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Abstract 20 

One of the major challenges in visual neuroscience is represented by foreground-21 

background segmentation, a process that is supposed to rely on computations in cortical modules, 22 

as information progresses from V1 to V4. Data from nonhuman primates (Poort et al., 2016) 23 

showed that segmentation leads to two distinct, but associated processes: the enhancement of 24 

cortical activity associated to figure processing (i.e., foreground enhancement) and the 25 

suppression of ground-related cortical activity (i.e., background suppression). To characterize 26 

foreground-background segmentation of natural stimuli in humans, we parametrically modulated 27 

low-level properties of 334 images and their behaviorally segmented counterparts. A model based 28 

on simple visual features was then adopted to describe the filtered and intact images, and to 29 

evaluate their resemblance with fMRI activity in different visual cortices (V1, V2, V3, V3A, V3B, V4, 30 

LOC). Results from representational similarity analysis (Kriegeskorte et al., 2008) showed that the 31 

correspondence between behaviorally segmented natural images and brain activity increases 32 

throughout the visual processing stream. We found evidence of foreground enhancement for all 33 

the tested visual regions, while background suppression occurs in V3B, V4 and LOC. Our results 34 

suggest that foreground-background segmentation is an automatic process that occurs during 35 

natural viewing, and cannot be merely ascribed to differences in objects size or location. Finally, 36 

“neural images” reconstructed from V4 and LOC fMRI activity revealed a preserved spatial 37 

resolution of foreground textures, indicating a richer representation of the salient part of natural 38 

images, rather than a simplistic model of objects shape. 39 

 40 

Significance Statement 41 

 In the path from continuous sensory percepts to discrete categorical representations, 42 

foreground-background segmentation has been considered a pivotal step, in order to make sense 43 
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of the surrounding visual environment. Our findings provide novel support to the hypothesis that 44 

foreground-background segmentation of natural scenes during passive perception is an automatic 45 

process sustained by the distributed activity of multiple areas across the visual processing stream. 46 

Specifically, V3B, V4 and LOC show a background suppression effect, while retaining texture 47 

information from the foreground. These observations challenge the idea that these regions of the 48 

visual system may primarily encode simple object representations based on silhouette or shape 49 

features only.  50 

 51 

Introduction 52 

In the scientific journey toward a satisfying understanding of the human visual system, 53 

scene segmentation represents a central problem “for which no theoretical solution exists” (Wu et 54 

al., 2006). Indeed, segmentation into foreground and background is crucial to make sense of the 55 

surrounding visual environment, and its pivotal role as an initial step of visual content 56 

identification has long been theorized (Biederman, 1987). However, although humans naturally 57 

segment during active visual processing, no computational model is currently able to achieve 58 

comparable performances in scene segmentation (Arbelaez et al., 2011). Furthermore, several 59 

appearance-based computational models could successfully perform, albeit with sub-optimal 60 

accuracy, visual content recognition of natural images without the aid of foreground-background 61 

segmentation, thus challenging its role in visual identification (Oliva and Torralba, 2001; Lazebnik 62 

et al., 2006). 63 

To date, numerous neurophysiological studies found evidence of texture segmentation and 64 

figure-ground organization in the early visual cortex of nonhuman primates (Lamme, 1995; Lee et 65 

al., 1998; Poort et al., 2012; Self et al., 2013; Kok and de Lange, 2014) and humans (Kastner et al., 66 

2000; Scholte et al., 2008). In particular, a recent study on nonhuman primates attending artificial 67 
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stimuli revealed an early enhancement of V1 and V4 neurons when their receptive fields covered 68 

the foreground, and a later response suppression when their receptive fields were located in the 69 

stimulus background (Poort et al., 2016). This demonstrates that foreground enhancement and 70 

background suppression are distinct but associated processes involved in segmentation.  71 

Other authors questioned the classical view of figure-ground segmentation as a 72 

compulsory bottom-up process in visual content recognition and proposed that identification 73 

precedes segmentation in a top-down manner (Peterson, 1994; Peterson and Gibson, 1994). In 74 

addition, from an experimental viewpoint, the role of visual segmentation has been demonstrated 75 

only by means of non-ecological stimuli (e.g., binary figures, random dots, oriented line segments 76 

and textures). Although two recent studies investigated border-ownership in monkeys with both 77 

artificial and natural stimuli (Hesse and Tsao, 2016; Williford and von der Heydt, 2016), a proof of 78 

the occurrence of scene segmentation in the human brain during visual processing of naturalistic 79 

stimuli (e.g., natural images and movies) is still lacking. 80 

In light of this, we specifically investigated foreground enhancement and background 81 

suppression, as specific processes involved in segmentation, during passive viewing of natural 82 

images in humans. We used fMRI data, previously published by Kay and colleagues (Kay et al., 83 

2008), to study brain activity from seven visual regions of interest (ROIs): V1, V2, V3, V3A, V3B, V4 84 

and lateral occipital cortex (LOC) during the passive perception of 334 natural images, whose 85 

“ground-truth” segmented counterparts have been included in the Berkeley Segmentation Dataset 86 

(BSD) (Arbelaez et al., 2011). 87 

Notwithstanding, as a reliable computational model of scene segmentation has not been 88 

achieved yet, we developed a novel pre-filtering modeling approach to study the response to 89 

complex, natural images without relying on explicit models. Our method is similar to other 90 

approaches where explicit computations are performed on representational features rather than 91 

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/109496doi: bioRxiv preprint first posted online Feb. 23, 2017; 

http://dx.doi.org/10.1101/109496


 5

on the original stimuli (Naselaris et al., 2011). For instance, these methods have been recently 92 

adopted to investigate semantic representation (e.g. Huth et al., 2012; Handjaras et al., 2016) or 93 

scene segmentation (Lescroart et al., 2016).  94 

However, as opposed to the standard modeling framework – according to which 95 

alternative models are computed from the stimuli to predict brain responses – here, low-level 96 

features of the stimuli are parametrically modulated and simple descriptors of each filtered image 97 

(e.g., edges position, size and orientation) are aggregated in a fixed biologically plausible model 98 

(Figure 1). The correspondence between the fixed model and fMRI patterns evoked by the intact 99 

naturalistic images, was then assessed using representational similarity analysis (RSA) 100 

(Kriegeskorte et al., 2008). Notably, this approach can also be exploited to obtain highly 101 

informative “neural images” representing the computations of different brain regions and may be 102 

generalized to investigate different phenomena in visual neuroscience.  103 

 104 

Materials and Methods 105 

To assess differences between cortical processes involved in foreground-background 106 

segmentation, we employed a low-level description of images, defined by averaging the 107 

representational dissimilarity matrices (RDMs) of four well-known computational models (Figure 108 

2D). The average model is based on simple features - such as edge position, size and orientation - 109 

whose physiological counterparts are well known (Marr, 1982). This model was kept constant 110 

while the images were parametrically filtered and iteratively correlated with brain activity through 111 

RSA. For each cortical module, this pre-filtering modeling approach led to a visual representation 112 

of the optimal features (contrast and spatial frequencies) of foreground and background of natural 113 

images. The analytical pipeline is schematized in Figure 2. 114 

 115 
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Stimuli.  116 

From the 1870 images used by (Kay et al., 2008) a sub-sample of 334 pictorial stimuli, 117 

which are represented also in the Berkeley Segmentation Dataset (BSD), was selected (Arbelaez et 118 

al., 2011). For every BSD image, five subjects manually performed an individual “ground-truth” 119 

segmentation, which is provided by the authors of the dataset 120 

(http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html). Thus, for 121 

each of the 334 images, we manually selected the largest foreground patch from one of the five 122 

behavioral segmentations, in order to build the foreground binary mask. This mask was down-123 

sampled and applied to the original stimulus (Kay et al., 2008). Stimuli are publicly available and 124 

can be downloaded at: http://crcns.org/data-sets/vc/vim-1. 125 

 126 

fMRI Data.  127 

The fMRI data used in this study are also publicly available at http://crcns.org/data-128 

sets/vc/vim-1. Two subjects were acquired using the following MRI parameters: 4T INOVA MR, 129 

matrix size 64x64, TR 1s, TE 28ms, flip angle 20°, spatial resolution 2 x 2 x 2.5 mm
3
. For additional 130 

details on pre-processing, acquisition parameters, retinotopic mapping and ROI localizations, 131 

please refer to (Kay et al., 2008).  132 

 133 

Computer Vision Models. 134 

In accordance with a previous fMRI study, we selected four well-assessed untrained 135 

computational models which showed significant correlations with brain activity patterns in early 136 

visual areas as well as LOC (Khaligh-Razavi and Kriegeskorte, 2014). The four models comprise: 137 

GIST (Oliva and Torralba, 2001), Dense SIFT (Lazebnik et al., 2006), Pyramid Histograms of 138 

Gradients (PHOG) (Bosch et al., 2007) and Local Binary Patterns (LBP) (Ojala et al., 2001). For an 139 
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exhaustive description of the four models – and links to Matlab codes – see the work by Khaligh-140 

Razavi (2014) and Khaligh-Razavi and Kriegeskorte (2014).  141 

 142 

Permuted segmentations.  143 

A permutation test was performed to assess the statistical significance of the foreground 144 

selection obtained from the behavioral segmentations, and to rule out a possible “fovea-to-145 

periphery” bias (see Results). In each iteration of this procedure, the 334 foreground masks were 146 

shuffled and a random foreground segmentation was associated to each stimulus. Of note, this set 147 

of randomly-segmented images had the same distribution of masked portions of the visual field as 148 

the one from the behavioral segmentation. This procedure was repeated 1,000 times, to build a 149 

null distribution of alternative segmentations: four examples of random segmentation are shown 150 

in Figure 2B. For each permutation, features were extracted from every image obtained by 151 

applying a random foreground mask to a stimulus, and RSA was performed using the procedure 152 

described below. 153 

 154 

Parametric filtering procedures 155 

In order to investigate differential processing of foreground and background in the early 156 

visual system, we employed three different filtering procedures (alpha channel modulation, low- 157 

and high-pass filtering of spatial frequencies) applied parametrically (100 steps each) to the 158 

foreground or the background of each image. For each procedure, three examples of filtered 159 

images are represented in Figure 2C. For low- and high-pass filtering, we employed a Butterworth 160 

filter, linearly sampling from a log-transformed distribution of frequencies ranging from 0.05 to 25 161 

cyc/°, while keeping the root mean squared (RMS) contrast fixed. In addition, for each step and 162 

each ROI, we computed the differences between the Spearman’s correlation coefficients of the 163 
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fMRI representational dissimilarity matrix (RDM) and the background and foreground feature-164 

based RDMs, respectively. For each filtering procedure (i.e. alpha channel, low- and high-pass), 165 

these differences were then averaged, to represent their impact on both foreground and 166 

background (Figure 4A).  167 

In order to assess whether low-level properties of the foreground borders might explain 168 

the similarity between the isolated foreground mask and brain activity, a control filtering 169 

procedure has been computed. The BSD behavioral masks were processed using a parametric 170 

Gaussian filter, whose radius increased by 2 pixels at each step while keeping the segmented area 171 

constant. The resulting mask was then applied to the original stimuli. For each of these steps the 172 

correlation with fMRI activity patterns was computed and compared with the BSD behavioral 173 

segmentation. Three examples of this procedure are represented in Figure 5G and the results are 174 

displayed in Figure 5H. 175 

 176 

Representational Similarity Analysis (RSA).  177 

For each filtered image, we collected feature vectors from the four computational models 178 

(GIST, PHOG, LBP and Dense SIFT), and RDMs were then obtained (1 minus the Pearson correlation 179 

metric). These four RDMs were normalized in a range between 0 and 1, and averaged to obtain 180 

the fixed biologically plausible model of the stimuli (for a graphical representation of the process, 181 

see Figure 2D). Single subject RDMs were similarly computed using fMRI activity patterns for each 182 

of the seven ROIs, and then averaged across the two subjects. We used Spearman’s rho (ρ) to 183 

assess the correlation between the RDMs from each step of the filtering procedures and the RDMs 184 

from the brain ROIs. In addition, as different ROIs may show different levels of signal-to-noise ratio, 185 

we computed a noise estimation by correlating the RDMs from each ROI between subjects. These 186 

ROI-specific noise estimations were used to normalize the correlation coefficients, reported as 187 
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normalized Spearman’s rho (Nρ) in the figures. The same normalization procedure has been 188 

employed also for voxel-wise encoding by (Huth et al., 2016). 189 

 190 

Neural images 191 

For each ROI, the effects of the three filtering procedures were then combined, to build the 192 

post-hoc “neural image”. To this aim we used the filtering step with the highest correlation 193 

between the fixed model and brain activity, for foreground and background. In detail, we 194 

averaged the best images for the low- and high-pass filters, and multiplied each pixel for the 195 

preferred alpha-channel value. Lastly, the foreground mask employed for the neural images was 196 

chosen as the best step in Gaussian filtering procedure described above. 197 

All analyses have been performed with Matlab (The Mathworks Inc.). 198 

 199 

Results 200 

Comparison of intact and behaviorally segmented images 201 

To compare whether the RDMs of the intact stimuli and RDMs of the isolated foreground 202 

differentially correlate with brain activity, two fixed descriptions of the stimuli were created 203 

(Figure 2). RSA results (Kriegeskorte et al., 2008) showed that the intact and segmented version of 204 

the stimuli have different correlation patterns (Figure 3A): the correlation between the segmented 205 

RDM and fMRI activity increases as progressing along the hierarchy of the visual cortices, from V1 206 

to LOC, with maximum correlation values in V4 and LOC (V1: Nρ = 0.07; V2: Nρ  = 0.11; V3: Nρ =  207 

0.14; V3A: Nρ = 0.32; V3B: Nρ = 0.27; V4: Nρ  = 0.35; LOC: Nρ = 0.40). On the contrary, the intact 208 

description reveals a decrease in correlation beyond V1 and V2, with the exception of V3A only 209 

(V1: Nρ = 0.43; V2: Nρ = 0.49; V3: Nρ = 0.32; V3A: Nρ = 0.45; V3B: Nρ = 0.27; V4: Nρ  = 0.26; LOC: 210 
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Nρ = 0.35). These different trends related to the intact and segmented descriptions fostered 211 

further analyses. 212 

 213 

Foreground Enhancement 214 

A higher correlation for the foreground description as compared to the intact images was 215 

found only in V4 and LOC, however a recent electrophysiological study on monkeys found 216 

evidence for foreground enhancement also in earliest visual cortices (Poort et al., 2016). Thus, to 217 

test whether the behavioral foreground segmentation from BSD was more tied to brain activity as 218 

compared to alternate configurations obtained by shuffling the segmentation patterns across 219 

stimuli (Figure 2B), we performed a specific analysis based on a permutation test.  220 

As depicted in Figure 3A, for all the ROIs, the correct foreground configuration yielded a 221 

significantly higher correlation as compared to the examples from the shuffled dataset, thus 222 

suggesting that foreground enhancement is actually involved in scene segmentation of natural 223 

images during passive perception (V1: p = 0.002; V2: p < 0.001; V3: p < 0.001; V3A: p < 0.001; V3B: 224 

p < 0.001; V4: p < 0.001; LOC: p < 0.001). 225 

This analysis also accounted for a potential confounding effect related to a "fovea-to-226 

periphery bias" in our image set - represented in Figure 3B. In fact, as already observed in 227 

literature, natural images are typically characterized by objects located at the center of the scene 228 

(see for instance the object location bias represented in Figure 3B in (Alexe et al., 2010)). However, 229 

we replicated the same "fovea-to-periphery bias" in the null distribution, to rule out that 230 

foreground enhancement could be driven by differences between the representation of fovea and 231 

periphery across the set of images.  232 

 233 

Background Suppression 234 
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The different correlation trends showed by RDMs of intact and segmented descriptions 235 

also suggested that the background-related information was suppressed in higher visual cortices, 236 

thus explaining the lowest performance of the intact description in V4 and LOC as compared to the 237 

description of the isolated foreground. Notably, Poort and colleagues (2016) described 238 

background suppression as a different, but associated, phenomenon with respect to foreground 239 

enhancement. Thus, in order to better characterize where and how background suppression 240 

occurs in humans attending to natural images, a further analysis was performed by parametrically 241 

filtering out the foreground, or the background, of each image, varying their contrast or spatial 242 

frequencies (low- and high-pass filtering; Figure 2C). RSA results for the parametric filtering 243 

approach are summarized in Figure 4, while results relative to each single procedure are shown in 244 

Figure 5A-F. Independently from the filtering procedure employed, background and foreground 245 

filtering showed different correlation trends: while filtering out the foreground (i.e., isolating the 246 

background) results in a correlation drop in all the ROIs, filtering out the background (i.e., isolating 247 

the foreground) leads to an increased correlation in higher regions such as V3B, V4 and LOC 248 

(Figure 4A). This effect is accounted neither by differences in the extent of visual field occupied by 249 

foreground or background nor by the "fovea-to-periphery bias". In fact, we replicated the same 250 

filtering procedures using a foveal mask whose area was kept constant and equal to the mean area 251 

of the actual foreground masks. As depicted in Figure 6, the difference between background and 252 

foreground was not accounted by differential processing of periphery and fovea. 253 

Moreover, an additional control analysis was performed to assess the impact of low-level 254 

properties of foreground borders. A Gaussian filter was parametrically applied to the foreground 255 

masks and the resulting correlation pattern in each ROI was measured (Figure 5 G-H). The 256 

unfiltered behavioral mask showed high correlations in all ROIs (V1: max step = 6 out of 100; 12px 257 

radius; V2: max step = 1 out of 100; 0px radius; V3: max step = 1 out of 100; 0px radius; V3A: max 258 
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step = 1 out of 100; 0px radius; V3B: max step = 1 out of 100; 0px radius; V4: max step = 4 out of 259 

100; 8px radius; LOC: max step = 3 out of 100; 6px radius). 260 

 261 

Discussion 262 

In the present study, we illustrated how the manipulation of low-level properties of natural 263 

images, and the following correlation with brain responses during passive viewing of the intact 264 

stimuli, could disclose the behavior of different brain regions along the visual pathway.  265 

Employing this pre-filtering modeling approach, we were able to collect three different 266 

evidence indicating that scene segmentation is an automatic process that occurs during passive 267 

perception in naturalistic conditions, even when individuals are not required to perform any 268 

particular tasks, or to focus on any specific aspect of the images.  269 

First, we demonstrated that the correlation of fMRI patterns with foreground-related 270 

information increases along the visual hierarchy, culminating in V4 and LOC. In addition, 271 

foreground-related information in these two regions is more linked to brain activity than intact 272 

stimuli. 273 

Second, our analyses specifically found that foreground enhancement is present in all the 274 

selected visual ROIs, and that this effect is driven neither by the foreground inked area, nor by its 275 

location in the visual field. Thus, indirect evidence of scene segmentation of natural images could 276 

be retrieved in the activity of multiple early areas of the visual processing stream. This is 277 

consistent with a recent study, which reported that border-ownership of natural images cannot be 278 

resolved by single cells, but requires a population of cells in monkey V2 and V3 (Hesse and Tsao, 279 

2016).  280 

Finally, an additional proof of segmentation can be represented by the suppression of 281 

background-related information in V3B, V4 and LOC. On the contrary, earlier regions across the 282 
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visual stream - from V1 to V3 – have a uniform representation of the whole image, as evident at 283 

first glance in Figure 4B. Overall, these results further support the idea that foreground 284 

enhancement and background suppression are distinct, but associated, processes involved in 285 

scene segmentation of natural images.  286 

 287 

Foreground segmentation as a proxy for shape processing 288 

The success of the segmented description over the intact counterpart in explaining the 289 

functioning of V4 and LOC is consistent with several investigations on shape features selectivity in 290 

these regions, and in their homologues in monkey (Hung et al., 2012; Lescroart and Biederman, 291 

2013; Vernon et al., 2016). In fact, the extraction of shape properties requires a previous 292 

segmentation (Lee et al., 1998), and presumably occurs in brain regions where background is 293 

already suppressed. Notably, the “neural images” reconstructed from V3B, V4 and LOC are 294 

characterized by a strong background suppression, while the foreground is preserved. This is 295 

consistent with a previous neuropsychological observation: a bilateral lesion within area V4 led to 296 

longer response times in idefintying overlapping figures (Leek et al., 2012). Hence, this region 297 

resulted to be crucial for accessing foreground-related computations, performed in earlier stages 298 

of visual processing, and presumably plays a role in matching the segmented image with stored 299 

semantic content in figure recognition. In accordance with this, a recent hypothesis suggests a role 300 

of V4 in higher-level functions, such as features integration or contour completion (Roe et al., 301 

2012). 302 

The preserved spatial resolution of foreground descriptive features (i.e., texture) in V4 and 303 

LOC represent an additional noteworthy aspect that arises from our data. The progression from V1 304 

towards higher-level regions of the cortical visual pathway is associated with a relative increase in 305 

receptive fields size (Dumoulin and Wandell, 2008; Freeman and Simoncelli, 2011; Kay et al., 2015). 306 

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/109496doi: bioRxiv preprint first posted online Feb. 23, 2017; 

http://dx.doi.org/10.1101/109496


 14

In addition, it should be kept in mind that regions such as V4 demonstrate a complete 307 

representation of the contralateral visual hemifield, rather than selective responses to stimuli 308 

locate above or below the horizontal meridian (Wandell and Winawer, 2011). The evidence that 309 

the foreground portion of “neural images” maintains fine-grained details in V4 and LOC seems to 310 

contrast the traditional view according to which these regions are more tuned to object shape (i.e., 311 

silhouettes), instead of being selective for the internal configuration of images (e.g. Malach et al., 312 

1995; Grill-Spector et al., 1998; Moore and Engel, 2001; Stanley and Rubin, 2003). However, it has 313 

been shown that foveal and peri-foveal receptive fields of V4 do accomodate fine details of the 314 

visual field (Freeman and Simoncelli, 2011) and that the topographic representation of the central 315 

portion of this area is based on a direct sampling of the primary visual cortex retinotopic map 316 

(Motter, 2009). Therefore, given the "fovea-to-periphery" bias found in our stimuli and in natural 317 

images, it is reasonable that an intact configuration of the foreground may be more tied to the 318 

activity of these brain regions, and that a richer representation of the salient part may overcome 319 

simplistic models of objects shape (i.e., silhouettes). 320 

Lastly, it is well known that selective attention represents one of the "active" cognitive 321 

mechanisms supporting figure segmentation (Qiu et al., 2007; Poort et al., 2012), as suggested, for 322 

instance, by bistable perception phenomena (Sterzer et al., 2009) or by various neuropsychological 323 

tests (e.g. De Renzi et al., 1969; Bisiach et al., 1976). In the present experiment, participants were 324 

asked to simply gaze a central fixation point without performing any overt or covert tasks related 325 

to the presented image. Nonetheless, we found evidence of a clear background suppression and 326 

foreground enhancement in several regions of the visual stream, suggesting that scene 327 

segmentation is mediated by an automatic process tha may be driven either by bottom-up (e.g., 328 

low-level properties of the foreground configuration), or top-down (e.g., semantic knowledge) 329 

attentional mechanisms. 330 
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 331 

Facing the challenge of explicit modeling in visual neuroscience 332 

As predicting brain responses in ecological conditions is one the major goals of visual 333 

neuroscience, our study showed that the sensitivity of fMRI pattern analysis can represent an 334 

adequate tool to investigate complex phenomena through the richness of natural stimuli.  335 

The standard approach in investigating visual processing in ecological conditions implies 336 

testing the correlation of brain responses from a wide range of natural stimuli with features 337 

extracted by different alternative computational models. This approach facilitates the comparison 338 

between the performances of competing models and could ultimately lead to the definition of a 339 

more plausible model of brain activity. However, the development of explicit computational 340 

models for many visual phenomena in ecological conditions is difficult, as testified by the 341 

extensive use of artificial stimuli in visual neuroscience (e.g. Carandini et al., 2005; Wu et al., 2006). 342 

Actually, even if computer vision is a major source of computational models and feature 343 

extractors, often its objectives hardly overlap with those of visual neuroscience. Computer 344 

scientists are mainly interested in solving single, distinct tasks (e.g., segmentation, recognition, 345 

etc.), while, from the neuroscientific side, the visual system is considered as a general-purpose 346 

system that could adapt itself to perform different behaviors (Medathati et al., 2016). 347 

Consequently, while computer science typically employs solutions that rely only seldom on 348 

previous neuroscientific knowledge, visual neuroscience frequently lacks of solid computational 349 

models, ending up with several arbitrary assumptions in modeling, especially for mid-level vision 350 

processing, such as scene segmentation or shape features extraction (for a definition see: Kubilius 351 

et al., 2014). 352 

In light of this, we believe that the manipulation of a wide set of natural images, and the 353 

computation of a fixed model based on low-level features, can offer a simple and biologically 354 
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plausible tool to investigate brain activity related to higher-order computations. In fact, the results 355 

of this procedure can be depicted and are more intuitive as compared to the description obtained 356 

through formal modeling (Figure 4B), thus highlighting interpretable differences rather than data 357 

predictions.  358 

 359 

Figure legends: 360 

 361 

Figure 1. Comparing the Standard Modeling Approach and the Pre-filtering Modeling Approach. 362 

A) In the standard modeling pipeline, different models are compared. After extracting features 363 

from the stimuli, competing feature vectors can be used in order to predict brain activity in an 364 

encoding procedure, or stimuli dissimilarities can be used in a representational similarity analysis. 365 

Finally, the model that better predicts brain responses is discussed. B) In our pre-filtering modeling 366 

approach, different filtered versions of the original stimuli are compared. Various biologically 367 

plausible filtering procedures are applied to the stimuli prior to compute a unique feature space 368 

according to a given fixed and easily interpretable model. In our approach a single model is 369 

employed and the best step of each filtering procedure is used to build a post-hoc “neural image”, 370 

to visually interpret the results. While the standard modeling approach is theoretically more 371 

advantageous, as its output is a fully computable model of brain activity, it can not be applied 372 

when reliable explicit models of the perceptual process do not exist yet, as in the case of scene 373 

segmentation. Alternative attempts to reconstruct visual stimuli from brain activity have been 374 

previously reported using decoding techniques (e.g. Stanley et al., 1999; Thirion et al., 2006; 375 

Miyawaki et al., 2008; Nishimoto et al., 2011).  376 

 377 

Figure 2. Analytical Pipeline. 378 
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A) An example of intact image and its behaviorally segmented counterpart B) The set of 379 

segmented stimuli is tested against a null distribution of 1,000 permutations. Each permutation is 380 

built by randomly shuffling the 334 behavioral foreground masks C) Three steps (20, 50 and 80 out 381 

of 100) for the contrast or spatial frequencies filtering of foreground and background. D) In 382 

clockwise order: features for each model were extracted from the stimuli; the dissimilarity (1 - 383 

Pearson’s r) between each stimulus pair was computed and aggregated in four representational 384 

dissimilarity matrices (RDMs); the obtained RDMs were normalized in a 0-1 range; finally, the four 385 

RDMs were averaged in the unique appearance-based RDM, which was correlated to brain activity 386 

patterns in the subsequent analyses.  387 

 388 

Figure 3. Foreground Enhancement in the Human Early Visual System. 389 

A) Results for RSA: the correlation between the segmented version of the images and brain activity 390 

increased across the ROIs in a way respectful of the hierarchical organization of visual cortices; 391 

conversely the intact version does not show a similar trend. In addition, to test foreground 392 

enhancement and rule out a “fovea-to-periphery” bias, the behavioral segmentation was tested 393 

against a null distribution of shuffled masks made of 1000 permutations, and yielded a significant 394 

correlation for all the tested ROIs. B) The biased distribution of foreground masks in the 20° of 395 

visual field covered by the stimuli from Kay and colleagues (Kay et al., 2008). The color-bar 396 

represents the number of times each pixel is comprised in a foreground mask. 397 

 398 

Figure 4. Background Suppression in the Human Early Visual System.  399 

A) Mean correlation difference between background and foreground filtering. For each ROI and 400 

each iteration, the mean difference between the correlation of brain activity with background and 401 

foreground filtering is represented. Positive values indicate higher correlation due to filtering-out 402 
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the background (i.e., isolating the foreground), while negative values indicate higher correlation 403 

due to filtering-out the foreground (i.e., isolating the background). B) Neural images have been 404 

obtained as the combination of the steps of the filtering procedures (contrast, Gaussian, low- and 405 

high-pass filtering) which show the higher correlation with brain activity in each ROI (see Methods).  406 

 407 

Figure 5. Results of the Filtering Procedures. 408 

Correlation pattern between brain activity and the contrast, high- and low-pass filtering applied to 409 

the foreground (A, C, E) and to the background (B, D, F). G) Three examples of the Gaussian 410 

filtering procedure (at step 20, 50 and 80 out of 100). H) Correlation pattern of the Gaussian filter.  411 

 412 

Figure 6. Segmentation is driven by differential processing of foveal and peripheral information. 413 

Mean difference between periphery and fovea (see Results). In order to test whether background 414 

suppression could be explained by the fovea-to-periphery bias or by the different area of 415 

foreground and background, we repeated the filtering analysis using a fixed foveal mask equal to 416 

the mean area of the foreground masks.  As depicted, the differences between background and 417 

foreground (in black) are not driven by the differences between periphery and fovea (red to blue).   418 

 419 
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