
From Architectural to Behavioural
Specification of Services 1

Laura Bocchi2 José Luiz Fiadeiro3
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Abstract

Many efforts are currently devoted to provide software developers with methods and techniques that can
endow service-oriented computing with systematic and accountable engineering practices. To this purpose,
a number of languages and calculi have been proposed within the Sensoria project that address different
levels of abstraction of the software engineering process. Here, we report on two such languages and the
way they can be formally related within an integrated approach that can lead to verifiable development of
service components from more abstract architectural models of business activities.
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1 Introduction

Service-Oriented Computing (SOC) is an emerging paradigm that aims to support a
new generation of software applications that can run over globally available compu-
tational network infrastructures where they can procure services on the fly (subject
to a negotiation of service level agreements – SLAs) and bind to them so that,
collectively, they can fulfil given business goals. One of the many efforts that are
currently devoted to support SOC is directed to establishing methodologies and
sound engineering approaches that allow software developers to move from ad-hoc
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to systematic and accountable engineering practices. Therefore, a number of lan-
guages and formalisms are being investigated within the FET Global Computing
integrated project Sensoria [2] to address different levels of abstraction of the
software engineering process.

In this paper, we report on the way two such languages can be formally related
within an integrated approach that can lead to verifiable development of service
components from abstract architectural models of business activities. None of these
languages is ‘complete’ in the sense that none addresses all aspects of SOC. Rather,
they result from a deliberate decision to select key issues of the paradigm that can
be investigated and tested individually and brought together once they are well
understood.

The languages we consider address modelling aspects that arise at different levels
of abstraction. On the one hand, SRML (the Sensoria Reference Modelling Lan-
guage [15]) offers primitives for modelling composite services and business activities
that abstract from the actual process of discovery, selection, binding, reconfiguration
and session management. This process is assumed to be provided by the underlying
middleware and, as such, is not part of the modelling activity, which allows the
designer to concentrate on the business aspects of services. On the other hand,
COWS (Calculus for Orchestration of Web Services [21]) is a process calculus for
specifying and combining service-oriented systems that addresses a lower level of
abstraction where the dynamic aspects of SOC need to be explicitly modelled. Its
design has been inspired by well-known process calculi as well as the OASIS stan-
dard language for orchestration of web services WS-BPEL [26]. In fact, COWS

can model and handle distinctive features of (web) services such as correlation-based
communication, compensation activities, service instances and interactions among
them, race conditions among service instances and service definitions, inter alia.

The objective of relating the two languages is precisely to provide an opera-
tional semantics for SRML by making explicit in COWS some of the run-time
aspects that SRML abstracts from. In fact, the semantics that we have provided
for SRML (e.g., [3,16]) is declarative in the sense that it relies on mathematical
domains (configuration graphs and state transition systems) to make precise the
meaning of its different constructs. Through the implementation in COWS we get
an operational semantics that can reveal the requirements that these constructs put
on the underlying ‘middleware’ with the advantage that COWS is still one level of
abstraction above actual web service languages and platforms.

From a technical point of view, the main challenge is in providing an imple-
mentation that is modular in the structure of SRML models (i.e., the structure
of the COWS term that implements a SRML module follows the structure of the
module itself). This aspect, which we call the ‘architecture’ of the implementa-
tion, is one of the main technical aspects that we discuss in the paper, especially
the way it reflects the methodology of software development that we are building
around SRML. We are currently developing a software application for automatising
the implementation, which will also pave the way for the analysis of SRML models
by exploiting the reasoning mechanisms and verification techniques that are being
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made available for COWS. These include a type system to check confidentiality
properties [20], a stochastic extension to enable quantitative reasoning on service
behaviours [28], a static analysis to establish properties of the flow of information
between services [5], and a logic and a model checker to express and check functional
properties of services [14]. This is an important advantage over related approaches
(see Section 6).

The rest of the paper is organised as follows. Section 2 provides a survey of
SRML and COWS. Section 3 presents the case study that is used throughout
the paper. Section 4 describes the architecture of the implementation. Section 5
presents the implementation through the case study. Section 6 concludes by dis-
cussing pointers for current/future work.

2 A glimpse of SRML and COWS

This section presents a survey of SRML and COWS. The overview of SRML gives
a high-level description of the aspects captured by its modelling primitives. This
is done over a scenario selected from an automotive case study being developed in
Sensoria. Due to lack of space, the overview of COWS gives only a glimpse of its
semantics, a full account of which can be found in [21].

An Overview of SRML. SRML provides primitives for modelling service-oriented
applications whose business logic involves the orchestration of interactions among
more elementary components — typically provided locally and bound at design-
time — and the invocation of services provided by external parties, discovered and
selected at run-time.

SRML is inspired by SCA (Service Component Architecture [10]) and is in-
dependent of the languages and platforms that are currently being provided for
web [4] (or grid [17]) services. An encoding of WS-BPEL is available that illus-
trates how SRML (static) models can be (partially) implemented in more concrete
languages [8].

To illustrate and discuss the use of the language and methodology, we chose a
reference scenario, depicted in Fig. 1, that involves an activity OnRoadRepair that
takes place in a software system (embedded in a vehicle) handling engine failures
detected by a sensor. When the activity is triggered, the system (1) determines
the current location of the car by using a GPS device, and (2) binds to a repair
service selected among those offered by nearby garages that can ensure best levels
of assistance, including a tow truck if necessary.

In SRML the unit of design is what we call module. There are two kinds of mod-
ules. Activity modules specify applications developed to satisfy the requirements
of a specific business organisation and not to be published as a service. An exam-
ple is the activity OnRoadRepair that will have been developed by, or for, the car
manufacturer. Service modules are developed (by, or for, service providers) to be
published in repositories in ways that allow them to be discovered when a request
for an external service is published in the run-time environment. An example is
the repair service that OnRoadRepair will procure when the engine-failure sensor is
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Fig. 1. Activity module OnRoadRepair (left-hand side) and service module RepairService (right-hand side)

activated.
A module is specified in terms of a number of entities and the way they are

interconnected. For example, the activity module OnRoadRepair shown in Fig. 1
(left-hand side) involves the following software entities: SM (the sensor that triggers
the activity), GP (the GPS system), and OR (the orchestrator that coordinates the
interactions with the external services and GP). These entities are interconnected
through wires, each of which defines an interaction protocol between two entities.
Typically, wires deal with the heterogeneity of partners involved in the activity by
performing data integration, which is useful when, for instance, a car has to travel
across different countries. OnRoadRepair relies on an external service (i.e., GA) for
booking a garage and calling a tow-truck, the discovery of which will be triggered,
on-the-fly, according to the conditions detected by the sensor.

As illustrated, every activity module declares interfaces of four possible kinds:
(1) one and only one serves-interface that binds the activity to the application that
triggered its execution (e.g., SM on the left-hand side of Fig. 1), (2) a number of
uses-interfaces (possibly none) representing entities that are shared among different
activity instances and persist to the life-cycle of each single instance (e.g., GP on the
left-hand side of Fig. 1), (3) a number of component-interfaces (at least one) that
bind to components that are created when the activity is launched (e.g., OR on the
left-hand side of Fig. 1), (4) a number of requires-interfaces (possibly none) that
bind the activity to services that are procured externally when certain conditions
become true (e.g., GA on the left-hand side of Fig. 1).

Service modules such as RepairService in Fig. 1 (right-hand side) provide a service
to the external environment and can be dynamically discovered and invoked (instead
of being launched directly by users). Compared with activity modules, they have
one provides-interface — CR in the example — instead of a serves-interface.

Notice that the workflow of a module is defined collectively by the components
in its configuration and the wires that connect them, which facilitates modular
development and reuse driven by the structure of the business domain. SRML does
not support a hierarchical definition of modules (e.g., refining a component as a
module).

All interfaces involve a signature declaring the set of supported interactions and
a specification of the behaviour associated with them. See [15] for details on the
formalisms used for specification (basically, temporal logic and state machines). In
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s ::= u • u′!ε̄ | g (invoke, receive-guarded choice)
| [e] s | s | s | ∗ s (delimitation, parallel composition,

replication)
| kill(k) | {|s|} (kill, protection)

g ::= 0 | p • o?w̄.s | g + g (empty, receive prefixing, choice)

Table 1
COWS syntax

Section 3 we provide the necessary details of the specification to understand the
implementation over COWS.

SRML also offers primitives for defining internal and external configuration poli-
cies. The internal policies (indicated by clocks) define the initialisation and termi-
nation conditions of each component and the conditions that trigger the discovery
process of each external service. For instance, intGA in Fig. 1 is the condition
that triggers the discovery of GA; it is defined in terms of the events that can oc-
cur during the execution of OnRoadRepair. The external policies (indicated by the
rulers) express constraints for Service Level Agreements (SLA). For this purpose,
SRML adopts the c-semiring approach to constraint satisfaction and optimisation
developed in [6].

An Overview of COWS. COWS is a formalism for specifying and combining
services that has been influenced by the principles underlying WS-BPEL. It pro-
vides a novel combination of constructs and features borrowed from well-known cal-
culi such as non-binding receiving activities, asynchronous communication, polyadic
synchronization, pattern matching, protection, and delimited receiving and killing
activities. These features make it easier to model service instances with shared
states, processes playing more than one partner role, and stateful sessions made by
several correlated service interactions, inter alia.

The syntax of COWS is presented in Table 1. It is parameterized by three count-
able and pairwise disjoint sets: the set of (killer) labels (ranged over by k, k′, . . .),
the set of values (ranged over by v, v′, . . . ) and the set of ‘write once’ variables
(ranged over by x, y, . . . ). The set of values is left unspecified; however, we as-
sume that it includes the set of names, ranged over by n, m, o, p, . . . , mainly used
to represent partners and operations. The syntax of expressions, ranged over by
ε, is deliberately omitted; we just assume that they contain, at least, values and
variables, but do not include killer labels (that, hence, can not be exchanged in
communication).

We use w to range over values and variables, u to range over names and variables,
and e to range over elements, i.e. killer labels, names and variables. Notation ·̄ is
used for tuples (ordered sequences) of homogeneous elements, e.g. x̄ is a compact
notation for denoting the tuple of variables 〈x1, . . . , xn〉 (with n ≥ 0). We assume
that variables in the same tuple are pairwise distinct. We adopt the following
conventions for operators’ precedence: monadic operators bind more tightly than
parallel, and prefixing more tightly than choice. We omit trailing occurrences of 0,
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writing p • o?w̄ instead of p • o?w̄.0, and write [e1, . . . , en] s in place of [e1] . . . [en] s.
Finally, we write I � s to assign a name I to the term s.

Invoke and receive are the basic communication activities provided by COWS.
Besides input parameters and sent values, both activities indicate an endpoint, i.e.
a pair composed of a partner name p and of an operation name o, through which
communication should occur. An endpoint p • o can be interpreted as a specific
implementation of operation o provided by the service identified by the logic name
p. An invoke p • o!ε̄ can proceed as soon as the evaluation of the expressions ε̄ in its
argument returns the corresponding values. A receive p • o?w̄.s offers an invocable
operation o along a given partner name p. Execution of a receive within a choice
permits to take a decision between alternative behaviours. Partner and operation
names are dealt with as values and, as such, can be exchanged in communication
(although dynamically received names cannot form the endpoints used to receive
further invocations). This makes it easier to model many service interaction and
reconfiguration patterns.

The delimitation operator is the only binder of the calculus: [e] s binds e in the
scope s. Differently from the scope of names and variables, that of killer labels can-
not be extended (indeed, killer labels are not communicable values). Delimitation
can be used to generate ‘fresh’ private names (like the restriction operator of the
π-calculus [25]) and to delimit the field of action of kill activities. Execution of a
kill activity kill(k) causes termination of all parallel terms inside the enclosing [k] ,
which stops the killing effect. Critical activities can be protected from the effect of
a forced termination by using the protection operator {|s|}.

Delimitation can also be used to regulate the range of application of the sub-
stitution generated by an inter-service communication. This takes place when the
arguments of a receive and of a concurrent invoke along the same endpoint match
and causes each variable argument of the receive to be replaced by the correspond-
ing value argument of the invoke within the whole scope of variable’s declaration.
In fact, to enable parallel terms to share the state (or part of it), receive activities
in COWS do not bind variables (which is different from most process calculi).

Execution of parallel terms is interleaved, except when a kill activity or a com-
munication can be performed. Indeed, the former must be executed eagerly while
the latter must ensure that, if more than one matching receive is ready to process
a given invoke, only one of the receives with greater priority (i.e. the receives that
generate the substitution with ‘smaller’ domain, see [21] for further details) is al-
lowed to progress. Finally, the replication operator ∗ s permits to spawn in parallel
as many copies of s as necessary. This, for example, is exploited to model persistent
services, i.e. services which can create multiple instances to serve several requests
simultaneously.

3 Specification of an Automotive Case Study

The graphical notation used in Section 2 to specify the automotive case study has
the advantage of being intuitive and facilitating the identification of the relationships
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among the involved entities. However, it abstracts from a number of details that
need to be accounted for when defining an implementation. For this reason, we have
defined a detailed and ‘tractable’ textual notation also for SRML, the Backus-Naur
Form syntax of which is given in [7]. Here, we present the specification of the case
study using this textual notation.

Table 2 presents an excerpt of the specification of the module
OnRoadRepair illustrated in Fig. 1. OnRoadRepair is defined by a number
of component/serves/requires-interfaces and their associated type (e.g., OR of type
Orchestrator). We do not include uses-interfaces because we did not defined their
implementation in COWS yet. The types of interfaces (SPECIFICATIONS) are
defined below. The internal policies init and term of OR define the initialisation
and termination conditions of the component. Initially, the local variable s has
value INIT . The component is compulsorily terminated when either the final state
is reached (i.e. s = FINAL) or a fatal error occurs (i.e. s = ERR). According
to the internal policy trigger of GA the discovery process is triggered by the
condition s = READY .

The wires SO and OG connect pairs of nodes by defining a relationship between
the interactions and the parameters of the corresponding specifications.

Each specification is composed by a syntactical interface (INTERACTIONS). In
SRML interactions are asynchronous and can be one-way (i.e., receive rcv or send
snd) or conversational (i.e., receive-and-send r&s, or send-and-receive s&r). A num-
ber of interaction events is associated with each conversational interaction: an ini-
tiation event (denoted by �), a reply-event (denoted by �), and so on. Interac-
tions can involve a number of parameters for each phase of the conversation (e.g.,
�-parameters for the initiation, �-parameters for the reply, etc.). One-way interac-
tions have associated only one �-event.

Every instance of Orchestrator can engage in the interactions init and
bookGarage. The former is of type rcv and permits to receive data from the sen-
sor monitor installed in the car. The data are represented by the parameter data
of type carData. The interaction bookGarage is used for engaging with a garage
service. This interaction is conversational (of type s&r) and has one �-parameter
data and one �-parameter price through which the price for repairing the car can
be obtained. In the initial state, i.e. when s = INIT , an Orchestrator can per-
form only the transition data receiving , which is triggered by the event init� and
changes the internal state (as usual, we denote by s ′ and data ′ the next value of
the local state variables s and data). The transition reqToGarage has no trigger
and is executed as soon as the guard s = READY is true. The transition sends the
event bookGarage� and assigns the sensor data (stored in the local variable data) to
the parameter bookGarage.data. The event is sent to the (dynamically discovered)
garage service. Finally, by means of transition respFromGarage, the price required
by the garage service can be received and stored in the local variable much.

An excerpt of the specification of the module RepairService is shown in Ta-
ble 3. It contains the component GO (of type GarageOrchestrator) connected to the
provides-interface CR (of type Customer) by the wire CG . The GarageOrchestrator
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MODULE OnRoadRepair is

COMPONENTS OR : Orchestrator init s = INIT term s = FINAL ∨ s = ERR

SERVES SM : SensorMonitor

REQUIRES GA : Garage trigger s = READY

· · ·
EXTERNAL POLICY carUserSLAconstraints

WIRES SO : SM OR activation ↔ init : � sensorData ↔ data

OG : OR GA bookGarage ↔ acceptBooking : � data ↔ info,

� price ↔ servicePrice

· · ·
SPECIFICATIONS

BUSINESS ROLE Orchestrator is

INTERACTIONS

rcv init � data : carData

s&r bookGarage � data : carData

� price : moneyVal

· · ·
ORCHESTRATION

local s : [INIT ,READY ,WAITING,GA PRICE , . . . ,FINAL,ERR],

data : carData, much : moneyVal , . . .

transition data receiving

triggeredBy init�
guardedBy s = INIT

effects s′ = READY ∧ data′ = init .data

transition reqToGarage

guardedBy s = READY

effects s′ = WAITING

sends bookGarage.data = data ∧ bookGarage�

transition respFromGarage

triggeredBy bookGarage�

guardedBy s = WAITING

effects s′ = GA PRICE ∧ much′ = bookGarage.price

· · ·
LAYER PROTOCOL SensorMonitor is

INTERACTIONS snd activation � sensorData : carData

BEHAVIOUR SensorMonitorBehaviour

BUSINESS PROTOCOL Garage is

INTERACTIONS r&s acceptBooking � info : carData

� servicePrice : moneyVal

BEHAVIOUR GarageBehaviour

Table 2
The textual definition of the module OnRoadRepair

provides the interaction handleRequest of type r&s, which is made available through
the provides-interface to bind to customers upon selection (e.g. bookGarage). The
interaction handleRequest can be engaged by executing the transition reqResp. In
this way, the data of the customer’s car are received and processed to calculate the
cost of the repair (through computePrice(·)), after which the computed cost is sent
back to the customer.

Notably, the textual notation considered above is parameterized by an unspec-
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MODULE RepairService is

COMPONENTS GO : GarageOrchestrator init s = INIT term s = FINAL

PROVIDES CR : Customer

REQUIRES . . .

EXTERNAL POLICY garageSLAconstraints

WIRES CG : CR GO getRequest ↔ handleRequest : � dataFromCar ↔ d,

� cost ↔ c

· · ·
SPECIFICATIONS

BUSINESS ROLE GarageOrchestrator is

INTERACTIONS

r&s handleRequest � d : carData

� c : moneyVal

· · ·
ORCHESTRATION

local s : [INIT ,HANDLING, . . . ,FINAL], data : carData

transition reqResp

triggeredBy handleRequest�
guardedBy s = INIT

effects s′ = HANDLING ∧ data′ = handleRequest .d

sends handleRequest .c = computePrice(data′) ∧ handleRequest�

· · ·
BUSINESS PROTOCOL Customer is

INTERACTIONS s&r getRequest � dataFromCar : carData

� cost : moneyVal

BEHAVIOUR CustomerBehaviour

Table 3
The textual definition of the module RepairService

ified set of Service Level Agreement constraints (EXTERNAL POLICY), and by an
unspecified set of service descriptions (BEHAVIOUR) that represent the behavioural
specifications of abstract references (i.e., requires-interfaces in SRML).

4 Modular Architecture of the Implementation

From an operational point of view, a SRML module cannot be considered as an
isolated entity; its role needs to be understood in relation to the middleware through
which discovery and binding are ensured and the environment of services that are
available over the network. This section discusses how the elements that compose a
SRML configuration can be defined in terms of an orchestrated system in COWS.
We illustrate our approach by means of the automotive case study introduced in
the previous sections.

To make the implementation modular, the SRML configuration modelling the
automotive case study is decomposed in a number of areas of concern, numbered
one to six in Fig. 2:

(1) Creation of an activity or service instance. Every implementation of a SRML
module is intended as a factory (1a) that handles the creation of different in-
stances. Each instance of a module has an associated instance handler (1b) that
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Fig. 2. Decomposition of OnRoadRepair into areas of concern

implements message correlation and maps the interaction/parameter names of
the interface to those of the correct components of the module.

(2) Orchestration. The orchestration consists of the executable pattern of interactions
described by the set of components internal to the SRML module.

(3) Discovery of a service. To bind new service components to those in the instance
that triggered the discovery, we need what we call a discovery handler. From
a module’s perspective, the information for handling the process of discovery of
each of its requires interfaces includes (1) a specification of the required syn-
tactic/behavioural properties (i.e., the business protocol), (2) a specification of
the SLA constraints given by the external policies and (3) the condition that
triggers the discovery process (i.e., the trigger condition associated with a spe-
cific requires-interface in SRML). The discovery handler of a module includes a
requires handler for each requires-interface of the module. A requires handler
implements the mapping of names and parameters of a specific requires-interface
to those of the components of the discovered module as established by the wires.

(4) Middleware. It consists of those functionalities that support the execution of
SRML configurations. Among other things, the middleware enables the discov-
ery and binding processes by relying on a broker — a discovery and reasoner en-
tity that selects the most suitable service that matches a given requires-interface
among those stored in a repository. The middleware also includes a matchmaking
agent supporting the matching of functional descriptions and a constraint solver
supporting the negotiation of Quality of Service properties. This is where COWS

offers a layer of abstraction that is still above that of a dedicated middleware,
thus allowing us to ‘parametrise’ the implementation and remain independent of
specific technologies. For instance, web service architectures currently provide
only very limited brokerage facilities via the technology UDDI [4].

(5) Environment. It consists of the activities and services published in some reposi-
tory.

(6) Bottom layer. It consists of the set of persistent entities, which typically already
exist when a service instance is created and which may be shared among different
instances (e.g., GP of type GPS in OnRoadRepair).
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According to this architecture, the COWS representation of a service module is

Module(1,2,3) | Middleware4 | Environment5 | BottomLayer6

where Module(1,2,3) is of the form:

Factory1a.(InstanceHandler1b | Orchestration2 | DiscoveryHandler3 )

The superscripts establish a correspondence between the terms and the parts of a
SRML configuration illustrated in Fig 2. One advantage of this architecture is that it
permits an incremental development of the different aspects of the implementation.

5 Semantics of the Reconfiguration

In this section, we give a flavour of the implementation of SRML in COWS through
the case study introduced in Sections 2 and 4. A more complete account of the im-
plementation can be found in the following technical report [7]. Firstly, we present
the static aspects of the implementation, i.e. how a SRML configuration is im-
plemented in COWS, and then the dynamic ones, by showing the COWS term
resulting from a reconfiguration.

Static aspects of the implementation. The COWS term representing all the
entities involved in the automotive case study, where 〈〈·〉〉 represents the implemen-
tation in COWS of the enclosed term, is

〈〈MODULE OnRoadRepair is . . .〉〉 | 〈〈MODULE RepairService is . . .〉〉
| Middleware | Environment | BottomLayer

where Middleware is the term (Broker | Registry | ConstraintSolver |
MatchmakingAgent | . . . ), while Environment contains, at least, a COWS term rep-
resenting the car’s sensor monitor that interacts with the module instance through
the serves-interface. The term BottomLayer is left unspecified since the implemen-
tation of the bindings performed through uses-interfaces is in progress.

The car’s sensor monitor can be represented by the following COWS term:

[idsm] ( OnRoadRepair • create!〈sensorMonitor , idsm〉
| OnRoadRepair • activation!〈idsm ,�, “gps = (4348.1143N, 1114.7206E),

fuelPr = 60psi, brakeBias = 70/30, . . . ”〉 )

This term directly invokes the service factory of the module OnRoadRepair with-
out resorting to a discovery mechanism (recall that OnRoadRepair is an activity
module). The operation create does not correspond to an interaction supported
by the original SRML module but to the factory of the COWS implementation
of OnRoadRepair . It has the effect of creating a new instance of the module and
initialising it with the sensor monitor partner name sensorMonitor and the fresh
instance identifier idsm . In parallel, the sensor monitor sends the collected data by
invoking the COWS operation corresponding to the interaction activation provided
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by the interface SM of OnRoadRepair .
A SRML module corresponds to a persistent COWS service that can be instan-

tiated by invoking the operation create with the partner name of the module (that
coincides with the name of the module, as e.g., RepairService). We assume that
names of modules are distinct; this is reasonable because, at the real implementation
level, module partner names can be thought of as URIs.

The implementation of RepairService is:

Broker • pub!〈RepairService, “Customer is . . . ”, garageSLAconstraints〉
| ∗ [xcust, xext id ]RepairService • create?〈xcust , xext id 〉.

[idintra ] (ProvidesInt | RequiresInt | Wires | Components )

With respect to the architecture of the implementation of a service module we
have seen in Section 4, we have that Factory corresponds to the replicated receive
along the endpoint RepairService • create, while InstanceHandler , Orchestration
and DiscoveryHandler correspond to ProvidesInt , Wires | Components and
RequiresInt , respectively.

The implementation of the module OnRoadRepair is similar, except for the
absence of the publication activity (i.e. the invoke along the endpoint Broker •

pub) and the replacement of ProvidesInt with the term ServesInt implementing the
serves-interface SM .

To instantiate a module, a service has to provide its partner name (to allow the
created instance to reply) and a conversation identifier (stored in xext id) that will
be used for correlating inter-module communication to avoid interference among
instances of the same module. To guarantee absence of interference during intra-
module communication when a new module instance is created, a fresh conversation
identifier idintra is generated. This identifier is necessary because communication
among entities of an instance (i.e. components, wires and interfaces) are performed
along the same endpoints used by other instances of the same module. The intra-
module identifier differs from the external identifier to prevent external entities
from directly contacting internal entities. Such an identifier is also used in the
communication with Broker during the discovery phase.

The implementation of a wire is a persistent COWS service that catches a
send event (by means of a receive activity) from a connected entity, adapts the
communication endpoint and forwards the adapted event (by means of an invoke
activity) to the other entity. For example, the wire OG between OR and GA in
OnRoadRepair is:

∗ [xdata ]OGroleA • bookGarage?〈idi ,�, xdata〉.GA • acceptBooking !〈idi ,�, xdata〉
| ∗ [xservicePrice ]OGroleB • acceptBooking?〈idi ,�, xservicePrice〉.

OR • bookGarage!〈idi ,�, xservicePrice〉
The term above uses two distinguished partner names to interact with the connected
entities: the partner name OGroleA is used to catch messages from the left end of
the wire, while OGroleB is used for the right end (see the specification of OG in
Table 2). Notably, idi is the conversation identifier for intra-module communication
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of the OnRoadRepair ’s instance.
An instance of a module can interact with instances of other service modules

only after the successful completion of the discovery phase. In particular, when
a requires-interface of the considered instance is triggered, it starts the discovery
process by interacting with Broker . Consider, for example, the requires-interface
GA of OnRoadRepair . After its activation, it sends a message with the business
protocol Garage and the external policy carUserSLAconstraints to Broker. Then,
MatchmakingAgent and ConstraintSolver execute a matchmaking process between
the pair (“Garage is . . . ”, carUserSLAconstraints) and the pairs of business pro-
tocols and SLA constraints stored in Registry . If matching succeeds, Broker sends
back to GA a message with binding information.

The implementation of GA is as follows:

GA • trigger?〈idi〉.
(Broker • disc!〈OnRoadRepair , idi , “Garage is . . . ”, carUserSLAconstraints〉
| [xp, xacceptBooking ]OnRoadRepair •GA?〈idi, xp, xacceptBooking〉.

[idext] (xp • create!〈OnRoadRepair , idext〉
| xp • bindingInfo!〈idext, acceptBookingResp〉
| ∗ [xinfo ]GA • acceptBooking?〈idi ,�, xinfo〉.

(xp • xacceptBooking !〈idext,�, xinfo〉
| [xservicePrice ]OnRoadRepair • acceptBookingResp?〈idext,�, xservicePrice〉.

OGroleB • acceptBooking !〈idi,�, xservicePrice〉 )
| . . . ) )

where idi is the conversation identifier for the intra-module communication of the
considered OnRoadRepair ’s instance. The discovery process is triggered by a signal
along the endpoint GA • trigger , which is sent by the implementation of the compo-
nent OR when the instance state is set to READY by transition data receiving .

An instance of a service module can receive messages from the customer service
that has created it by means of a provides-interface. For example, the implementa-
tion of the provides-interface CR of RepairService is

[xgetRequest ]RepairService • bindingInfo?〈xext id , xgetRequest〉.
∗ [xdataFromCar ]RepairService • getRequest?〈xext id ,�, xdataFromCar 〉.

(CGroleA • getRequest !〈idintra ,�, xdataFromCar 〉
| [xcost ]CR • getRequest?〈idintra ,�, xcost〉. xcust • xgetRequest !〈xext id ,�, xcost〉 )

The implementation of a provides-interface is symmetric to that of a requires-
interface, i.e. it replaces the external identifier within an incoming message with
the internal identifier. Notice that, in case of conversational interactions, to allow
a provides-interface to reply to the corresponding requires-interface, the latter has
to send to the former some binding information (e.g., in case of GA, the operation
name acceptBookingResp).

L. Bocchi et al. / Electronic Notes in Theoretical Computer Science 253 (2009) 3–21 15



Due to lack of space, we do not show here the implementation of components. It
suffices to know that a component is implemented by a COWS term that performs
invoke/receive activities corresponding to SRML interactions according to the types
of the interactions and the orchestration logic of the component.

Dynamic aspects of the implementation. Suppose now that the
COWS service implementing RepairService has already been published in
the Broker ’s registry. This means that it has already communicated to
Broker its partner name, the business protocol of its provides-interface,
and its external policy, by performing the invoke activity Broker •

pub!〈RepairService, “Customer is . . . ”, garageSLAconstraints〉. Suppose also
that the sensor monitor has already contacted, and instantiated, the module
OnRoadRepair by invoking operation create, and that the created instance has per-
formed transition data receiving . A possible evolution of this scenario is described
below.
(1) OnRoadRepair triggers the process of discovery and binding.

(i) Execution of transition data receiving of OnRoadRepair has set the state
to READY . Thus, the triggering condition of its requires-interface GA
holds true and, hence, the implementation of GA starts the discov-
ery process. Assume that the broker, through MatchmakingAgent and
ConstraintSolver , selects the pair (“Customer is . . . ”, garageSLAconstraints)
published in the repository by RepairService as the best match for
the pair (“Garage is . . . ”, carUserSLAconstraints) sent by GA. Then,
Broker returns the message 〈idi ,RepairService, getRequest〉 along the end-
point OnRoadRepair • GA. Therefore, xp is replaced by the partner name
RepairService, and xacceptBooking by getRequest . This way, the implementation
of GA evolves into the following term:

[idext] (RepairService • create!〈OnRoadRepair , idext〉
| RepairService • bindingInfo!〈idext, acceptBookingResp〉
| ∗ [xinfo ]GA • acceptBooking?〈idi ,�, xinfo〉.

(RepairService • getRequest !〈idext ,�, xinfo〉
| [xservicePrice ]

OnRoadRepair • acceptBookingResp?〈idext ,�, xservicePrice〉.
OGroleB • acceptBooking !〈idi ,�, xservicePrice〉 )

| . . . )

(ii) The requires-interface GA invokes the factory of module RepairService by exe-
cuting the invoke activity RepairService • create!〈OnRoadRepair , idext〉. Hence,
the following instance of RepairService is created:

[idintra ] (ProvidesInt | RequiresInt
| Wires | Components ) · {xcust �→ OnRoadRepair , xext id �→ idext}

GA also communicates the binding information to CR by invoking the opera-
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tion bindingInfo.

(2) OnRoadRepair initiates the conversation with RepairService.

(i) The component OR of the OnRoadRepair ’s instance executes transition
reqToGarage corresponding to the interaction bookGarage�. The block
sends of this transition corresponds to the COWS activity OGroleA •

bookGarage!〈idi ,�, “gps = . . . ”〉. Notably, in the implementation of compo-
nent OR we take into account that it is connected to GA by means of the wire
OG .

(ii) The wire OG catches the send event and adapts the endpoint of the activity of
OR (i.e., bookGarage�) to the corresponding activity of the requires-interface
GA. The executed COWS activity is GA • acceptBooking !〈idi ,�, “gps = . . . ”〉.

(iii) The requires-interface GA catches the message and replaces the identifier idi

inside the message with the external identifier idext . Then, it invokes operation
getRequest provided by the module RepairService, i.e. it performs the COWS

activity RepairService • getRequest !〈idext ,�, “gps = . . . ”〉.
(iv) The message 〈idext ,�, “gps = . . . ”〉 sent by GA is delivered to the in-

stance of RepairService created at step (1-ii) by means of the correlation
identifier idext . This instance can receive messages from the instance of
OnRoadRepair through the provides-interface CR, that replaces the exter-
nal identifier in the incoming messages with the internal identifier. Thus,
CGroleA • getRequest !〈idintra ,�, “gps = . . . ”〉 is executed.

(3) RepairService processes the interaction and replies.

(i) The implementation of the wire CG acts as that of OG , i.e. it just re-
names the endpoints according to its specification. Then, it catches the
message 〈idintra ,�, “gps = . . . ”〉 sent over the endpoint CGroleA • getRequest
and forwards it along GO • handleRequest . Hence, the performed activity is
GO • handleRequest !〈idintra ,�, “gps = . . . ”〉. Notice that the component GO
exploits the partner name GO to receive messages from other entities.

(ii) The implementation of GO executes transition reqResp. This means that
it performs the activity GO • handleRequest?〈idintra ,�, xd〉 and replies with
CGroleB • handleRequest !〈idintra ,�, “Eur 75”〉, where “Eur 75” is the value re-
turned by computePrice(“gps = . . . ”).

(iii) The wire CG catches the reply message, replaces the name of operation
handleRequest with getRequest and forwards the message to CR. The exe-
cuted activity is CR • getRequest !〈idintra ,�, “Eur 75”〉.

(iv) CR renames the operation getRequest in acceptBookingResp, replaces the in-
ternal identifier idintra with the external one idext , and sends the reply mes-
sage to the instance of module OnRoadRepair . The executed activity is
OnRoadRepair • acceptBookingResp!〈idext ,�, “Eur 75”〉. Notice that, if there
were more than one instance of OnRoadRepair , the identifier idext would guar-
antee that the message is properly delivered to the (requires-interface of the)
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proper instance of OnRoadRepair .

(4) OnRoadRepair receives and processes the reply.

(i) GA catches the reply message, changes the operation name, replaces the
identifier and forwards the message to OG . Thus, the executed activity is
OGroleB • acceptBooking !〈idi ,�, “Eur 75”〉.

(ii) OG changes again the name of the operation and delivers the message to the
component OR. The executed activity is OR • bookGarage!〈idi ,�, “Eur 75”〉.

(iii) Finally, the receiving event triggers transition respFromGarage of OR, thus
OR’s implementation executes OR • bookGarage?〈idi ,�, xprice〉.

It is worth noticing that, if during the above computation a fatal error occurs
within the component OR of the OnRoadRepair ’s instance under consideration (i.e.,
its instance state is set to ERR), the implementation of OR would execute a forced
termination of the COWS term implementing OR. This is done by means of a kill
activity kill(k).

6 Concluding Remarks

We presented some key aspects of the definition of an execution semantics for
the modelling language SRML through an implementation in the process calculus
COWS. Specifically, we aimed at providing a formal relationship between two differ-
ent levels of abstraction that arise in SOC: the more declarative business modelling
level that abstracts from the process of discovery, selection and binding available
in the underlying SOA, and the more operational level where key aspects of service
behaviour, including reconfiguration, message correlation and session management,
need to be accounted for.

The architecture of the implementation was given a special emphasis. We con-
sider this to be one of the main interests of our work in the sense that it reveals
general aspects of what it means to implement a business modelling language over
a calculus of services. Indeed, our implementation is such that the structure of the
COWS terms that implement SRML modules reflects the architecture of the con-
figuration management process that is promoted through SRML. More precisely,
we partition the implementation into areas of concern that derive from the declara-
tive semantics of SRML [16], which has the advantage of permitting a modular and
incremental development of the implementation.

So far, we have implemented the orchestration and the process through which
reconfiguration takes place. These two aspects are not totally independent because
the process of discovery and binding is triggered by events occurring in the execution
of the components that orchestrate service execution. Therefore, our implementa-
tion takes into account the need for message correlation and the routing of messages
to different instances of the same module or to different components with the same
type in a module. In fact, the choice of using COWS to implement SRML, with
respect to the many other calculi for SOC proposed in the literature (among which
we want to mention [19,18,12,9,11,30]), has been mainly motivated by the need to
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easily support message correlation, together with implementation of shared states
and forced termination of (parts of) services.

Related Work. Only a few attempts at providing a relationship between SOA
languages set at different levels of abstraction have been proposed in the literature.
In [24], UML4SOA, an UML-based domain-specific language, is used for modelling
SOA artefacts, while WS-BPEL, Java and Jolie 1 are the target languages at opera-
tional level. While UML4SOA focuses on ‘modelling service interactions, compensa-
tion, exception, and event handling’, it does not abstract from the SOA middleware
components in the same way as SRML e.g. discovery and selection need to be
explicitly modelled. Another similar proposal is [29], which focuses on business
process modelling and presents a translation of the Business Process Modeling No-
tation (BPMN) into the stochastic extension of COWS that enables quantitative
reasoning by means of the probabilistic model checker PRISM. In [13], DecSerFlow
and Event Calculus are used to specify constraints on the execution of service chore-
ographies and, for verification purposes, both of them are mapped into SCIFF, a
language introduced for specifying global interaction protocols, equipped with a
proof procedure. Other work can be found in the literature where the focus is on
executable languages such as WS-BPEL (for an overview see [27]). Many of these
efforts aim at formalizing its semantics using Petri nets [27,23], but do not cover
such dynamical aspects as service instantiation and message correlation. In general,
anyway, WS-BPEL does not represent the architectural aspects of a service, which
is instead one of the aims of SRML (which we recall is inspired by SCA).

Future Work. The implementation relies on specific properties of the middleware
that COWS also abstracts from, in particular existence of a broker that performs
service selection and of a constraint solver for SLAs. The refinement of the broker
and of the constraint solver is a matter for future work, possibly based on exist-
ing work on dynamic and adaptive composition of autonomous services [1] and a
dialect of COWS [22] that permits modelling QoS requirement specifications and
SLA achievements. Such a refinement would provide a more detailed model of the
process of matchmaking/ranking/selection, also based on SLAs, and of the process
of negotiation. Another direction of further research concerns the use of the rea-
soning mechanisms and verification techniques that are being made available for
COWS so that we can use particular properties of these processes of negotiation
and matchmaking to reason about the dynamic aspects of SRML modules and con-
figurations.
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