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Abstract

The estimation of spillover and peer effects presents challenges that are still unsolved.
In fact, even if separate algebraic identification of the endogenous and exogenous effects
is possible, these might be contaminated by the simultaneous dependence of outcomes,
covariates and the network structure upon spatially correlated unobservables. In this
paper we characterize the identification conditions for consistently estimating all the
parameters of a spatially autoregressive or linear-in-means model in presence of linear
forms of endogeneity. We show that identification is possible if the spatial correlation
of individual covariates and that of unobservables do not overlap, and we relate this
idea to a schooling context in which the factors that determine friendships and socio-
economic characteristics are different. We propose a GMM estimator to estimate the
relevant parameters and we evaluate its performance through Monte Carlo simulations.
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1 Introduction

A sizable body of empirical economic research deals with the analysis of peer effects,
network effects, social interactions and – more generally – externalities. Among these
studies, the literature about peer effects in education occupies perhaps a more promi-
nent position (Sacerdote, 2001; Calvó-Armengol et al., 2009; De Giorgi et al., 2010;
Carrell et al., 2013), but applications in more diverse fields are numerous (Glaeser
et al., 1996; Duflo and Saez, 2003; Mas and Moretti, 2009).1 In the face of growing
empirical evidence, econometric analysis has struggled for a while to characterize con-
ditions for providing a more structural interpretation to observed group correlations
in outcomes. While important advances have been realized, their relevance is limited
to a restricted set of empirical settings, in which the characteristics of individuals as
well as their structure of socio-economic interactions are both as good as exogenous.

In order to better characterize the position of the present article in this literature,
it is worth to summarize the evolution of economists’ understanding of the workhorse
framework for many studies about social effects: the “linear-in-means” model. Follow-
ing Manski (1993), who highlighted the so-called reflection problem of simultaneity
between group characteristics and group outcomes, econometricians have attempted
to individuate settings in which endogenous social responses can be identified sepa-
rately from the influence of common external factors. In an influential contribution,
Bramoullé et al. (2009) express the conditions for identification when social effects
are shaped by networked structures of interaction, which is particularly appealing as
networks typically provide more realistic descriptions of actual social relationships.
Blume et al. (2015) incorporate their identification results – as well as one based on
covariance restrictions which builds on Graham (2008) – within a larger framework.
Thanks to these and other efforts, it is now well understood that complex patterns of
individual dependence if anything make the identification of social effects easier. Yet
all these analyses maintain the assumption that the model’s error term is conditionally
independent of the individual covariates and the structure of interactions.

1Studies of R&D and knowledge spillovers more generally, which follow the tradition initiated by
Jaffe (1986, 1989), are seldom counted among these studies. This is quite a notable omission, since
the workhorse econometric frameworks employed in this literature are easily seen as variations of the
standard spatial models utilized for the estimation of peer effects. More recent contributions about
R&D spillovers include Bloom et al. (2013), Lychagin et al. (2016) and Zacchia (2017). Other related
strands of literature include the one about peer effects in scientific production (Azoulay et al., 2010;
Waldinger, 2011; Oettl, 2012) and that about learning externalities (Conley and Udry, 2010).
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By contrast, in this paper we examine a model of social interactions where both
individual characteristics and the network that defines paired relationships are simul-
taneously dependent on individual unobservables. Our departure point is a Spatially
Autoregressive (SAR) model (Cliff and Ord, 1981), of which the linear-in-means model
is a special case, and whose econometrics has been rigorously analyzed in a number of
theoretical papers (Lee, 2007; Lee et al., 2010; Lin and Lee, 2010; Liu and Lee, 2010).
In conformity with other articles from this literature, we derive our empirical model
from an explicit theoretical framework; unlike most, ours is based on a Cobb-Douglas
utility function, and it can accommodate contexts ranging from peer effects in the
classroom to R&D spillovers. We discuss how standard estimates of social effects are
inconsistent if unobservables correlate with covariates and with peers’ unobservables,
and we illustrate the related identification problem by showing that the errors’ cross-
correlation is observationally equivalent to typical exogenous or “contextual” effects
often featured in linear-in-means models. This resonates with the notorious critique
of peer effect studies put forward by Angrist (2014), according to whom the current
results in the literature may reflect spurious correlations due to “correlated effects.”

The main contribution of our paper is to show that for certain structures of under-
lying endogeneity, the social effects of interest can be internally identified without re-
sorting to external instruments. Specifically, it is necessary that the cross-correlation
of the observable and unobservable characteristics is not collinear in social or net-
work space. In such a case, it is possible to identify some residual variation in peers
characteristics that works as an exogenous predictor of peers outcomes, by which the
identification of social effects would proceed as in the standard case. We relate this
intuition to a schooling setting in which peers establish bonds on the basis of their
similarity in unobservable characteristics (like ability), while the observable covariates
(like family background) correlate with the unobservables even between non-friends.
Once again, the increased complexity of social relationships helps bring about easier
identification. Although we initially illustrate our result under some simplifying as-
sumptions, we further show that the basic idea can be extended to more general cases.
For our simpler setup, we characterize a GMM approach for the joint estimation of
both the social effects and the other parameters of the data generation process. We
evaluate the performance of our estimator through some Monte Carlo simulations.

The one we propose is a novel approach in the literature. In line with a recommen-
dation given by Blume et al. (2015), some scholars (Arduini et al., 2015; Johnsson and
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Moon, 2017) develop a control function approach to account for network endogeneity.
These contributions embed, within a SAR model, the network formation stage and
its estimation, which are based on Graham (2017). However, they do not consider the
possible simultaneity between the network and individual characteristics, which can
be due to correlated unobserved errors. By contrast, our strategy does; in addition, it
does not require an explicit model of network formation, so long as the spatial scope
of the relevant cross-correlations is known. In this respect, our method extends some
previous work by Zacchia (2017).2 Obviously, the spatial econometrics literature has
examined correlated unobservables at length (Kelejian and Prucha, 1998, 2007, 2010;
Drukker et al., 2013); however, individual covariates are usually assumed exogenous.3

It is useful to relate our article to other papers from the literature about peer and
network effects. In addition to the cited contribution by Graham (2008), other papers
make use of conditional covariance restrictions to achieve the identification of social
effects (Glaeser et al., 1996; Moffitt, 2001; Davezies et al., 2009; Pereda Fernández,
2017; Rose, 2017a). Our method also exploits covariance restrictions, but unlike these
papers, their role in identification is to estimate the covariance structure of the model
so to isolate the variation of peers’ characteristics that is exogenous to individual
unobservables. Finally, it is important to observe that in our setup, the matrices that
characterize both the social effects and dependence of peers characteristics on indi-
vidual errors are assumed to be known by the econometrician. In addition, methods
developed for estimating the structure of interactions (Manresa, 2017; Rose, 2017b;
De Paula et al., 2018) which make use of penalized estimators such as the LASSO
(Tibshirani, 1996) cannot be adapted to this setup. We revisit these observations in
the conclusion of the paper while suggesting future lines of work.

The remainder of this paper is organized as follows. Section 2 presents our general
analytical framework. Section 3 discusses the conditions for the identification of social
effects. Section 4 characterizes the GMM estimator associated with our simpler setup.
Section 5 demonstrates its qualities in Monte Carlo simulation. Finally, 6 concludes
the paper. A separate Appendix provides the proofs for the main results.

2Zacchia (2017) analyzes a model of R&D spillovers in which firms’ unobservables are correlated
in the network of R&D relationships, and are simultaneous to the R&D of connected firms. In order
to identify spillover effects, he constructs IVs motivated on the finite empirical spatial correlation of
R&D. The framework presented here instead does not restrict the spatial correlation of covariates.

3In a recent contribution, Kuersteiner and Prucha (2018) examine a SAR model for panel data
in which the interaction matrix is possibly endogenous and covariates are weakly exogenous, and
propose an appropriate GMM estimator. In our cross-sectional framework covariates are endogenous.
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2 Analytical Framework

In this section we introduce the social interactions game that constitutes the theo-
retical framework of this paper. We subdivide this section between the description of
the model’s setup and the discussion of the equilibrium predictions.

2.1 Model’s Setup

We consider an abstract setting of social and economic interactions between hetero-
geneous agents (players) in a network. In order to allow for interdependence between
the characteristics of agents and the structure of their connections, we allow nature to
randomly draw the weighted network (I,G) that characterizes the social interactions.
Here, I is the set that comprises the N players, who are indexed as i = 1, . . . , N .
The N2-dimensional set G, instead, represents the interaction structure: thus, gij ∈ R
denotes the relative strength of the influence exerted by player j on player i (and vice
versa). We impose two standard normalizations: gij ∈ [0, 1] and gii = 0 for all players
i = 1, . . . , N . Furthermore, we assume for simplicity that the network is undirected
(symmetric), that is gij = gji for all pairs (i, j) ∈ I2. Our results are easily extended
to the case of directed (asymmetric) networks, where gij 6= gji.

Every player in I is typified by two variables (xi, εi). We denominate xi ∈ X the
observable characteristics of player i, and εi ∈ E his or her unobservables : this abstract
terminology clearly relates to the information which is available to the econometricians
who are in search of social externalities. For simplicity we set X = E = R, although
many, possibly discrete characteristics could easily be accommodated. We assume
that the random vector of individual observable characteristics x = (x1, . . . , xN), the
random vector of individual unobservables, ε = (ε1, . . . , εN) and the network G are
all randomly drawn from a joint probability distribution F (x, ε,G), which is known
by all agents. We place no a priori restrictions on the distribution F (·).

The economic content of the description outlined thus far deserves some further
discussion. In social networks, the probability of a connection occurring between any
two agents is documented to be correlated with their characteristics. For example,
friends usually sort on social background and demographics, while R&D spillovers
naturally occur between firms belonging to the same technological class. This result
is predicted by many models of random and strategic network formation, and the
social mechanism by which similar agents are paired to one another bears the name
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of homophily. However, it is apparent that many of the characteristics that predict
the occurrence (or the relative strength) of connections are unobserved by researchers:
for example, student friendships may be sorted on ability; likewise, R&D connections
may appear more frequently between firms with shared technologies. In either case,
the fact that connected agents share some of their unobservables poses identification
problems to the econometrician. Zacchia (2017) discusses in more detail how “common
unobservables” and “network endogeneity” are two intertwined issues.4

Players maximize the following “twice exponential” utility function:

Ui (e1, . . . , eN ;xi, εi) = exp [yi (e1, . . . , eN ;xi, εi)]− exp (ei) (1)

where yi is the individual-level outcome (denoting, say, grades, or production output)
which is determined through the following linear relationship.

yi (e1, . . . , eN ;xi, εi) = α0 + γ0xi + µei + ν
N∑
i=1

gijej + εi (2)

The outcomes of individuals depend upon their characteristics (xi, εi) as well as on a
costly strategic variable ei ∈ R that we call effort : this may represent, for instance,
time dedicated to homework or R&D investment. Because of social interactions and
externalities, yi also depends on the effort of all the other players an agent is connected
to (possibly negatively). Private and social effects of effort are parametrized as µ and
ν, respectively. To make the model realistic, we impose the following restriction.

Assumption 1. Concavity: µ ∈ (0, 1)

This assumption makes i. individual output positively dependent on effort, and ii. the
utility function concave in exp (ei), so that choice trade-offs are cogent. As we discuss
later, additional restrictions on ν are necessary to ensure equilibrium uniqueness.

Note two differences between this framework and the quadratic utility model that
is typical of the peer effects literature (Calvó-Armengol et al., 2009; Blume et al.,
2015). First, the model proposed here outlines a clear distinction between individual
choice variables and ultimate outcomes, which undoubtedly gives it more generality.

4In addition, in an extension of his theoretical framework (which is tailored to the setting of R&D
spillovers) he observes that common models of network formation imply little or no cross-correlation
of individual variables at three degrees of separation or more, which is in remarkable agreement with
the empirical evidence.
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Second, while both utility functions are globally concave in their respective strategic
variables, in the case of (1) individual characteristics xi, ability εi, individual effort
ei and the effort ej of connections are complements. In addition to accommodating
functional forms such as those that are typical of production functions, this increases
the degree of realism of the model even in other social contexts. For example, more
skilled or better supported students may benefit relatively more from devoting more
time to homework and independent study, either alone or with their friends. Finally,
observe that one could easily introduce heterogeneous weights to the benefit and cost
components of (1), but this is beyond the point of the present analysis.

We analyze a game of complete information characterized by the following timing.

1. Nature draws (x, ε,G) from F (·). Every player observes the result of this draw.
2. Players simultaneously make their effort choices, and utilities are determined

accordingly.

By letting the network be generated randomly by nature we abstract from the specifics
of the network formation process, as our results do not depend on it. Also note that
by assuming complete information we make our analysis more general. As discussed
by Zacchia (2017), in fact, incomplete information provides more avenues for the iden-
tification of social effects, in the form of implicit restrictions on the cross-correlation
of strategic variables.

2.2 Analysis

We analyze the properties of the equilibrium conditional upon a restriction, that we
maintain throughout our discussion, about the combined parameter β ≡ ν (1− µ)−1.

Assumption 2. Non-explosiveness: |β| ·maxi∈I
∑N

j=1 gij ∈ [0, 1)

This assumption imposes that social effects do not “dominate” the process of outcome
generation. In the game, it ensures uniqueness of the equilibrium by ruling out unre-
alistically “explosive” scenarios. In statistical terms, this assumption makes it possible
that the variation of yi is not predominantly explained by the cross-correlation of out-
comes in the network: we find that otherwise, the identification problems discussed
in this article are largely moot, since standard estimators would capture the social
effects with little bias relatively to the overall variance of the dependent variable. We
observe that variations of this hypothesis are often assumed in the literature.
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In standard models of peer effects, it is also routinely assumed that the in-degree
of agents is constant and normalized to one, as follows.

Assumption 3. Row Normalization: ḡi ≡
∑N

j=1 gij = 1 for all i = 1, . . . , N

Under Assumption 3 social effects represent the individual response to the (weighted)
average behavior or characteristics of peers. This contrasts with models where social
effects are a function of the total intensity of connections. Throughout most of this
paper we will maintain Assumption 3, while concentrating on the identification of
the combined parameter β. Later we relax this hypothesis and, among the possible
extensions of our approach, we discuss the possibility to separately identify µ and ν
by exploiting variation in individual in-degree. Incidentally, observe that Assumption
3 implies that no agent is allowed to be “isolated” (disconnected from the network)
and that under row normalization, Assumption 2 reduces to |β| ∈ [0, 1).

Under all the hypotheses outlined thus far, the following result is easily obtained.

Proposition 1. Equilibrium. For all realizations of (x, ε,G), under Assumptions
1-3 there exists a unique equilibrium of the game, which gives rise to an equation for
the outcome yi that can be expressed for each player i = 1, . . . , N as follows:

yi = α+ β
N∑
j=1

gijyj + γxi + εi (3)

where α ≡ (1− µ)−1 [α0 + (µ+ ν) logµ] and γ ≡ (1− µ)−1 γ0.

Proof. The First Order Condition from utility maximization can be written, for each
player j = 1, . . . , N , as:

ej = yj + logµ (4)

substituting this expression into (2) results in (3). Moreover, by substituting (2) into
(4) and solving for ej it is easily seen that – under the non-explosiveness condition –
the N First Order Conditions together represent a contraction of (e1, . . . , eN) in the(
RN ,M

)
metric space, whereM is the max norm. This implies uniqueness.

Let us examine the reduced form expression (3) that is generated in equilibrium.
While it resembles the standard equation of linear in means models from the peer
effects literature, it provides some additional insights in relationship with the model.
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First, parameter β – corresponding to the endogenous effect from the original classi-
fication by Manski (1993) – is given here a clear behavioral interpretation. In fact, β
is equal to the direct effect of connections’ effort ν amplified by a factor representing
the equilibrium response of individual effort caused by complementarities: intuitively,
students put additional effort while firms increase their R&D investment as they are
aware of the interdependencies and expect their connections to behave similarly. This
interpretation of β is important, since in many empirical studies of social externalities
individual “effort” is not observable by researchers.

The second difference with typical linear-in-means models is that in our model we
do not include Manski’s exogenous effect, that is a structural dependence of individual
outcomes on the characteristics xj of peers (also called “contextual” effects). While
we could easily include an additional term in (2) to allow for the exogenous effect, we
believe that our choice makes it easier to illustrate the following fact.

Proposition 2. Non-identification of contextual effects: There exist specific
restrictions on F (·) such that the model is observationally equivalent to the following
alternative structure:

yi = α′ + β′
N∑
j=1

gijyj + γ′xi + δ′
N∑
j=1

gijxj + ε′i (5)

where δ′ 6= 0 and the random vector ε′ = (ε′1, . . . , ε
′
N) is such that E [ε′|x,G] = 0.

Proof. Suppose that F (·) implies that εi = ρ
∑N

j=1 gijεj + ε′i and E [εj|xj] = κ+ χxj

where χ 6= 0 and ρ 6= 0. It is easy to see that under those conditions, models (3) and
(5) are observationally equivalent under α′ = α+ρκ, β′ = β, γ′ = γ and δ′ = ρχ.

While the particular example that we chose to straightforwardly prove our state-
ment is abstract,5 it serves to make an important point. If individual unobservables
εi are correlated in the network – say, because agents form connections by sorting on
ability – and, in addition, individual characteristics xi are also correlated with the un-
observables, then “contextual effects” δ′ are just a statistical byproduct of these more
fundamental structural behavioral patterns. We see this as a cautionary message to
researchers aiming to estimate spillover effects in any given economic context: the

5In that example ability εi follows a first order spatially autoregressive process, which implies
that individual unobservables are increasingly dissimilar the farther apart are any two agents in the
network (intuitively, a spatial AR(1) process can be approximated as a spatial MA(∞) process).
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solution of potential endogeneity problems due to simultaneous unobservables and
network formation must precede model specification. Clearly, a similar problem may
also affect the main behavioral parameter β of endogenous spillover effects. The rest
of this article discusses strategies aimed at disentangling genuine externalities from
shared confounders. Throughout most of the exposition we maintain the assumption
that individual “effort” is not directly observable by researchers.

3 Identification

In this section we discuss under what conditions it is possible to identify the param-
eters of model (3) even if individual characteristics and the network are endogenous
with respect to the unobservables. Following a description the problem, we illustrate
our approach first under simple linear assumptions about the underlying data gener-
ation process, and then under more general conditions. At the end of the section we
comment on some possible extensions of the proposed methodology.

3.1 SAR models

We find it useful to briefly discuss how the endogeneity problem we are concerned
with differs from those of previous analyses. To this end, we re-write model (3) using
matrix notation:

y = αι+ βGy + γx + ε (6)

where y = (y1, . . . , yN)T, x = (x1, . . . , xN)T and ε = (ε1, . . . , εN)T are the realizations
of yi, xi and εi – respectively – stacked over all the agents; G instead is the adjacency
matrix with gij entries. Following the classification of spatial econometric models by
Elhorst (2014), we call this a spatially autoregressive (SAR) model.6 Note that under
row-normalization of G (Assumption 3) any SAR model corresponds to the linear-
in-means model typical of peer effects studies, but deprived of contextual effects.

The most apparent econometric problem of model (6) is one of simultaneity: since
the yi’s of different agents are structurally dependent on one another, the spatially
autoregressive component Gy of (6) is correlated with the error term – the so-called
reflection problem – and thus OLS estimation is inconsistent. There is a vast literature

6Other authors prefer the denomination “mixed regressive-spatially autoregressive” in order to
remark the presence of x on the right-hand side of (6). Here we opt for a more concise terminology.
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in spatial econometrics, which is not our objective to review here, that concerns the
ML estimation of (6) under normality assumptions. Semi-parametric approaches to
the estimation of models akin to (6) include IV-2SLS (Kelejian and Prucha, 1998) as
well as GMM (Lin and Lee, 2010). The former appears of particular relevance here, as
it has been extended to models featuring contextual effects and network fixed effects
through the influential contribution by Bramoullé et al. (2009).

To understand why internal identification of (6) is possible, observe that if G is
linearly independent from the identity matrix I, as (I− βG) is then invertible the
model can be rewritten in a “reduced form” fashion as:

y = (I− βG)−1 (αι+ γx + ε) '
∞∑
r=1

βrGr (αι+ γx + ε) (7)

implying, under E [ε|x] = 0, the existence of an infinite set of instrumental variables
of the form (Gx,G2x, . . . ) of which only Gx, though, is generally expected to be also
relevant. Yet this enough for identification, the intuition being that it is possible to
predict the outcomes of connected agents through their characteristics. This idea is
exemplified Graph 1, which involves variables (xi, yi;xj, yj) pertaining to any two con-
nected observations (i, j). In the graph, arrows represent the structural relationships
between variables that allow to identify the indicated parameter of interest.

xj yj yi

xi
β

γ

Graph 1: Identification of SAR models

Models featuring contextual effects like a term δGx on the right-hand side of (6)
entail the additional complication that clearly Gx is not excluded from the structural
form. However, G2x would then be a relevant instrument for the identification of β:
if contextual effects exist, the characteristics of “friends of friends” affect the outcomes
of direct peers – easily extending the intuition above – so that β and δ are separately
identified. These ideas are best framed as a system of simultaneous equations, which
are generally known to be identified so long as enough instrument exist to satisfy both
the order and rank conditions. Here it is the structure of networks that naturally gives
rise to the appropriate exclusion restrictions, in the form of the characteristic of others
agents that have no direct effect on individual outcomes (Rose, 2017b).
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These ideas and the related results are all based on the assumptions of exogenous
covariates x. In the systematic analysis of the literature by Blume et al. (2015), an
equivalent of assumption E [ε|x] = 0 is central to all results about identification. In
SAR and linear-in-means models, the endogeneity of individual characteristics not
only prevents the identification of their specific effect on the outcome of interest, but
also of social effects themselves, as the xi’s of peers can no longer be employed as
instruments. This fact suggests that the problem is particularly subtle in this case, as
its gravity depends on the breadth of endogeneity in network space – that is, to what
extent individual unobservables are correlated with peers’ characteristics. In what
follows we illustrate, starting for the sake of exposition from a linear characterization
the problem, under what conditions internal identification of SAR models is possible
even if covariates are endogenous.

3.2 Simple Linear Endogeneity

Suppose that both the network G and agents’ characteristics x are statistically related
to the unobservables through some auxiliary random variables υ = (υ1, . . . , υN) ∈ RN ,
drawn from some unspecified distribution, that we call diffused shocks. Specifically,
assume that F (·) is characterized by the following relationships.

Assumption 4. Diffused Shocks: E [υi] = 0 and, for some d > 0, E
[
|υi|4+d

]
<∞

for i = 1, . . . , N ; E [υiυj] = 0 for any pair (i, j) such that i 6= j.

Assumption 5. SMA(1) Unobservables: ε = (I +ψG)υ where |ψ| < 1.

Assumption 6. Linear Endogeneity: x = ω + ξCυ where ξ ∈ R, C is a N ×N
invertible, nonstochastic “characteristics matrix” such that for any i ∈ I, cii 6= 0 is
allowed, and ω = (ω1, . . . , ωN) ∈ RN is a random vector with the following properties:

a. unrestricted mean E [ωi] and, for some d > 0, E
[
|ωi|4+d

]
<∞ for i = 1, . . . , N ;

b. ω independent of the diffused shocks υ: E
[
ωυT

]
= 0;

c. the conditional expectation vector $ (α,β,γ, ξ,ψ) ≡ E [ω|x] 6= x is uniquely
identified given a vector of parameters (α,β,γ, ξ,ψ).

These assumptions together re-define the endogeneity problem by decomposing
individual characteristics, both observable (xi) and unobservable (εi), in terms of a
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sequence of N independent “diffused” shocks υi. The latter are closely related to the
“common shocks” from other studies of spillover effects or, in Manski’s classification,
the “correlated effects” that express the correlation between the unobservables of all
individuals from the same group. We introduce a different terminology to highlight
the fact that these unobservables are not necessarily homogeneous across observations
within given groups, but are somehow “shared” by agents as a function of their relative
proximity in the structure of social interactions. In fact, it is not even necessary that
diffused shocks bear any economic interpretation: they mainly serve to characterize
the structure of cross-correlation of (xi, εi) in a tractable way.

These points are made clearer by illustrating in more detail the assumptions above.
In particular, Assumption 4 is a standard characterization of primitive shocks: they
have zero mean, finite higher moments, and are mutually independent across observa-
tions. Assumption 5 expresses the stochastic process that defines the cross-correlation
of unobservables in the network. Specifically, here ε follows a Spatial Moving Average
(SMA) process of first degree: εi equals υi plus a weighted average of the υj’s of an
agent’s links, times a multiplicative factor ψ of small enough magnitude so to ensure
stationarity. This process could be given a structural interpretation, if say the ability
of peers or the technology of connected firms directly affects individual outcomes yi.
Alternatively, the SMA(1) process may be given a mere statistical interpretation, as
the representation of the network formation process enclosed in F (·).7

Finally, Assumption 6 describes the dependence of observables xi’s from diffused
shocks. Specifically, the random vector x of individual characteristics is decomposed
into two additive, stochastically independent terms. The first is a random vector ω
with unrestricted mean and finite higher moments, which represents the independent
component of the variation of x. The second term is a linear function of the diffused
shocks υ, as expressed by what we denominate the “characteristics matrix” C. This
matrix, which we assume nonstochastic but leave unrestricted and not necessarily re-
lated to the network G, characterizes the cross-correlation of individual characteristics
xi’s. Note that the spatial correlation of x and ε are related to one another through
the diffused shocks: under linearity assumptions this makes for a relatively simple
representation of endogeneity in the spirit of Angrist’s (2014) mentioned critique.

7Note that, in fact, any SMA(1) process implies a cross-correlation of unobservables that extends
by two degrees of separation in the network. As discussed by Zacchia (2017), this property is a good
approximation of a model of network formation driven by a homophily dynamic: two agents link up
with some probability only if they are similar.
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Since C can generally be any given matrix, Assumption 6 allows to represent a
wide category of economic structures of interdependence, including patterns of cross-
correlation of the xi’s that are distinct from those of the unobservables. For example,
C may represent a fully overlapping group structure, whereby if any two agents i
and j are connected, they are also either both connected or both disconnected to any
third agent k (if cij 6= 0 then cik 6= 0⇔ cjk 6= 0 for all (i, j, k) ∈ I3). In terms of our
motivating settings, this allows scenarios where family background is correlated across
all students within the same classroom because of some social sorting mechanism –
say, parental selection of the best teachers – while unobserved ability only correlates
across “friends” because of homophily in network formation. A specular interpretation
is one where observable firm characteristics are more similar within industries, while
R&D spillovers transcend sectors because of other kinds of technological similarities.
Both cases can be graphically illustrated as follows.

i

j k

`

Group A Group B

Graph 2: A Cross-Group Network

In this graph, nodes represent observations while edges denote network connections
(as usual). In addition, all nodes belong to different “groups” within which observable
characteristics are correlated. Thus gij 6= 0 and ci` 6= 0, but gik = 0 and cj` = 0.

Despite being flexible, Assumptions 5-6 may still appear quite restrictive. In par-
ticular, point 6.c imposes some additional conditions on the conditional expectation
E [ω|x]: it must be uniquely determined by the parameters and distinct from x (this
holds trivially if matrices G and C are nonzero, that is if endogeneity is actually a
problem). Yet their implications proves useful in order to appreciate the intuition be-
hind our main result that is presented later. To this end, note that these hypotheses
imply the following regression function.

E [y|x] = (I− βG)−1
[
αι+ γx + ξ−1 (I +ψG) C−1 (x−$)

]
(8)
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Observe how, under our restrictive but simple assumptions, expression (8) subsumes
all sources of interdependence and endogeneity in the model: the reflection problem,
endogenous network formation, as well as endogenous sorting of characteristics. This
relationship lets us demonstrate our next statement.

Proposition 3. Identification under simple Linear Endogeneity. Suppose that
Assumptions 1-6 hold with ξ 6= 0. If all matrices I, G, C−1, GC−1 and G2C−1 are
linearly independent, the parameters (α,β,γ, ξ,ψ) are all identified from the data.

Proof. This proof is analogous to those given by Bramoullé et al. (2009). Specifically,
observe from (8) and from Assumption 6.c that any two structures (α,β,γ, ξ,ψ) and
(α′,β′,γ′, ξ′,ψ′) are observationally equivalent only if:

(I− β′G)α = (I− βG)α′

(I− β′G)γ = (I− βG)γ′

ξ−1 (I− β′G) (I +ψG) C−1 = ξ′−1 (I− βG) (I +ψ′G) C−1

by summing equations and tediously rearranging terms it appears evident that the
three equations can hold simultaneously only if (α,β,γ, ξ,ψ) = (α′,β′,γ′, ξ′,ψ′).

This result states that social effects are identified in a SAR model even if individual
characteristics linearly reflect individual unobservables, under some broad conditions.
In particular, it is required that ξ 6= 0 (clearly if ξ = 0 there is no endogeneity and the
identification result would still hold) and the network G relates to the characteristics
matrix C in the way expressed by the statement of the proposition. These conditions
are very general: they require that the process of sorting in the network, which affects
the cross-correlation of the unobservables, somehow “differs enough” from sorting in
the xi’s, as it is discussed above. It is illustrative to describe a particular case where
this condition does not hold. Suppose that C−1 ∝ (I +ψG) or, equivalently, x ∝ ε,
that is the individual characteristics proportionately reflect the unobservables, as in
a textbook model of omitted variable bias. Then, (8) would collapse to:

E [y|x] ∝ ξ−1 (I− βG)−1 [−α$+ γx]

and identification fails. This makes it clear that what makes identification possible in
this context is the partially-overlapping nature of the two kinds of social correlations.
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A theoretical case in which xk ∝ ε (for a higher number of observable characteristics
xk, k = 1, . . . , K) is provided by basic models of firm optimization, which predict that
the unobserved productivity shock is reflected proportionally by all inputs, giving rise
to the so-called “transmission bias.”

We again find it useful to express this intuition through a graph.

xj yj yi

xi xk

y` x`

β
γ ξ

ψ

Graph 3: Identification of SAR models under linear endogeneity

Graph 3 represents the structural relationships between the x and y variables of four
observations (i, j, k, `) like those depicted in Graph 2. Consider that if C has a group
structure and is also invertible, C−1 would retain the same group structure. Hence,
while gik = 0 because nodes i and k are not connected, they belong to the same group,
thus c′ik 6= 0 (where c′ik can be defined as the i-k-th entry of matrix C−1). Because
xi and xk are correlated by assumption there exists an indirect structural correlation
between xk and yi, which is what allows to identify ξ. Now consider nodes i and `:
they do not belong to the same group, but they are directly connected. Hence, the
correlation between their unobservables is reflected through the correlation between
their outcomes, which is what permits the identification of ψ. Once these correlations
are accounted for, the identification of γ and β would logically proceed as in a simple
SAR model: the former through i’s characteristics xi, while the latter through the xj
of another connected observation j. Note that to facilitate interpretation, in Graph
2 node ` is made representing an agent who is connected to i but belongs to a dif-
ferent group. However, this is not strictly necessary for identification: for the linear
independence conditions to be fulfilled, G and C may well have the same non-zero
entries (represent the same network) but with different internal weights.8

To complete the discussion about identification under simple linear endogeneity,
it is useful again to draw a parallel between a SAR model and simultaneous equations

8This is so if, for example, C = I+ψ1G where ψ1 6= ψ. The economic interpretation is that the
process of network formation and sorting relates to the observable and unobservable characteristics
with different intensities: for example, friendships may be more likely to be determined by individual
preferences and ability rather than from socio-economic background. Note that in such a scenario,
to obtain separate identification of the other parameters it is necessary that ψ1 be known a-priori
(Proposition 3 does not extend to the identification of ψ1).
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models (SEMs). It is well known from the traditional analysis of SEMs that covariance
restrictions can aid identification if linear restrictions are not enough to satisfy both
the order and rank conditions. In an extension of the “exogenous x’s” case, where the
network allows to generate enough restrictions to identify social effects, the partial
network overlap between the covariance structure of the observable characteristics x
and that of the unobservables ε implicitly generates a set of covariance restrictions,
involving different pairs of observations depending on their position in the network
and in the characteristic matrix, which allow to identify the data generation process.

3.3 Linear Endogeneity: General Result

Having discussed the intuition for identification under relatively simple hypotheses,
we are now ready to illustrate our main result. We are interested in the identification
of the parameters of the following model, which extends (6):

y = αι+ βGy + Xγ+ GXδ+ ε (9)

where X is a N ×K data matrix of K observable characteristics (with XTX having
full rank), γ = (γ1, . . . ,γK) is the vector of K direct effects associated with each of
these characteristics, and δ = (δ1, . . . , δK) are the K related “contextual effects.” In
Elhorst’s taxonomy, this is a standard multivariate “Spatial Durbin Model” (SDM),
otherwise known – under row-normalization of G – as a linear-in-means model. Note
that such a model could easily follow from an extension of our theoretical framework,
in which nature initially draws (X, ε) from F (·). To keep the problem interesting we
presume that all observable characteristics X are potentially endogenous and struc-
turally dependent on ε, or else single exogenous factors could be enough to identify
β under the logic of Graph 1. In addition, we introduce the following assumptions.

Assumption 7. SARMA Unobservables: the unobservable characteristics follow
a stationary Spatial Autoregressive Moving Average process where the autoregressive
component has order S:

ε = (I−ψ1F1 −ψ2F2 − · · · −ψpFS)−1 Eυ

where E is some unrestricted N × N matrix, (F1,F2, . . . ,FS) are N × N matrices
such that I +

∑s′

s=1 Fs is invertible for all s′ ≤ S, and υ conforms to Assumption 4.

16



Assumption 8. Diffused Shocks Separable in x: for k = 1, . . . , K:

xk = ωk + ξkCkυ, ξk ∈ R

where ωk is a random vector that possesses the same properties as ω from Assumption
6 and Ck is the characteristics matrix for the k-th observable covariate xk.

Assumption 7 allows for very general linear patterns of cross-correlation in the
unobservables ε. On the one hand, the autoregressive component is allowed to be of
any order S; on the other hand the moving average component is also quite flexible,
since matrix E is left unrestricted. Assumption 8 instead is a simple extension of As-
sumption 6 to the multivariate case. Note that to each k-th observable characteristic
is associated a different invertible matrix Ck, which may be a complex function of the
network or of some group structure. The parameters featured in these assumptions
can be collected as the vectors ψ = (ψ1, . . . ,ψK) and ξ = (ξ1, . . . , ξK). We are now
ready to state our main result.

Theorem 1. General Identification Result. Under Assumptions 1-4 and 7-8, if
it holds that βγk + δk 6= 0, ξk 6= 0 for every k = 1, . . . , K and the matrices in the set

Gk ≡
{
I,G,G2,EC−1k

}
∪ {F1,F2, . . . ,FS}

are linearly independent for every k = 1, . . . , K, then (α,β,γ,δ,ξ,ψ) are identified.

Proof. See the Appendix. The proof makes use of a linear algebra result by Henderson
and Searle (1981), but is otherwise a generalization of Proposition 3.

Theorem 1 provides a general identification result for SAR models (possibly fea-
turing contextual effects) such that the observable and unobservable characteristics
are structurally dependent. The conditions under which identification is obtained are
quite general, since a large class of cross-correlation structures in the unobservables
are allowed by Assumption 7. Identification is obtained if for each covariate, the set
Gk is composed of linearly independent matrices. In economic terms this means, along
the lines of the intuition illustrated in the previous discussion, that the network must
have a sufficiently small degree of overlap with the social structure that determines
the correlation of the characteristics xk. For example, if the characteristic matrix C

is the same for all covariates, this condition is usually satisfied if C follows a group
structure while the Fp and E matrices are some function of the network G.
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3.4 Identification of µ and ν

In our framework, parameter β – which in studies of peer effects is usually associated
with the concept of social multiplier – represents a composite equilibrium effect: it
equals the direct effect of peers’ effort on the individual outcome ν multiplied by a
term corresponding to the equilibrium response of individual effort (1− µ)−1. Under
the hypotheses maintained so far, particularly Assumption 3 (row-normalization of G)
the two parameters µ and ν disappear from the reduced form equilibrium equation.
However, note that dropping the row-normalization hypothesis, (6) would read as:

y = (α− ϑ) ι+ ϑḡ + βGy + γx + ε (10)

where ϑ ≡ (1− µ)−1 ν logµ and ḡ ≡ Gι is the vector of individual in-degrees (the
overall strength of all one individual’s connections, such that ḡi =

∑N
j=1 gij).

Since exp (θ/β) = µ, if the observable characteristics xi’s are exogenous the primi-
tive parameters µ and ν are separately identified in (10). While the exact relationship
between structural and reduced form parameters depends upon the functional form
assumptions of our model, the associated economic intuition is straightforward: the
variation in individual in-degree ḡ conveys additional information about the overall
strength of direct spillovers (expressed by the parameter ν). An individual with more
friends or a firm with more connections is likely to enjoy more beneficial externalities.
While row-normalization is routinely assumed in studies of peer effects, we find this
to be a realistic hypothesis worth of being empirically tested.

The obvious potential empirical issue is that individual in-degree ḡi may be itself
endogenous and dependent on the (spatially correlated) unobservables. Intuitively, a
very skilled pupil or a very successful firm may find themselves with more or more
intense connections. Yet our identification results are easily extended to a framework
with a non row-normalized adjacency matrix.

Corollary to Theorem 1: Under the conditions expressed by Theorem 1, except for
Assumption 3 (row-normalization), if ḡ is linearly independent from ι then parameters
µ and ν are separately identified.

The intuition is that if the spatial processes that drive the correlations of x and ε
do not overlap, it is possible to effectively control for the sources of endogeneity; the
reduced form “effect” of ḡ can be retrieved through the covariance restrictions implied
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by the model. In the next section we illustrate how this idea can be subsumed within
the set of moment conditions employed in our proposed estimation procedure.9

4 Estimation

We are now ready to illustrate the GMM estimator that we propose for the estimation
of the SDM – linear-in-means – model (9), and under linear endogeneity. To simplify
the problem, we restrict our attention to unobservables following a SMA(1) process,
although we allow the matrix that characterizes the process to be different from GN .

Assumption 9. SMA(1) Unobservables (general): ε = (I +ψEN)υ where EN

is some invertible, row-normalized N ×N matrix such that EN = EN ι, and |ψ| < 1.

We also assume that α = 0, that X possibly features a constant vector, and that the
problem is homoscedastic, once again with the objective of simplifying the analysis.

Assumption 10. Homoscedasticity: the conditional variance of the diffused shocks
is homoscedastic: E [υ2i |xi] = σ2 for all i = 1, . . . , N .

Define θ0 ≡ (β0,γ0,δ0,ξ0,ψ0,σ
2
0) as the vector of true parameter values. We

construct a GMM estimator based on a set of moment conditions, which we subdivide
in two blocks. The first block is constituted by a sequence of (1 +Q)K bias-adjusted
standard linear moments:

m1,N (θ0) = E
[
m∗1,i (θ0)

]
− µ1,N (θ0) = 0 (11)

where:

m∗1,N ≡
N∑
i=1

m∗1,i (θ0) ≡



Q0,N

Q1,N

Q2,N

...
QQ,N


ε (θ0) ≡



XT

XTGN

XTG2
N

...
XTGQ

N


ε (θ0)

9If individual “effort” ei is observable, an alternative route for the separate identification of µ and
ν would be based on the structural “production function” (2): this is indeed the approach taken in
studies of R&D spillovers, since researchers can typically observe the R&D expenditures of firms.
However, our procedure cannot be directly extended to firm production functions, because the nature
of endogeneity is likely to violate our identification conditions, at least if firm optimization proceeds
according to standard “static” First Order Conditions (xk ∝ ε for every input k).
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which implicitely defines a set of Q matrices Qq,N for q = 0, . . . , Q, and:

µ1,N (θ0) ≡ σξ



t0,N

t1,N

t2,N
...

tQ,N


and where tq,N =

[
Tr
[
CT

1,NGq
N (I +ψEN)

]
, . . . ,Tr

[
CT

K,NGq
N (I +ψEN)

]]T is aK×1

vector for q = 0, . . . , Q. The second block is a set of P + 1 covariance restrictions:

m2,N (θ0) = E
[
m∗2,i (θ0)

]
− µ2,N (θ0) = 0 (12)

where:

m∗2,N ≡
N∑
i=1

m∗2,i (θ0) ≡



ε (θ0)
T P0,N

ε (θ0)
T P1,N

ε (θ0)
T P2,N

...
ε (θ0)

T PP,N


ε (θ0) ≡



ε (θ0)
T I

ε (θ0)
T GN

ε (θ0)
T G2

N
...

ε (θ0)
T GP

N


ε (θ0)

which here implicitly defines a set of P matrices Pp,N for p = 0, . . . , P , and:

µ2,N (θ0) ≡ σ2



Tr
[
(I +ψEN)T (I +ψEN)

]
Tr
[
(I +ψEN)T GN (I +ψEN)

]
Tr
[
(I +ψEN)T G2

N (I +ψEN)
]

...

Tr
[
(I +ψEN)T GP

N (I +ψEN)
]


so that the two blocks can be compactly written as follows.

mN (θ0) = E [m∗i (θ0)]− µ1,N (θ0) = 0 (13)

wherem∗i (θ0) and µN (θ0) result from vertically stacking the two blocks of moments.
To give intuition, consider the case of a simple endogenous SAR with one covariate
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such as (6). Suppose that the econometrician were able to observe the realizations of
ω, and write them as ω = (ω1, . . . , ωN)T. Thus, a way to consistently estimate α, β
and γ would be to estimate a model analogous to (7) such as the one that follows.

y = (I− βGN)−1 (αι+ γω+ ε) '
∞∑
r=1

βrGr
N (αι+ γω+ ε)

The problem is that the econometrician does not usually observe ω. However, under
the conditions expressed by Theorem 1 it is possible to recover the covariance structure
of the model; once that is obtained,ω can be disentangled from the variation of x that
is due to the diffused shocks; this logic easily extends to a multivariate contexts. Our
GMM estimator simultaneously executes both tasks: while the covariance restrictions
serve the purpose of estimating of the model’s variance structure, the first block of
moments estimates the linear parameters of the SDM model.

We define our GMM estimator θ̂GMM as the usual minimizer in the parameter
space Θ:

θ̂GMM = arg min
θ∈Θ

mT
N (θ) WNmN (θ) (14)

where mN (θ) = 1
N

∑N
i=1m

∗
i (θ)−µN (θ) and WN is a weighting matrix. We derive

the asymptotic properties of the estimator under the following additional assumptions.

Assumption 11. Bounded Parameter Space: Θ is bounded.

Assumption 12. Probability Limits of the Covariates: the independent com-
ponent of xk are such that N−1ιT (ωk − E [ωk]) = oP (1) for all k = 1, . . . , K.

Assumptions 11 and 12 are regularity conditions that are necessary to ensure consis-
tency of the GMM estimator.

Assumption 13. Bounded Adjacencies: the network’s “adjacency” matrix GN

and its corresponding Leontiev inverse (I− β0GN)−1 are uniformly bounded in both
row and column sums in absolute value.

Assumption 14. Bounded Characteristics: the characteristics matrix Ck is
bounded by Ck <∞ for every k = 1, . . . , K, that is

∑N
j=1 cij < Ck for i = 1, . . . , N .

Assumption 15. Bounded Moments: the matrices (Q0,N ,Q1,N , . . . ,QQ,N) and
(P0,N ,P1,N , . . . ,PP,N) used in the moment conditions are all uniformly bounded in
both row and column sums in absolute value.
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Assumptions 13-15 all ensure that the relevant moments have finite variance. Thus,
the asymptotic results are expressed as follows.

Theorem 2. Asymptotics of the GMM estimator. Under Assumptions 1-4 and
8-15, θ̂GMM is a consistent estimator of θ0 and has the following limiting distribution:

√
N
(
θ̂GMM − θ0

)
d→ N

(
0,
[
JT
0 W0J0

]−1
JT
0 W0Ω0W0J0

[
JT
0 A0J0

]−1)
where here: (i) Ω0 ≡ plim 1

N
Var [mN (θ0)]; (ii) J0 ≡ plim 1

N

∑N
i=1

∂
∂θT

E [mN (θ0)];
and (iii) W0 ≡ plimWN .

Proof. See the Appendix. The proof makes use of results by White (1994), Kelejian
and Prucha (2001) and Lee (2007).

Observe that if the adjacency matrix GN is not normalized (that is, Assumption
3 fails), the GMM estimator can easily be adapted for the separate estimation of the
primitive parameters µ and ν. Since under the maintained assumptions E

[
ḡTωk

]
= 0

for all k, an appropriate moment condition can be employed for the estimation of ϑ,
and both µ and ν are recovered later as Minimum Distance estimates; alternatively,
the entire GMM problem can be accordingly rephrased in terms of these parameters.
Further extensions of this setup appear evident: for example, heteroscedasticity can
be introduced by parametrizing σ2 as a function of the covariates, while the covariance
restrictions may be adapted to allow for more general SARMA processes of the error
term. All these extensions deserve some dedicated analysis in future work.

5 Monte Carlo

We find it useful to evaluate the performance of our GMM estimator through Monte
Carlo simulations. In particular, we simulate a minimal d.g.p.: the SAR model (6)
with one covariate and no contextual effects (δ = 0), combined with the simple setup
of linear endogeneity expressed by Assumptions 4-6 (thus, G = E). In all simulations
we set N = 500; moreover we construct a homogeneous, block-diagonal characteristics
matrix C which – in our baseline case – is composed by 50 “groups” of size 10. We
generate a new matrix G in each repetition of every simulation, in order to minimize
the dependence of our results from a specific network matrix. Specifically, each matrix
G is randomly generated through the ‘small-world’ algorithm by Watts and Strogatz
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(1998); by this procedure, all observations are first ordered along a line and connected
to an even number of κ neighbors; next, links are reshuffled with some probability π
(connections are unweighted, that is gij ∈ {0, 1}). Given that the initial ordering of
observations corresponds with the one used for defining the characteristics matrix, G

and C are guaranteed to have some degree of overlap, although not a complete one.
We represent this through the following graphical example.

Group 1

Group 2

Graph 4: Partial overlap of C and G: Example

In Graph 4, 10 nodes are ordered along a line, and split in two symmetrical groups –
each of size 5 – which characterize C. Through a small-world algorithm with κ = 2,
all nodes are connected in the network with their immediate neighbors on the line,
but three links are eventually reshuffled so that the resulting matrix G is irregular.

In our baseline simulation, we set the following parameters:10

(α0,β0,γ0, ξ0,ψ0,σ0) = (.25, .4, .5, .1, .25, .05)

note thatψ0 amounts to five times the standard deviation of the diffused shocks, which
results in the introduction of substantial endogeneity into the model. In addition, we
set κ = 2 and π = 0.25 in the network-generation algorithm. Over 1,000 repetitions,
we estimate our model with equally-weighted moment conditions of order Q = 2 and
P = 1; we also compare our estimates of (α,β,γ) with those obtained via OLS as well

10Furthermore, we set Var [ωi] = 0.09, but we are not interested in estimating this parameter.
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as with an IV estimator such that Gx is used as an instrument for Gy. Finally, we
repeat the simulation by tuning certain parameters differently relative to the baseline.
The results are reported in Tables 1 and 2.

Table 1: Monte Carlo Simulations (part one)

Baseline β = 0.50

PFZ IV OLS PFZ IV OLS
α 0.256 0.082 0.044 0.254 0.081 0.041

(0.040) (0.018) (0.015) (0.038) (0.020) (0.015)

β 0.385 0.802 0.894 0.492 0.839 0.918
(0.095) (0.044) (0.035) (0.075) (0.039) (0.029)

γ 0.496 0.288 0.229 0.497 0.292 0.232
(0.050) (0.034) (0.029) (0.050) (0.035) (0.029)

ξ 0.100 – – 0.100 – –
(0.013) (0.013)

ψ 0.270 – – 0.260 – –
(0.010) (0.090)

σ 0.050 – – 0.050 – –
(0.005) (0.004)

γ = 0.2 ψ = 0

PFZ IV OLS PFZ IV OLS
α 0.252 -0.144 -0.048 0.253 0.046 0.036

(0.065) (0.056) (0.017) (0.036) (0.024) (0.019)

β 0.395 1.347 1.115 0.392 0.891 0.913
(0.156) (0.133) (0.042) (0.086) (0.057) (0.046)

γ 0.188 -0.133 -0.040 0.499 0.190 0.176
(0.042) (0.064) (0.027) (0.053) (0.046) (0.038)

ξ 0.100 – – 0.996 – –
(0.013) (0.107)

ψ 0.267 – – 0.037 – –
(0.170) (0.048)

σ 0.050 – – 0.050 – –
(0.005) (0.004)

Note. Every column reports the median and the standard deviation
(in parentheses) of the relevant parameter estimates across 1000 repe-
titions. ‘PFZ’ indicates our proposed procedure, ‘IV’ the estimator ob-
tained by instrumenting Gy with Gx, while ‘OLS’ is self-explanatory.
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Table 2: Monte Carlo Simulations (part two)

ξ = 0 Group Size: 5

PFZ IV OLS PFZ IV OLS
α 0.254 0.251 0.104 0.251 0.211 0.179

(0.044) (0.028) (0.018) (0.016) (0.009) (0.011)

β 0.389 0.398 0.749 0.397 0.494 0.571
(0.106) (0.067) (0.044) (0.038) (0.022) (0.026)

γ 0.499 0.498 0.303 0.497 0.292 0.232
(0.055) (0.043) (0.037) (0.050) (0.035) (0.029)

ξ 0.004 – – 0.101 – –
(0.005) (0.026)

ψ 0.259 – – 0.245 – –
(0.134) (0.053)

σ2 0.050 – – 0.050 – –
(0.002) (0.002)

κ = 4 π = 0.9

PFZ IV OLS PFZ IV OLS
α 0.263 0.027 -0.012 0.242 0.116 0.099

(0.056) (0.037) (0.026) (0.038) (0.016) (0.013)

β 0.368 0.935 1.029 0.420 0.723 0.762
(0.135) (0.088) (0.061) (0.092) (0.037) (0.032)

γ 0.506 0.226 0.173 0.491 0.418 0.402
(0.060) (0.058) (0.044) (0.034) (0.025) (0.023)

ξ 0.102 – – 0.093 – –
(0.016) (0.021)

ψ 0.273 – – 0.228 – –
(0.140) (0.144)

σ2 0.050 – – 0.049 – –
(0.003) (0.004)

Note. See the notes for Table 1.

In our baseline simulations, our proposed estimator appears to be quite accurate.
While it slightly underestimates β (on average) it contrasts with both OLS and IV
estimators, which estimate β about twice as large. We obtain similar results when we
set different values of β or γ, or if diffused shocks are made coincident with the error
term (ψ = 0). If we silence the characteristics matrix channel (ξ = 0) IV becomes
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consistent; however, it behaves similarly as our proposed GMM estimator. The more
interesting implications are obtained by altering the parameters that define matrices
C and G. By halving the size of groups in the characteristics matrix, endogeneity is
reduced; however, our GMM method still provides accurate estimates, unlike IV or
OLS. Increasing the density of G (by setting κ = 4) does not seem to significantly
affect the simulated estimates; however, increasing the randomness of links (π = 0.9)
results in β to be slightly overestimated (instead of underestimated) on average. To
summarize, it appears that our GMM method – while consistent and preferable to
the standard IV estimator – is biased in small samples, in a way that depends on the
characteristics of the underlying networks.

6 Conclusion

In this paper we have shown that, under certain configurations of the underlying socio-
economic relationships that determine the characteristics and relevant outcomes of
economic agents, it is possible to identify and estimate peer or social effects within a
standard spatial econometric framework, even if the right-hand side characteristics are
themselves endogenous. In fact, the requirements for identification are quite general:
it suffices that the spatial correlation of unobservables and individual characteristics
does not overlap in the relevant metric space. Our running example of such a setting
is a schooling context in which students establish friendships on the basis of certain
unobservables; however, their socio-economic characteristics (such as socio-economic
status) correlate even among non-friends within certain observable groups (like school
classes). In future work, we plan on implementing our GMM methodology to such an
empirical application; in addition, we aim at extending it to more general functional
forms of the underlying cross-correlations that give rise to endogeneity.

Our contribution is relevant for the developing literature about the econometrics
of social effects, which is currently focused on ways to address the problem of net-
work endogeneity. Our approach is more general than that, since it allows for both
network and covariates’ endogeneity – which, in fact, are two sides of the same coin.
Paradoxically, our work also speaks to the recent literature about the identification
of interaction networks when these are unknown, under the assumption that individ-
ual covariates are exogenous with respect to the error term. Quite the contrary, the
application of our proposed estimator requires the researcher’s knowledge of the un-
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derlying patterns of cross-correlation, for both the unobservables and the covariates.
In future work, it would be interesting to analyze how these two approaches can be
interacted, say if some form of endogeneity is present in the relevant application but
the researcher has access to only partial information about its actual shape.
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Appendix – Mathematical Proofs

Proof of Theorem 1

Denote the k-th column of X as x∗k, and write the conditional expectation of y given
X as:

E [y|X] = (I− βG)−1
K∑
k=1

[αι+ γkx
∗
k + δkGx∗k+

+ξ−1k (I−ψ1F1 −ψ2F2 − · · · −ψpFS)−1 EC−1k (x∗k −$k)
]
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where$k = E [ωk|X] has the same properties as$ in the one-covariate case (Assum.
6). Thus, given two alternative structures (α,β,γ,δ,ξ,ψ) and (α′,β′,γ′,δ′,ξ′,ψ′),
observational equivalence requires that (I− β′G)α = (I− βG)α′ and that, for each
k = 1, . . . , K:

(I− β′G) (γkι+ δkG) = (I− βG) (γ′kι+ δ′kG)

which – see Proposition 1 in Bramoullé et al. (2009) – is only possible if I, G and G2

are linearly dependent, if βγk + δk = 0, or if (β,γk, δk) = (β′,γ′k, δ
′
k); and that:

(I− β′G) ξ−1k (I−ψ1F1 −ψ2F2 − · · · −ψpFS)−1 EC−1k =

= (I− βG) ξ′−1k

(
I−ψ′1F1 −ψ′2F2 − · · · −ψ′pFS

)−1
EC−1k

which under the hypotheses of the Theorem, is only possible if (ξ,ψ) = (ξ′,ψ′). To
see why, define Φs ≡ (I−ψ1F1 −ψ2F2 − · · · −ψpFs) for s = 1, . . . , S, and observe
that by a matrix algebra result by Henderson and Searle (1981), for s = 1, . . . , S− 1:

Φ−1s+1 = Φ−1s −ψs+1Φ
−1
s Fs+1

(
I−ψs+1Fs+1Φ

−1
s

)
Φ−1s

thus, applying this result recursively shows that under the hypotheses of the theorem
Φ−1S is uniquely determined by a set of linearly independent matrices (F1,F2, . . . ,FS)
and a parameter vector ψ. Combining all these considerations reveals that under the
maintained hypotheses the two alternative structures above must be identical in order
to deliver the same observations, which proves the theorem. Note that the associated
corollary follows straightforwardly by including ϑg in the regression function.

Proof of Theorem 2

First, let us index all the relevant quantities by N and introduce some notation:

E [XN ] ≡
[
E [ω1,N ] C1,N ι E [ω2,N ] C2,N ι . . . E [ωK,N ] CK,N ι

]
E [yN ] ≡ (IN − β0GN)−1 (E [XN ]γ0 + GNE [XN ]δ0)

dN (θ) ≡ (β0 − β) GNE [yN ] + E [XN ] (γ0 − γ) + GNE [XN ] (δ0 − δ)

and:
WN = AT

NAN

where AN is a matrix of dimension O×O where O ≡ (1 +Q)K+P +1 and such that
rank (AN) ≥ dim |θ| and An

p→ A0, where AT
0 A0 = W0. Observe that, by denoting

the j-` entries of AN as aj`,N and by q∗qk,N the k-th row of Qq,N (for k = 1, . . . , K),
it is:

ANmN (θ) =
1

N

O∑
j=1

[
Q∑

q=0

K∑
k=1

aj(qK+k),Nq∗qk,N +
P∑

p=0

aj(Q+1+p),Nε
T
N (θ) Pp,N

]
εN (θ)
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where Q ≡ (1 +Q)K; to establish consistency of θ̂GMM , it is necessary to show
uniform convergence in probability for all the elements in the quadratic form above.
The case of the linear moments is standard, hence the focus here is on the covariance
restrictions. To this end, note that:

P∑
p=0

aj(Q+1+p),Nε
T
N (θ) Pp,NεN (θ) =

P∑
p=0

aj(Q+1+p),NdT
N (θ) Pp,NdN (θ) +

+
P∑

p=0

aj(Q+1+p),NdT
N (θ) Pp,NeN (θ)︸ ︷︷ ︸

≡ lN (θ)

+
P∑

p=0

aj(Q+1+p),NeT
N (θ) Pp,NeN (θ)︸ ︷︷ ︸

≡ rN (θ)

where:

eN (θ) ≡ εN + (XN − E [XN ]) (γ0 − γ) + GN (XN − E [XN ]) (δ0 − δ) +

+ (β0 − β) G (IN − β0GN)−1 [εN + (XN − E [XN ])γ0 + GN (XN − E [XN ])δ0]

therefore, there are K + 1 appropriate 1×N vectors l1,N (θ) and lk,N (θ) and 2K + 1
appropriate N × N matrices R0,N (θ), Rk,N (θ) and Rk′,N (θ) for k, k′ = 1, . . . , K
such that:

1

N
lN (θ) =

1

N
l0,N (θ) εN (θ) +

1

N

K∑
k=1

lk,N (θ)
(
x∗k,N − E

[
x∗k,N

])
= oP (1)

1

N
rN (θ) =

1

N
εTN (θ) R0,N (θ) εN (θ) +

1

N

K∑
k=1

εTN (θ) Rk,N (θ)
(
x∗k,N − E

[
x∗k,N

])
+

+
1

N

K∑
k′=1

(
x∗k′,N − E

[
x∗k′,N

])T
Rk′,N (θ)

(
x∗k′,N − E

[
x∗k′,N

])
= oP (1)

where x∗k,N is the k-th column of XN , such that for each k = 1, . . . , K:

1

N
ιT
{
x∗k,N − E

[
x∗k,N

]}
=

1

N
ιT {ωk,N − E [ωk,N ] + ξkCk,NE [υN ]} = oP (1)

and similarly for x∗k′,N . The results above entail uniform convergence in probability in
Θ, since the latter space is bounded, lN (θ) and rN (θ) are quadratic functions in the
relevant parameters, and because of Lemmas A.3 and A.4 in Lee (2007). By extending
the argument to the linear moments, it follows that since mN (θ) is also quadratic in
θ and Θ is bounded, then N−1ANE [mN (θ)] is uniformly equicontinuous in Θ, there-
fore the identification uniqueness condition for N−2ANE

[
mT

N (θ) AT
NANmN (θ)

]
is

satisfied and the GMM estimator is consistent (White, 1994).
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It remains to show that θ̂GMM is also asymptotically normal. The usual applica-
tion of the Mean Value Theorem to the First Order Conditions gives:

√
N
(
θ̂GMM − θ0

)
= −

[
JT
N

(
θ̂GMM

)
WNJN

(
θ
)]−1

JT
N

(
θ̂GMM

)
WN

√
NmN (θ0)

where JN (θ) = ∂
∂θ

mN (θ). By Theorem 1 in Kelejian and Prucha (2001):

√
NANmN (θ0)

d→ N
(
0,A0Ω0A

T
0

)
hence the main result would follow if JN

(
θ̂GMM

)
= J0 + oP (1). Note that:

JN (θ) = − 1

N



Q0,N

Q1,N
...

QQ,N

2εT (θ) P0,N

2εT (θ) P1,N
...

2εT (θ) PP,N


[
GNyN XN GNXN 0N 0N 0N

]
+
∂µN (θ)

∂θT

where 0N is shorthand for an N -dimensional vector of zeros. Leaving ∂
∂θT
µN (θ) aside

for the moment, we focus on the first term on the right-hand side, and in particular
on the submatrix formed by the last P +1 rows – the covariance restrictions – and the
first column – corresponding with the derivative with respect to β – since the analysis
of the rest of the matrix is just a simpler case. By Lemmas A.3 and A.4 in Lee (2007),
one can write each p-th element of said submatrix-vector, for p = 0, 1, 2, . . . , P , as:

1

N
εT (θ) Pp,NGN (IN − β0GN)−1 (XNγ0 + GNXNδ0 + εN) = dp,N +vp,N +tp,N +fp,N

where, writing yN (θ0) ≡ (IN − β0GN)−1 (XNγ0 + GNXNδ0 + εN), the terms on the
right-hand side are given by:

dp,N =
1

N
dT
N (θ) Pp,NGNyN (θ0) =

1

N
dT (θ) Pp,NGNE [yN ] + oP (1)

and:

vp,N =
1

N
εTNPp,NGNyN (θ0) = σ2

0Tr
[
Pp,NGN (IN − β0GN)−1

]
+

+ σ0ξ0Tr
[
(IN −ψ0EN)T Pp,NGN (IN − β0GN)−1 GN

]
+ oP (1)
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and:

tp,N =
1

N
εTN (IN − β0GN)−1 GNPp,NGNyN (θ0) = σ20Tr

[
Pp,NGN (IN − β0GN)−1

]
+

+ σ0ξ0Tr
[
(IN −ψ0EN)T Pp,NGN (IN − β0GN)−1 GN

]
+ oP (1)

and:

fp,N =
1

N

K∑
k=1

(
x∗k′,N − E

[
x∗k′,N

])T [
(β0 − β) (γk,0IN + δk,0GN) GN (IN − β0GN)−1 +

+ (γk,0 + γk) IN + (δk,0 + δk) GN ]T Pp,NGNyN (θ0) =
K∑
k=1

fp,k,N

to complete the analysis of which, denote by Ξk,N the K matrices corresponding with
the expression in brackets above, and define φk,0 ≡ Var [ωi,k]; thus, the K elements
of the summation can be expressed as:

fp,k,N = (γk,0 + δk,0)
{
ξ2k,0Tr [GNΞk,N ] Pp,NGN (IN − β0GN)−1 GN

}
+

+ (γk,0 + δk,0)
{
φ2

k,0Tr [Ck,NΞk,N ] Pp,NGN (IN − β0GN)−1 Ck,N

}
+

+(γk,0 + δk,0)
{
ξk,0φk,0Tr [GNΞk,N ] Pp,NGN (IN − β0GN)−1 (IN +ψ0EN)

}
+oP (1)

for k = 1, . . . , K. All the probability limits above imply uniform convergence for any
θ ∈ Θ; collecting these results together gives:

1

N
εT (θ) Pp,NGNyN (θ0) = σ20Tr

[
Pp,NGN (IN − β0GN)−1

]
+

+ σ0

K∑
k=1

ξk,0Tr
[
(IN +ψ0EN)T Pp,NGN (IN − β0GN)−1 GN

]
+ oP (1)

moreover, since some tedious analysis reveals that ∂
∂θT
µN (θ) = ∂

∂θT
µ (θ) + oP (1), it

follows that the (P + 1)× 1 submatrix of JN (θ) under examination has the desired
properties. Extending these considerations to all the elements of JN (θ) proves the
asymptotic normality result as stated by Theorem.
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