−1)j
(
α

j

)
x(t+ (1− j)h), (2)

where
(
α
0

)
= 1 and for j ∈ N, j > 0 (

α

j

)
=

j−1∏
i=0

α− i
i+ 1

(3)



Define

cαj = (−1)j
(
α

j

)
(4)

and notice for all j ∈ N that |cαj | ≤ αj/j!, thus, the sequence (cαj )j is absolutely summable and, because of the
uniform boundedness of x, the series in (2) converges, therefore, ∆α

h is well-defined. It is worth noticing that at
time t and for non-integer orders α the whole history of x is needed in order to estimate ∆α

hx(t).
The Grünwald-Letnikov difference operator gives rise to the Grünwald-Letnikov derivative of order α which

is defined as

Dαx(t) = lim
h→0

F∆α
hx(t)

hα
= lim

h→0

B∆α
hx(t)

hα
, (5)

provided that both limits exist. This derivative is then used to describe fractional-order dynamical systems with
state x : R→ Rn and input u : R→ Rm as follows:

l∑
i=0

AiD
αix(t) =

r∑
i=0

BiD
βiu(t), (6)

where l, r ∈ N, Ai are Bi are matrices of opportune dimensions, all αi and βi are nonnegative, and by convention
D0x(t) = x(t) for any x.

In an Euler discretisation fashion we approximate the Dα in (6) using either h−αF∆α
h or h−αB∆α

h for a fixed
step size h. In particular, we use the forward operator for the derivatives of the state and the backward one for
the input variables. For convenience, let us define xk = x(kh) and uk = u(kh) for k ∈ Z; the discretisation
of (6) becomes

l∑
i=0

ĀiB∆αi

h xk+1 =

r∑
i=0

B̄iB∆βi

h uk, (7)

with Āi = h−αiAi and B̄i = h−βiBi. The involvement of infinite-dimensional operators in the system dynamics
deem these systems computationally intractable and call for approximation methods for their simulation and the
design of feedback controllers.

In what follows, we will approximate (7) by a finite-dimensional state-space system treating the approximation
as a bounded additive disturbance. We then propose a control setting which guarantees robust stability properties
for (7).

B. Finite-dimension approximation

It turns out that discrete-time fractional-order dynamical systems are systems with infinite memory and
encompass an infinite number of state variables. Consequently, the results of standard control theory cannot be
applied directly. For this purpose, we introduce the following truncated Grünwald-Letnikov difference operator
or length ν

∆α
h,νxk =

ν∑
j=0

cαj xk−j , (8)

and the approximate finite-dimensional variant of (7), for ν ≥ 1, becomes
l∑

i=0

Āi∆
αi

h,νxk+1 =

r∑
i=0

B̄i∆
βi

h,ν−1uk. (9)



C. State space representation

System (9) can be written in state space format as a linear time-invariant (LTI) system with a proper choice
of state variables x̃k as we shall explain in this section. In the common case where the right-hand side of (9) is
of the simple form Buk, it is straightforward to recast the system in state-space form. Here, we study the more
general case of equation (9), which can be written in the form

ν∑
j=0

Âjxk−j+1 =

ν∑
j=0

B̂juk−j , (10)

with

Âj =

l∑
i=0

Āic
αi

j , (11a)

B̂j =

r∑
i=0

B̄ic
βi

j , (11b)

for j ∈ N[0,ν]. We hereafter assume that matrix Â0 is nonsingular. Then, defining

Ãj = −Â−1
0 Âj , (12a)

B̃j = Â−1
0 B̂j , (12b)

the dynamic equation (10) becomes

xk+1 =

ν−1∑
j=0

Ãjxk−j +

ν∑
j=1

B̃juk−j + B̃0uk. (13)

This can be written in state space form with state variable x̃k = (xk, xk−1, . . . , xk−ν+1, uk−1, . . . , uk−ν)′, as

x̃k+1 = Ax̃k +Buk. (14)

System (14) is an ordinary finite-dimensional LTI system which will be used in the next section to formulate a
model predictive control problem. Throughout the rest of the paper we assume that the pair (A,B) is stabilisable.

III. MODEL PREDICTIVE CONTROL

A. Control-oriented modelling

Inevitably, the use of the truncated difference operator ∆α
h,ν introduces some error in the system dynamics. In

particular, the fractional-order difference operator B∆α
h can be written as

B∆α
h = ∆α

h,ν +Rαh,ν , (15)

where Rαh,ν : `∞n → `∞n is the operator Rαν (xk) = h−α
∑∞

j=ν+1 c
α
j xk−j . Let X be a compact convex subset or

Rn containing 0 in its interior and at time k assume that xk−j ∈ X for all j ∈ N. Then, given that xk−j ∈ X
for all j ∈ N,

Rαh,ν(xk) ∈
∞⊕

j=ν+1

cαjX. (16)

The fractional dynamics (7) can now be written in terms of x̃ (cf. (14)) as the linear uncertain system

x̃k+1 = Ax̃k +Buk +Gdk, (17)

where dk is a additive disturbance term (which depends on xk−ν−j and uk−ν−j for j ∈ N) with G = [ I 0 ... 0 ]′.
Assume that uk−j ∈ U for j = 1, 2, . . . and xk−j ∈ X for j ∈ N, where X and U are convex compact sets
containing 0 in their interiors. Then, dk is bounded in a compact set Dν given by

Dν = Dx
ν ⊕Du

ν , (18)



where

Dx
ν =

l⊕
i=0

−Â−1
0 Āi

∞⊕
j=ν+1

cαi

j X, (19a)

Du
ν =

r⊕
i=0

Â−1
0 B̄i

∞⊕
j=ν+1

cβi

j U. (19b)

Under the prescribed assumptions, both Dx
ν and Du

ν are compact sets, therefore Dν will also be compact.
Recall that for a balanced set C ⊆ Rn and scalars λ1, λ2 it is λ1C ⊕ λ2C = (|λ1| + |λ2|)C. In case X and

U are balanced sets, the above expressions for Dx
ν and Du

ν can be simplified. First, for ν ∈ N, we define the
function Ψν : R+ → R+ as the following convergent series:

Ψν(α) =

∞∑
j=ν+1

|cαj |. (20)

Then, Dx
ν is written as the finite Minkowski sum

Dx
ν =

⊕
i∈N[0,l]

−Â−1
0 ĀiΨν(αi)X, (21)

and of course the same simplification applies to Du
ν if U is a balanced set. Notice that the computation of Dx

ν

by (21) boils down to determining a finite Minkowski sum, which is possible when constraints are polytopic [22],
while overapproximations exists when they are ellipsoidal [23].

The size of Dν is controlled by the choice of ν; Dν can become arbitrarily small provided that a sufficiently
large ν is chosen. Notice also that Dν → {0} as ν →∞. In light of (17), the fractional system can be controlled
by standard methods of robust control such as min-max [24] or tube-based MPC [25] as we do in this paper.
In what follows, we elaborate on how the tube-based MPC methodology can be applied for the control of
fractional-order systems.

B. Tube-based Model Predictive Control

MPC is an optimisation-based control methodology where at each time instant a performance index is optimised
along an horizon of future time instants using a discrete-time model of the controlled process taking into account
the constraints on the state and input variables.

MPC, by solving an optimisation problem, produces a sequence of control actions whose first element in
applied to the system as input while all other elements are discarded and the same procedure is repeated at every
time instant; this control scheme defines the receding horizon control approach [25].

Here, we require that the state and input variables are constrained in the sets X ⊆ Rn and U ⊆ Rm respectively,
both convex, compact and contain the origin in their interior. The constraints are written as follows:

x̃k ∈ X̃, (22a)

uk ∈ U, (22b)

for all k ∈ N and where X̃ = Xν × Uν , i.e., x̃ = (xk, xk−1, . . . , xk−ν+1, uk−1, . . . , uk−ν)′ ∈ X̃ if and only if
xk−i ∈ X for i ∈ N[0,ν−1] and uk−i ∈ U for all i ∈ N[1,ν]. Typically, in MPC X̃ and U can be polytopes or
ellipsoids, but for our analysis no particular assumptions on X and U need to be imposed.

The tube-based MPC scheme is illustrated in Figure 1. The fractional-order system is controlled by an input
u which is computed according to

uk = vk +Kek, (23)

where vk is a control action computed by the tube-based MPC controller and ek is defined as the deviation
between the actual system state and the response of the nominal system. In particular the nominal dynamics in
terms of the nominal state z̃k with input vk is

z̃k = Az̃k−1 +Bvk−1, (24)
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Fig. 1: Tube-based MPC for fractional order systems. The nominal system is a finite dimension LTI system in
discrete-time.

and ek = x̃k − z̃k. The deviation variable e follows the stable dynamics ek+1 = AKek +Gdk. Matrix K in (23)
is chosen so that AK = A+BK is strongly stable. We define

Sk =

k⊕
i=0

AiKGDν . (25)

The set S∞, defined as the limit S∞ = limk→∞ Sk, is well-defined (the limit exists), is compact, and is positive
invariant for the deviation dynamics ek+1 = AKek +Gdk. In what follows, S∞ will be assumed to contain the
origin in its interior. For the needs of tube-based MPC, any over-approximation of S∞ may be used instead – a
comprehensive discussion on various computational aspects regarding S∞ can be found in [25].

Having chosen z̃0 = x̃0, it is x̃k ∈ {z̃k} ⊕ S∞ for all k ∈ N. This implies that constraint (22a) is satisfied if
z̃k ∈ X 	 S∞ and constraint (22b) is satisfied if vk ∈ U 	KS∞. These constraints will then be involved in the
formulation of the MPC problem which produces the control actions vk = vk(z̃k).

The MPC problem amounts to the minimisation of a performance index VN along an horizon of future time
instants, known as the prediction horizon, given the initial state at time k, z̃k. Let N be the prediction horizon.
We use the notation z̃k+i|k for the predicted state of the nominal system at time k+ i using feedback information
at time k. Let vk = {vk+i|k}i∈N[0,N−1]

be a sequence of input values and {z̃k+i|k}i∈N[1,N]
the corresponding

predicted states obtained by (24), i.e., it is z̃k+i+1|k = Az̃k+i|k + Bvk+i|k for i ∈ N[0,N−1]. We introduce
following performance index VN : Rn̄ × RmN → R+ given the current state of the system z̃k|k = z̃k:

VN (z̃k|k,vk)=Vf (z̃k+N |k)+

N−1∑
i=0

`(z̃k+i|k, vk+i|k), (26)

where ` and Vf are typically quadratic functions. We assume that

`(z, v) = z′Qz + v′Rv, (27)

where Q is symmetric, positive semidefinite and R is symmetric positive definite and

Vf (z) = z′Pz, (28)

where P is symmetric and positive definite. The following constrained optimisation problem is then solved:

PN :V ?
N (z̃k) = min

vk∈VN (z̃k)
VN (z̃k,vk), (29)



with

VN (z̃k)=


v

∣∣∣∣∣∣∣∣∣∣∣∣

z̃k+i+1|k=Az̃k+i|k+Bvk+i|k,
∀i∈N[0,N−1]

z̃k|k = z̃k
z̃k+i|k ∈ X̃ 	 S, ∀i∈N[1,N ]

vk+i|k ∈ U 	KS,∀i∈N[0,N−1]

z̃k+N |k ∈ X̃f


, (30)

where S is any over-approximation of S∞, i.e., S ⊇ S∞ and X̃f ⊆ X̃ is the terminal constraints set. In what
follows we always assume that X̃ 	S and U 	KS are nonempty sets with the origin in their interior. In regard
to the terminal cost function Vf and the terminal constraints set X̃f we assume the following:

Assumption 1: Vf and X̃f satisfy the standard stabilising conditions A1-A4 in [26].
Remark 2: Typically, matrix P in (28) is chosen to be the (unique) solution of the discrete-time algebraic

Riccatti equation P = (A + BF )′P (A + BF ) + Q + F ′RF with F = −(B′PB + R)−1B′PA and X̃f to the
maximal invariant constraint admissible set for the system z̃k+1 = (A+ BF )z̃k. Alternatively, one may choose
X̃f to be an ellipsoid of the form X̃f = {z : Vf (z) ≤ γ} and γ > 0 is chosen so that X̃f ⊆ X̃ and KX̃f ⊆ U . �
The solution of PN , namely the optimiser

v?(z̃k) = argmin
vk∈VN (z̃k)

VN (z̃k,vk), (31)

is a sequence {v?0(z̃k), v
?
1(z̃k), . . . , v

?
N−1(z̃k)} and its first element v?0(z̃k), in a receding horizon control fashion,

defines the control law

κN (z̃k) = v?0(z̃k), (32)

and the control action applied to the system is computed as ρ(z̃k, x̃k) = κN (z̃k)+K(x̃k− z̃k) and the closed-loop
system is now expressed in terms of both z̃k and x̃k as

x̃k+1 = Ax̃k +Bρ(z̃k, x̃k) +Gdk, (33a)

z̃k+1 = Az̃k +BκN (z̃k). (33b)

The stability properties of the controlled system are studied for the composite system (33) with state variable
(x̃, z̃).

C. Stability results

In this section we discuss the stability properties of the controlled closed-loop system presented previously. In
robust control the following stability definition is usually employed [25, Def. B4]:

Definition 3 (Asymptotic Stability): Let S be a closed nonempty set, positive invariant for xk+1 = f(xk). The
set S is locally stable for the aforementioned system if for all ε > 0 there is δ > 0 so that dist(xk, S) < ε for
all k ∈ N whenever dist(x0, S) < δ. If in addition, limk dist(xk, S) = 0, we say that S is locally asymptotically
stable.
A stronger form of stability, namely exponential stability is defined as follows:

Definition 4 (Exponential stability): The set S is locally exponentially stable for xk+1 = f(xk) if there are
η > 0, c > 0 and γ ∈ (0, 1) so that dist(xk, A) ≤ cdist(x0, A)γk for all k ∈ N whenever dist(x0, A) < η.
The following result, which readily follows from [25, Prop. 3.15], states that the system’s state converges towards
S∞ exponentially provided that S = S∞ is used in the formulation of the MPC problem.

Proposition 5 (Exponential stability): Assume that the MPC control law κN stabilises the nominal dynamical
system (33b). The set S∞ × {0} is locally exponentially stable for system (33) with region of attraction (ZN ⊕
S∞)× ZN , where ZN is the domain of VN , i.e., ZN = {x : VN (x) 6= ∅}.

In addition, the controlled trajectory of the system’s state xk and input uk satisfy constraints (22) at all time
instants k ∈ N.

Notice that S∞ can become arbitrarily small with an appropriate choice of ν and the system’s state can be
steered this way very close to the origin, although, in practice large values of ν should be avoided to limit the
complexity of PN .
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Fig. 2: Dependence of Ψν(α) on ν for α = 0.7 and selection of a reasonably and adequately large approximation
order ν.

IV. NUMERICAL EXAMPLE

We apply the proposed methodology to the following fractional-order system

Dαx =

[
0 1
−1 0.3

]
x+

[
0
−0.5

]
u, (34)

with x ∈ R2 and u ∈ R and α = 0.7. We discretise the system with sampling period h = 0.05 and we use
ν = 20 based on Figure 2 so that Ψν(α) is adequately small. In particular, we have Ψ20(0.7) = 0.0408. This
way, we derive a discrete-time LTI system of the form x̃k = Ax̃k−1 + Buk−1 as in Section II-B. The system
state and input are subject to the constraints

−
[
0.5
0.5

]
≤xk ≤

[
0.5
0.5

]
, (35a)

−0.15 ≤uk ≤ 0.15. (35b)

The terminal cost Vf and the terminal constraints set X̃f were computed according so that the stabilising
conditions A1-A4 of [26] are satisfied. In particular X̃f was chosen to be a sublevel set of Vf as explained in
Remark 2. The prediction horizon was chosen to be N = 20 and the closed-loop state and input trajectory of
the controlled system are presented in Figure 3.

The controller was implemented in MATLAB using Yalmip [27] and the solver mosek (https://www.mosek.com/).
Out of 100 randomly selected (feasible) inital points, the MPC optimisation problem was solved on average in
15.5ms (maximum 22.3ms).

V. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a robust MPC scheme for fractional systems with guaranteed satisfaction of state
and input constraints where the state converges exponentially fast to a neighbourhood of the origin whose size
is controlled by the order of approximation ν. The underlying optimisation problem we have to solve is a
quadratic problem which can be solved very efficiently online. The order of approximation ν affects linearly the
state dimension of the MPC problem for which the optimisation problem is solved leading to a computationally
tractable setting. This work paves the way for the application of model predictive control to fractional-order
pharmacokinetics, as we discussed in the introduction, where satisfaction of constraints is of high importance.
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Fig. 3: Closed-loop simulations of system (34) with the proposed MPC controller.

An important question that needs to be answered is under what condition the closed loop system is asymp-
totically stabilising to the origin and how the MPC controller needs to be designed so as to achieve asymptotic
stability to the origin. Future work will also focus on the study of sampled-data fractional-order systems, coming
as an extension of [28] for linear time-invariant sustems, and applications of the proposed methodology to
biomedical systems.
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[12] M. Romero, Á. de Madrid, C. Mañoso, V. Milanés, and B. Vinagre, “Fractional-order generalized predictive control: Application
for low-speed control of gasoline-propelled cars,” Mathematical Problems in Engineering, vol. 2013, pp. 1–10, 2013. Article ID
895640.

[13] A. Rhouma, B. Bouzouita, and F. Bouani, “Model predictive control of fractional systems using numerical approximation,” in
Computer Applications Research (WSCAR), 2014 World Symposium on, pp. 1–6, Jan 2014.
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