
A Java Middleware for Guaranteeing Privayof Distributed Tuple Spaes?Lorenzo Bettini Roo De NiolaDipartimento di Sistemi e Informatia, Universit�a di FirenzeVia Lombroso 6/17, 50134 Firenze, Italyfbettini,deniolag�dsi.unifi.itAbstrat. The tuple spae ommuniation model, suh as the one usedin Linda, provides great exibility for modeling onurrent, distributedand mobile proesses. In a distributed setting with mobile agents, par-tiular attention is needed for proteting sites and information. We havedesigned and developed a Java middleware, Klava, for implementingdistributed tuple spaes and operations to support agent interation andmobility. In this paper, we extend the Klava middleware with rypto-graphi primitives that enable enryption and deryption of tuple �elds.We desribe the atual implementation of the new primitives and providea few examples. The proposed extension is general enough to be appliedto similar Java frameworks using multiple distributed tuples spaes pos-sibly dealing with mobility.1 IntrodutionA suessful approah to onurrent programming is the one relying on theLinda oordination model [10℄. Proesses ommuniate by reading and writingtuples in a shared memory alled tuple spae. Control of aesses is guaranteed byrequiring that tuples seletion be assoiative, by means of pattern mathing. Theommuniation model is asynhronous, anonymous, and generative, i.e., tuple'slife-time is independent of produer's life time.The Linda model has been adopted in many ommuniation frameworks suhas, e.g., JavaSpaes [1℄ and T Spaes [9℄, and for adding the tuple spae ommu-niation model to existing programming languages. More reently, distributedvariants of tuple spaes have been proposed to exploit the Linda model forprogramming distributed appliations over wide area networks [6, 2℄, possiblyexploiting ode mobility [7, 11℄. As shown in [8℄, where several messaging mod-els for mobile agents are examined, the blakboard approah, of whih the tuplespae model is a variant, is one of the most favorable and exible.Sharing data over a wide area network suh as Internet, alls for very strongseurity mehanisms. Computers and data are exposed to eavesdropping and? This work has been partially supported by EU within the FET { Global Computinginitiative projet MIKADO IST-2001-32222, by MIUR projet NAPOLI and byMirosoft projet NAPI. The funding bodies are not responsible for any use thatmight be made of the results presented here.

manipulations. Dealing with these issues is even more important in the ontextof ode mobility, where ode or agents an be moved over the di�erent sitesof a net. Maliious agents ould seriously damage hosts and ompromise theirintegrity, and may tamper and brainwash other agents. On the other hand,maliious hosts may extrat sensible data from agents, hange their exeutionor modify their text [16, 12℄.The exibility of the shared tuple spae model opens possible seurity holes;it basially provides no aess protetion to the shared data. Indeed there is noway to determine the issuer of an operation to the tuple spae and there is noway to protet data: a proess may (even not intentionally) retrieve/erase datathat do not belong to it and shared data an be easily modi�ed and orrupted.In spite of this, within the Linda based approahes, very little attention has beendevoted to protetion and aess ontrol.In this paper we present a Java middleware for building distributed andmobile ode appliations interating through tuple spaes, by means of ryptog-raphy. In this middleware, lassial Linda operations are extended for handlingenrypted data. Primitives are also supplied for enrypting and derypting tupleontents. This �ner granularity allows mobile agents (that are not supposed toarry private keys with them when migrating) to ollet enrypted data, whileexeuting on remote sites, and derypt them safely when bak at the home site.The proposed extension, while targeted to our middleware for mobile agentsinterating through distributed tuple spaes, Klava [3℄, is still general enoughto be applied to similar Java frameworks using multiple distributed tuples spaespossibly dealing with mobility, suh, e.g., [11, 1, 6℄. Indeed, this extension rep-resents a ompromise between the exibility and open nature of Linda and ofmobile ode, and the privay of data in a distributed ontext.2 Distributed Private Generative CommuniationsThe Linda ommuniation model [10℄ is based on the notion of tuple spae that isa multiset of tuples. These are just sequenes of items, alled �elds that are of twokinds: atual �elds, i.e., values and identi�ers, and formal �elds, i.e., variables.Syntatially, a formal �eld is denoted with !ide, where ide is an identi�er. Tuplesan be inserted in a tuple spae with the operation out and retrieved from atuple spae with the operations in and read (read does not withdraw the tuplefrom the tuple spae). If no mathing tuple is found, both in and read blok theproess that exeute them, until a mathing tuple beomes available. Pattern-mathing is used to selet tuples from the tuple spae; two tuples math if theyhave the same number of �elds and orresponding �elds do math: a formal �eldmathes any value of the same type, and two atual �elds math only if theyare idential (but two formals never math). For instane, if Val is an integervariable, then tuples (\foo"; \bar"; !Val) and (\foo"; \bar"; 300) do math. Aftermathing, the variable of a formal �eld gets the value of the mathed �eld; inthe previous example, after mathing, Val will ontain the integer value 300.The middleware we are presenting is based on Klava [3℄, a Java frameworkimplementing Klaim (Kernel Language for Agent Interation and Mobility) [7℄

that provides features for programming distributed appliations with mobileode and mobile agents, relying on ommuniation via multiple distributed tuplespaes. Klaim extends Linda by handling multiple distributed tuple spaes:tuple spaes are plaed on nodes (or sites), whih are part of a net. Eah nodeontains a tuple spae and a set of proesses, and an be aessed through itsloality. Thus, lassial Linda operations are indexed with the loality of the nodethey have to be performed at. A reserved loality, self, an be used to aessthe urrent exeution site. Moreover in Klaim proesses are �rst lass data, inthat they an be transmitted and exhanged among sites, so that mobile odeand mobile agent appliations an be easily programmed.For guaranteing privay of data stored in tuple spaes we have extendedKlava with some ryptographi primitives. In our view, this extension is agood tradeo� between the open nature of Linda (and of mobile ode) and dataprivay. In partiular we aim at having this extension as smooth as possible, sothat the original model is not perverted.The basi idea is that a tuple may ontain both lear text �elds and enrypted�elds. All the enrypted �elds of a spei� tuple are enrypted with a single key.This hoie simpli�es the overall design and does not harm usability of thesystem; it would be unusual that di�erent �elds of the same tuple are enryptedwith di�erent keys. Enrypted �elds ompletely hide the enrypted ontentsthat they embody: they even hide the type of the ontents. This strengthens theserey of data (it is not even possible to know the type of sensible information).In line with the open nature of the Linda model, our main intention is not toprohibit proesses to retrieve data belonging to other proesses, but to guaranteethat these data be read and modi�ed only by entitled proesses. A shared tuplespae is basially a shared ommuniation hannel: in suh a hannel informationan be freely read and modi�ed.At the same time one of our aims is avoiding that wrong data be retrieved bymistake. Clear text �elds of a tuple an be used as identi�ers for �ltering tuples(as in the Linda philosophy), but if a mathing tuple ontains enrypted �elds,whih a proess is not able to derypt, it is also sensible that the tuple is putbak in the tuple spae if it was withdrawn with an in. Moreover, in suh ases,a proess may want to try to retrieve another mathing tuple, possibly until theright one is retrieved (i.e., a tuple for whih it has the appropriate deryptionkey), and to be bloked until one is available, in ase no suh tuple is found.Within our framework it is possible to{ use tuple �elds with enrypted data;{ enrypt tuple �elds with spei� keys;{ derypt a tuple with enrypted �elds;{ use variants of the operations in and read (ink and readk) to atomiallyretrieve a tuple and derypt its ontents.The modi�ed versions of the retrieving operations, ink and readk, are basedon the following proedure:1. look for and possibly retrieve a mathing tuple,

2. attempt a deryption of the enrypted �elds of the retrieved tuple3. if the deryption fails:(a) if the operation was an ink then put the retrieved tuple bak in the tuplespae,(b) look for alternative mathing tuples,4. if all these attempts fail, then blok until another mathing tuple is available.Thus the programmer is relieved from the burden of exeuting all these internaltasks, and when a readk or an ink operation sueeds it is guaranteed that theretrieved tuple has been orretly derypted. Basially the original Linda patternmathing mehanism is not modi�ed: enrypted �elds are seen as ordinary �eldsthat have type KCipher (as shown in Setion 3). It an be seen as an extendedpattern mathing mehanism that, after the strutural mathing, also attemptsto derypt enrypted �elds.In ase mobile ode is used, the above approah may be unsafe. Indeed,symmetri and asymmetri key enryption tehniques rely on the serey of thekey (in asymmetri enryption the private key must be kept seret). Thus, afundamental requirement is that mobile ode and mobile agents must not arryprivate keys when migrating to a remote site (\Software agents have no hopesof keeping ryptographi keys seret in a realisti, eÆient setting" [16℄). Thisimplies that the above introdued operations ink and readk annot be used bya mobile agent exeuting on a remote site, beause they would require arryingover a key for deryption.For mobile agents it is then neessary to supply a �ner grain retrieval meh-anism. For this reason we introdued also operations for the expliit deryptionof tuples: a tuple, ontaining enrypted �elds, will be retrieved by a mobile agentby means of standard in and read operations and no automati deryption willbe attempted. The atual deryption of the retrieved tuples an take plae whenthe agent is exeuting at the home site, where the key for deryption is availableand an be safely used. Typially a mobile agent system onsists of stationaryagents, that do not migrate, and mobile agents that visit other sites in the net-work, and, upon arrival at the home site, an ommuniate with the stationaryagents.Thus the basi idea is that mobile agents ollet enrypted data at remotesites and ommuniate these data to the stationary agents, whih an safelyderypt their ontents. Obviously, if some data are retrieved by mistake, it is upto the agents to put it bak on the site from where they were withdrawn. Thisrestrition of the protool for fething tuples is neessary if one wants to avoidrunning the risk of leaking private keys. On the ontrary, publi keys an besafely transported and ommuniated. By using publi keys mobile agents areable to enrypt the data olleted along their itinerary.Notie that there is no guarantee that a \wrong" tuple is put bak: ourframework addresses privay, not seurity, i.e., even if data an be stolen, stillit annot be read. Should this be not aeptable, one should resort to a seurehannel-based ommuniation model, and give up the Linda shared tuple spae

model. Indeed the funtionalities of our framework are similar to the one pro-vided, e.g., by PGP [17℄ that does not avoid e-mails be eavesdropped and stolen,but their ontents are still private sine they are unreadable for those that donot own the right deryption key.An alternative approah ould be that of physially removing an enryptedtuple, retrieved with an in, only when the home site of the agent that performedthe in, noti�es that the deryption has taken plae suessfully. Suh a tuplewould be restored if the deryption is aknowledged to have failed or after aspei� timeout expired. However, this approah makes a tuple's life time de-pendent on that of a mobile agent, whih, by its own nature, is independentand autonomous: agents would be expeted to aomplish their task within aspei� amount of time. Moreover, inonsistenies ould arise in ase suessfulderyption aknowledgments arrive after the timeout has expired.3 ImplementationKlava [3℄ is deployed as an extensible Java pakage, Klava, that de�nes thelasses and the run-time system for developing distributed and mobile ode ap-pliations aording to the programming model of Klaim. In Klava proessesare instanes of sublasses of lass KlavaProess and an use methods for a-essing a tuple spae of a node: out(t,l), for inserting the tuple t into thetuple spae of the node at loality l, read(t,l) and in(t,l), for, respetively,reading and withdrawing a tuple mathing with t from the tuple spae of thenode at loality l. Moreover the method eval(P,l) an be used for spawninga KlavaProess P for remote exeution on site l. Some wrapper lasses aresupplied for tuple �elds suh as KString, KInteger, et.The extension of this pakage, CryptoKlava, provides the ryptographyfeatures desribed in the previous setion. We have used the Java Cryptogra-phy Extension (JCE) [13℄, a set of pakages that provide a framework and im-plementations for enryption, key generation and key agreement, and MessageAuthentiation Code (MAC) algorithms. JCE de�nes a set of standard API,so that di�erent ryptography algorithms an be plugged into a system or anappliation, without modifying the existing ode. Keys and erti�ates an besafely stored in a Keystore, an enrypted arhive.CryptoKlava is implemented as a subpakage of the pakage Klava, namelyKlava.rypto, so that it is self-ontained and does not a�et the main pak-age. In the rest of this setion we will desribe the main lasses of the pakageKlava.rypto, implementing ryptographi features.The lass KCipher is introdued in order to handle formal and atual �eldsontaining enrypted data (it follows theKlava onvention that wrapper lassesfor tuple items start with a K). Basially it an be seen as a wrapper for standardKlava tuple �elds. This lass inludes the following �elds:proteted byte[℄ enItem; // enrypted dataproteted Objet ref; // referene to the real tuple itemproteted String alg; // en�de algorithm type

The referene ref will be null when the �eld is a formal �eld, or the �eldhas not yet been derypted. After retrieving a mathing tuple, enItem willontain the enrypted data (that is always stored and manipulated as an arrayof bytes). After the deryption, ref will refer to the derypted data. Conversely,upon reation of an atual �eld, ref will ontain the data to be enrypted; afterenryption, enItem will ontain the enrypted data, while ref will be set tonull (so that the garbage olletor an eventually erase suh lear data also fromthe memory). alg stores information about the algorithm used for enryptionand deryption.An atual enrypted tuple �eld an be reated by �rstly reating a standardKlava tuple �eld (in the example a string) and then by passing suh �eld to aninstane of lass KCipher:KString s = new KString("foo");KCipher ks = new KCipher(s);Similarly the following ode reates an enrypted string formal tuple �eld (InKlava a formal �eld is reated by instantiating an objet from a Klava lass fortuple �elds { suh as KString, KInteger, et. { through the default onstrutor):KString s = new KString();KCipher ks = new KCipher(s);KCipher supplies methods en and de for respetively enrypting and de-rypting data represented by the tuple �eld. These methods reeive, as param-eter, the Key that has to be used for enryption and deryption, and en alsoaepts the spei�ation of the algorithm. These methods an be invoked onlyby the lasses of the pakage.The lass Tuplex extends the standard Klava lass Tuple, in order to on-tain �elds of lass KCipher, besides standard tuple �elds; apart from provid-ing methods for ryptographi primitives, it also serves as a �rst �lter duringmathing: it will avoid that ordinary tuples (ontaining only lear text data)be mathed with enrypted tuples. One tuple �elds are inserted into a Tuplexobjet, the KCipher �elds an be enrypted by means of the method enode.For instane, the following odeKString ps = new KString("lear");KCipher ks = new KCipher(new KString("seret"));Tuplex t = new Tuplex();t.add(ps); t.add(ks);t.enode();reates a tuple where the �rst �eld is a lear text string, and the seond is a�eld to be enrypted, and then atually enrypts the KCipher �eld by allingenode. Also enode an reeive parameters speifying the key and the algorithmfor the enryption; otherwise the default values are used. enode basially allsthe previously desribed method en on every KCipher tuple �eld, thus ensuringthat all enrypted �elds within a tuple rely on the same key and algorithm.As for the retrieval operation, this an be performed either with the newintrodued operations, ink and readk, if they are exeuted on the loal site

KString s = new KString();KString se = new KString();KCipher ks = new KCipher(se);Tuplex t = new Tuplex();t.add(s); t.add(ks);ink(t, l);Print("enrypted data is: " + se);or by �rst retrieving the tuple and then manually deoding enrypted �elds:... // as abovein(t, l);...t.deode();Print("enrypted data is: " + se);Notie that in both ases referenes ontained in an enrypted �eld (suh as se)are automatially updated during the deryption. The ink in the former exampleis performed at a remote site but this does not mean that the key travels in thenet: as explained in the previous setion, the mathing mehanism is impliitlysplit into a retrieve phase (whih takes plae remotely) and a deryption phase(whih takes plae loally).Operations ink and readk are provided as methods in the lass Klava-Proessx, whih extends the lass KlavaProess for standard proesses. Klava-Proessx also keeps information about the KeyStore of the proess and thedefault keys to be used for enryption and deryption. Obviously these �eldsare transient so that they are not delivered together with the proess, shouldit migrate to a remote site. All these extended lasses make the extension ofKlava ompletely modular: no modi�ation was made to the original Klavalasses.Finally, let us observe that, thanks to abstrations provided by the JCE, allthe introdued operations are independent of the spei� ryptography meha-nism, so both symmetri and asymmetri enryption shemes an be employed.4 An Enrypted Chat SystemThe hat system we present in this setion is simpli�ed, but it implements thebasi features that are ommon to several real hat systems. The system onsistsof a ChatServer and many ChatClients and it is a variant of the one presentedin [3℄ with the new ryptographi primitives. When a lient sends a message,the server has to deliver the message to all onneted lients. If a message is\private", it will be delivered only to the lients spei�ed in the list sent alongwith the message.Messages are normally delivered through the network as lear text, so theyan be read by everyone:{ an eavesdropper an interept the messages and read their ontents;{ a misbehaving hat server an examine lients' messages.

Moreover, the messages might also be modi�ed so that a lient believes he isreeiving messages from another lient, while it would be reading messages forgedby a \man in the middle".While this is normally aeptable, due to the open nature of a hat system,nonetheless there ould be situations when the privay and integrity of messagesis a major onern; for instane if two lients want to engage a private ommu-niation. This is a typial senario where ryptography an solve the problem ofprivay (through enryption).In this example we implement a hat server and a hat lient, apable ofhandling private enrypted messages:{ when the lient wants to send a private message to a spei� reeiver, itenrypts the body of the message with a key;{ the server reeives the message and simply forwards it to the reeiver;{ the reeiver will reeive the message with the enrypted body and it anderypt it with the appropriate key.Notie that lients that want to ommuniate privately must have agreed aboutthe spei� key to be used during the private message exhange; this is de�nitelythe ase with symmetri keys. As for publi and private key enryption thereeiver an simply use its private key, to derypt a message enrypted with itsown publi key.A private message is represented by a tuple with the following format:("PERSONAL", <body>, <reipient>, <sender>)where <reipient> and <sender> are, respetively, the loality of the lient themessage is destined to and the loality of the issuer of the message. Basially,when a lient wants to send a message with an enrypted body, it will have toperform the following steps:Tuplex t = new Tuplex() ;KCipher ryptMessage = new KCipher(message) ;t.add(new KString("PERSONAL"));t.add(ryptMessage) ;t.add(seletedUser) ;t.add(self) ;t.enode();out(t, server) ;where message is the atual message body.The server handles enrypted messages by retrieving them through the fol-lowing ations (it will deliver the tuple without the �eld <reipient>, whih isuseless at this time):KString message = new KString() ;KCipher ryptMessage = new KCipher(message) ;Loality to = new PhysialLoality() ;Loality from = new PhysialLoality() ;

Tuplex t = new Tuplex() ;t.add(new KString("PERSONAL"));t.add(ryptMessage) ;t.add(to) ;t.add(from) ;in(t, self) ;and it delivers the message to the reipient as follows:out(new Tuplex(new KString ("PERSONAL"), ryptMessage, from), to);On the other hand, the reeiver, whih is always waiting for inoming mes-sages, will read and derypt a message (in one atomi step), by means of theoperation ink:KString message = new KString() ;KCipher ryptMessage = new KCipher(message) ;KString from = new KString() ;Tuplex t = new Tuplex() ;t.add(new KString("PERSONAL")) ;t.add(ryptMessage) ;t.add(from) ;ink(t, self) ;Print("Reeived message: " + message);Both the server and the lients exeute these operations within the loop forhandling inoming messages.5 Conlusions and Related WorkSine tuple spae operations an be used both by loal proesses and by mo-bile agents, the extended operations, presented in this paper, address both theprivay of hosts and of mobile agents. We did not deal with key distributionexpliitly that an be seen as an orthogonal problem. Digital signatures anbe smoothly integrated in our framework and the pattern mathing extendedaordingly.The work that is loser to ours is [4℄, whih introdues the Seure Objet Spae(SeOS) model. This model is intended to extend Linda with �ne-grained a-ess ontrol semantis. In SeOS all tuple �elds are loked with a key, and eah�eld must be loked with a di�erent key. The basi idea is that a proess, uponretrieving a tuple, an see only the �elds for whih he owns the orrespondingkey. The struture of a tuple does not inuene pattern mathing: due to an in-trodued subsumption rule, a template an math also a bigger tuple, and �eldsan be reordered during the mathing. [5℄ proposes a similar, but riher frame-work, SeSpaes, where also resoure aess ontrol and tuple spae partitioningfailities are provided (orthogonal and omplementary to our approah).All these features tend to alter the original Linda model, while our prinipalaim is to provide an extension of the Linda ommuniation model that an besmoothly integrated into the existing features, without signi�antly hanging the

original model. Moreover, neither SeOS nor SeSpaes handle ode mobility,whih is one of our main onerns.Mobility imposes additional restritions on the underlying model, e.g., re-quiring that agents do not arry private keys during migrations, and alls foralternatives suh as expliit enryption and deryption mehanisms and a two-stage pattern mathing. Indeed the problem of proteting an agent against amaliious host is even more ompliated than that of proteting a host from amaliious agent (we refer to the papers in [14, 15℄).Referenes1. K. Arnold, E. Freeman, and S. Hupfer. JavaSpaes Priniples, Patterns and Pra-tie. Addison-Wesley, 1999.2. K. Arnold, B. O'Sullivan, R. Sheier, J. Waldo, and A. Wollrath. The Jini Spe-i�ation. Addison-Wesley, 1999.3. L. Bettini, R. De Niola, and R. Pugliese. Klava: a Java Framework for Distributedand Mobile Appliations. Software { Pratie and Experiene, 2002. To appear.4. C. Brye, M. Oriol, and J. Vitek. A Coordination Model for Agents Based on SeureSpaes. In P. Cianarini and A. Wolf, editors, Pro. 3rd Int. Conf. on CoordinationModels and Languages, number 1594 in LNCS, pages 4{20. Springer-Verlag, 1999.5. N. Busi, R. Gorrieri, R. Luhi, and G. Zavattaro. SeSpaes: a Data-drivenCoordination Model for Environments Open to Untrusted Agents. In Pro. ofFOCLASA'02, ENTCS. Elsevier, 2002.6. P. Cianarini and D. Rossi. Jada - Coordination and Communiation for JavaAgents. In J. Vitek and C. Tshudin, editors, Mobile Objet Systems - Towardsthe Programmable Internet, number 1222 in LNCS, pages 213{228. Springer, 1997.7. R. De Niola, G. Ferrari, and R. Pugliese. Klaim: a Kernel Language for AgentsInteration and Mobility. IEEE Transations on Software Engineering, 24(5):315{330, 1998.8. D. Deugo. Choosing a Mobile Agent Messaging Model. In Pro. of ISADS 2001,pages 278{286. IEEE, 2001.9. D. Ford, T. Lehman, S. MLaughry, and P. Wyko�. T Spaes. IBM SystemsJournal, pages 454{474, August 1998.10. D. Gelernter. Generative Communiation in Linda. ACM Transations on Pro-gramming Languages and Systems, 7(1):80{112, 1985.11. G. Pio, A. Murphy, and G.-C. Roman. Lime: Linda Meets Mobility. In D. Garlan,editor, Pro. ICSE'99, pages 368{377. ACM Press, 1999.12. T. Sander and C. Tshudin. Proteting Mobile Agents Against Maliious Hosts.In Vigna [14℄.13. Sun Mirosystems. Java Cryptography Extension (JCE), Refene Guide, 2001.14. G. Vigna, editor. Mobile Agents and Seurity. Number 1419 in LNCS. Springer,1998.15. J. Vitek and C. Jensen, editors. Seure Internet Programming: Seurity Issues forMobile and Distributed Objets, number 1603 in LNCS. Springer-Verlag, 1999.16. B. Yee. A Santuary For Mobile Agents. In Vitek and Jensen [15℄, pages 261{273.17. P. Zimmermann. The OÆial PGP User's Guide. MIT Press, 1995.

