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Abstract

To provide formal foundations to current (web) services technologies, we put forward using COWS, a
process calculus for specifying, combining and analysing services, as a uniform formalism for modelling
all the relevant phases of the life cycle of service-oriented applications, such as publication, discovery,
negotiation, deployment and execution. In this paper, we show that constraints and operations on them
can be smoothly incorporated in COWS, and propose a disciplined way to model multisets of constraints
and to manipulate them through appropriate interaction protocols. Therefore, we demonstrate that also
QoS requirement specifications and SLA achievements, and the phases of dynamic service discovery and
negotiation can be comfortably modelled in COWS. We illustrate our approach through a scenario for a
service-based web hosting provider.
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1 Introduction

In recent years, the increasing success of e-business, e-learning, e-government, and
other similar emerging models, has led the World Wide Web, initially thought of
as a system for human use, to evolve towards a service-oriented architecture (SOA)
supporting automated use. SOAs advocate the use of ‘services’, to be understood as
autonomous, platform-independent, computational entities that can be described,
published, discovered, and assembled, as the basic blocks for building applications.
In an SOA, services can play essentially three different roles: the provider, the
requestor and the registry. Providers offer functionalities and publish machine-
readable service descriptions on registries to enable automated discover and invo-
cation by requestors. In addition to the function that the service performs, service

1 This work has been supported by the EU project SENSORIA, IST-2 005-016004.
2 Email: lapadula@dsi.unifi.it
3 Email: pugliese@dsi.unifi.it
4 Email: tiezzi@dsi.unifi.it

Electronic Notes in Theoretical Computer Science 200 (2008) 133–154

1571-0661/$ – see front matter © 2008 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.04.097

mailto:lapadula@dsi.unifi.it
mailto:pugliese@dsi.unifi.it
mailto:tiezzi@dsi.unifi.it
http://www.elsevier.com/locate/entcs


descriptions should also include non-functional properties, such as e.g., response
time, availability, reliability, security, and performance, that jointly represent the
quality of the service (QoS). Some of these properties could depend on the current
run-time configuration of the system (e.g. the maximum allowed bandwidth might
depend on the actual load of the server), thus a dynamic discovery process is often
needed to find a provider that meets the requestors’ requirements. Moreover, since
services are often developed and run by different organizations, a key issue of the
discovery process is to define a flexible negotiation mechanism that allows two or
more parties to reach a joint agreement about cost and quality of a service, prior
to service execution. This mechanism ranges from simple forms where a two-phase
negotiation is sufficient (one of the two parties exposes a contract template that
the other party can fill in with values in a given range) to more sophisticated forms
where the parties use complex strategies and interact repeatedly. For example, if
the involved parties fail to reach an agreement, their strategies can weaken the
requirements and retry, or just give up the negotiation.

The outcome of the negotiation phase is a Service Level Agreement (SLA), i.e. a
contract among the involved parties (service requestor and provider and, possibly,
some third parties) that sets out both type and bounds on various performance
metrics of the service to be provided, and the remedial actions to be performed if
these are not met. For example, an SLA among a Web hosting provider and its
customers may specify the annual cost of the service and the guaranteed bandwidth
that will be provided, and the penalties to be imposed if the service fails to fulfill
the guaranteed bandwidth. After the agreement has been achieved, trustworthy
measurement services can possibly be used by each party to dynamically monitor
that the contract is respected by the other parties.

A successful instantiation of SOA are the so-called web services, namely sets
of operations that can be invoked through the Web via XML messages complying
with given standard formats. The expansion of web services has caused the devel-
opment of several new languages and technologies, among which we mention those
for supporting the phases of discovery, negotiation, agreement and monitoring, like
e.g. WSLA [31,23] and WS-Agreement [1], that permit specifying and managing
SLAs, WS-Negotiation [22], that permits implementing automated negotiation, and
[41,40], that exploit the ontology languages DAML-S and OWL-S to enable semantic
matching of service capabilities.

To provide formal foundations to current (web) services technologies, in [28]
we have introduced COWS as a formalism for specifying and orchestrating services
while modelling their dynamic behaviour. COWS, in fact, falls within a main line of
research (see e.g. [9,10,24,27,21,7,11,12,25]) that aims at developing process calculi
capable of capturing the basic aspects of service-oriented systems and, possibly, of
supporting the analysis of qualitative and quantitative properties of services. While
the proposals in the literature address one specific aspect or another of currently
available SOA technologies, in this paper we demonstrate that COWS instead can
model all the phases of the life cycle of service-oriented applications, such as pub-
lication, dynamic discovery, negotiation, deployment and execution. We are not
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affirming that whoever programs service-oriented applications should use COWS

as the sole language. First of all, forcing to use only one language would be unrealis-
tic and in neat contrast with the ‘open-endedness’ of the SOA paradigm. Moreover,
COWS is a lower level modelling language rather than a full-fledged programming
language. We are instead putting forward that COWS can be a common and conve-
nient basis to enable analysis of service-oriented applications by means of translation
from higher level languages. Indeed, it is widely recognized (see e.g. [32,42]) that a
major benefit of using process calculi for modelling SOA systems and applications
is that they enjoy a rich repertoire of elegant meta-theories, proof techniques and
analytical tools that can be likely tailored to the needs of service-oriented applica-
tions. Therefore, the type system introduced in [29] to check data confidentiality
properties, the stochastic extension defined in [37] to enable quantitative reasoning
on service behaviours, and the logic and model checker presented in [16] to express
and check functional properties of service behaviours, are certainly an important
added value of using COWS for modelling services.

Technically, we exploit the fact that COWS language definition abstracts from
a few sets of objects (e.g., the set of expressions) and appropriately specialize these
parameters of the language so that services can specify and conclude SLAs. We fol-
low the approach put forward in cc-pi [9], a language that combines basic features
of name-passing calculi with concurrent constraint programming [38]. Specifically,
we show that constraints and operations on them can be smoothly incorporated in
COWS, and propose a disciplined way to model multisets of constraints and manip-
ulate them through appropriate interaction protocols. This way, SLA requirements
are expressed as constraints that can be dynamically generated and composed, and
that can be used by the involved parties both for service publication and discov-
ery (on the Web), and for the SLA negotiation process. Consistency of the set of
constraints resulting from negotiation means that the agreement has been reached.

The rest of the paper is organized as follows. Section 2 presents the syntax of
COWS and its informal operational semantics. Section 3 shows how COWS can
be used for concurrent constraint programming. Section 4 describes some simple
communication protocols that allow two parties to generate constraints through
synchronization. Section 5 presents the specification of a web hosting scenario, that
is, in a simplified form, one of the typical SOA scenarios where SLA among organi-
zations are largely employed. Section 6 introduces some variants of the concurrent
constraint programming constructs presented in Section 3. Finally, Section 7 con-
cludes the paper with a few observations.

2 A Process Calculus for Service-Oriented Systems

COWS (Calculus for Orchestration of Web Services, [28]) is a recently defined pro-
cess calculus for specifying, combining and analysing services, while modelling their
dynamic behaviour. The design of the calculus has been influenced by the web ser-
vices orchestration language WS-BPEL [36] and by existing process calculi. As a
result, COWS integrates such features as e.g. not binding receive activities, asyn-
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s ::= kill(k) | u • u′!ē (kill, invoke)

| ∑l
i=0 pi • oi?w̄i.si | s | s (receive-guarded choice, parallel)

| {|s|} | [d] s | ∗ s (protection, delimitation, replication)

Table 1
COWS syntax

chronous communication, polyadic synchronization, pattern matching, protection,
and delimited killing activities. Due to space limitation, we only present COWS

syntax and a glimpse of the semantics, and refer the interested reader to [26] for
a full account of the operational semantics, for many examples illustrating COWS

peculiarities and expressiveness, and for comparisons with other process-based and
orchestration formalisms.

The syntax of COWS is presented in Table 1. It is parameterized by three count-
able and pairwise disjoint sets: the set of (killer) labels (ranged over by k, k′, . . .),
the set of values (ranged over by v, v′, . . . ) and the set of ‘write once’ variables
(ranged over by x, y, . . . ). The set of values is left unspecified; however, we assume
that it includes the set of names, ranged over by n, m, o, p, . . . , mainly used to
represent partners and operations. The language is also parameterized by a set of
expressions, ranged over by e, whose exact syntax is deliberately omitted. We just
assume that expressions contain, at least, values and variables, but do not include
killer labels (that, hence, are not communicable values). We use w to range over
values and variables, u to range over names and variables, and d to range over killer
labels, names and variables.

Notation ·̄ stands for tuples of objects, e.g. x̄ is a compact notation for denoting
the tuple of variables 〈x1, . . . , xn〉 (with n ≥ 0). We assume that variables in
the same tuple are pairwise distinct, and that tuples can be arbitrarily nested.
Tuples can be constructed using a concatenation operator defined as 〈a1, . . . , an〉 :
〈b1, . . . , bm〉 = 〈a1, . . . , an, b1, . . . , bm〉. To single out an element of a tuple, we will
write (ā, c, b̄) to denote the tuple 〈a1, . . . , an, c, b1, . . . , bm〉, where ā or b̄ might not
be present.

Notably, tuples can be used to represent XML documents, the standard format
of messages exchanged among web services, by adopting the convention that the
first field of each tuple acts as a ‘tag’ 1 (like originally proposed in the coordination
language Linda [19]). For example, the following XML message representing a paper

1 Element attributes could be rendered in a similar way.
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reference:
<paper>

<title>Service discovery and negotiation with COWS</title>
<authors>

<author>Lapadula</author>
<author>Pugliese</author>
<author>Tiezzi</author>

</authors>
<year>2008</year>

</paper>

could be rendered through the following COWS tuple:
〈paper, 〈title,Service discovery and negotiation with COWS〉 ,

〈authors, 〈author,Lapadula〉 , 〈author, Pugliese〉 , 〈author, Tiezzi〉 〉
〈year, 2008〉 〉

Thus, to extract the title and the name of the second author of the paper above,
one can use the following pattern (as argument of a receive activity):

〈paper, 〈title, xtitle〉 , 〈authors, , 〈author, xsecName〉 , 〉 , 〉
where, for simplicity sake, we assume that the ‘don’t care’ symbol matches any
value/tuple.

COWS computational entities (ranged over by s, s′, . . . ) are structured ac-
tivities built from basic activities, i.e. kill, invoke and receive, by means of choice
among receive prefixed terms, parallel composition, protection, delimitation and
replication. In the sequel, we shall use 0 to denote empty choice and + to abbre-
viate binary choice. We will omit trailing occurrences of 0, writing e.g. p • o?w̄
instead of p • o?w̄.0, and write [d1, . . . , dn] s in place of [d1] . . . [dn] s.

Invoke and receive are the basic communication activities provided by COWS.
An invoke can proceed as soon as evaluation of the expressions in its argument
returns the corresponding values. A receive offers an invocable operation along a
given partner name and its execution permits to take a decision among alternative
behaviours. Besides input parameters and sent values, both activities indicate a
communication endpoint, i.e. a pair composed of a partner name p and of an opera-
tion name o, through which communication should occur. The naming mechanism
used to identify endpoints is very flexible. For example, it allows the same service to
be identified by means of different logic names (i.e. to play more than one partner
role as in WS-BPEL). Thus, the term pslow • o?w̄.sslow + pfast • o?w̄.sfast accepts
requests for the same operation o (with parameters w̄) through different partners
with distinct access modalities: the continuation sslow implements a ‘slower ser-
vice’ provided when the request is processed through the partner pslow , while sfast

implements a ‘faster service’ provided when the request arrives through pfast . Ad-
ditionally, the naming mechanism allows the names composing an endpoint to be
dealt with separately, as in a request-response interaction, where usually the service
provider knows the name of the response operation, but not the partner name of
the service it has to reply to. For example, the term p • oreq?〈x〉.x • ores!〈′′I live′′〉
behaves as a sort of ‘ping’ service that will know at run-time the partner name for
the reply activity, i.e. the service which will be bound to x. In fact, partner and
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operation names are dealt with as values and, as such, can be exchanged in commu-
nication (although dynamically received names cannot form the endpoints used to
receive further invocations). This enables easily modelling many service interaction
and reconfiguration patterns.

An inter-service communication takes place when the pattern argument of a
receive matches a tuple of values sent along the same endpoint by an invoke and
gives rise to substitutions for replacing the variables argument of the receive with
the corresponding values argument of the invoke. The substitution for a variable is
applied only when the whole scope of the variable is determined and to the term
resulting from removing the delimitation. In fact, to enable parallel terms to share
the state (or part of it), receive activities in COWS do not bind variables. The range
of application of the substitution generated by a communication is then regulated
by the delimitation operator (namely, [d] s binds d in the scope s), that is the only
binder of the calculus. Delimitation is also used to generate fresh names (as the
restriction operator of the π-calculus [33]) and to delimit the field of action of kill
activities. Execution of a kill activity kill(k) triggers termination of all unprotected
parallel terms inside an enclosing [k] (that stops the killing effect). Indeed, critical
code can be protected from the effect of a forced termination by using the protection
operator. Notably, the scope of names and variables can be extended (by using
‘structural laws’ similar to those dealing with restricted names in the π-calculus),
that of killer labels cannot (in fact, they are not communicable values).

Execution of parallel terms is interleaved, but when a communication or a kill
activity can be performed. Indeed, the former must ensure that, if more than one
matching receive is ready to process a given invoke, only the receive with greater
priority progresses (i.e. the receive that generates the substitution with ‘smaller’
domain), while the latter must be executed eagerly. Finally, the replication operator
permits to spawn in parallel as many copies of its argument term as necessary thus,
for example, enabling creation of concurrent service instances.

We end this section with a simple example aimed at clarifying some peculiarities
of COWS. Consider the following term:

[x, y, k] ( p • o1?〈x, y〉 + p • o2?〈x〉.kill(k) | {|p′ • o3!〈x〉|} | p′ • o4!〈x, y〉 )
| [n] p • o2!〈n〉

Communication of private names exploits scope extension as in the π-calculus. Re-
ceive and invoke activities can interact only if both are in the scopes of the delim-
itations that bind the variables argument of the receive. Hence, to enable commu-
nication of private name n, besides the scope of n, we must also extend the scope
of variable x as follows:

[n, x] ( [y, k] ( p • o1?〈x, y〉 + p • o2?〈x〉.kill(k) | {|p′ • o3!〈x〉|} | p′ • o4!〈x, y〉 )
| p • o2!〈n〉 )

Now, taking place of the communication discards the receive along p • o1 and causes
application of the substitution {x �→ n} to all terms delimited by [x] , not only to
the continuation of the receive. We thus obtain the term

[n, y, k] (kill(k) | {|p′ • o3!〈n〉|} | p′ • o4!〈n, y〉 )

A. Lapadula et al. / Electronic Notes in Theoretical Computer Science 200 (2008) 133–154138



Finally, execution of the kill activity only retains the protected invoke.

[n] {|p′ • o3!〈n〉|}
In the rest of the paper, we will write Zv̄ � W to assign a symbolic name Zv̄

to the term W and to indicate the values v̄ occurring within W . We will use n̂ to
stand for the endpoint np • no or for the tuple 〈np, no〉 and rely on the context to
resolve any ambiguity.

3 Using COWS for concurrent constraint programming

We now tailor COWS for specifying Service Level Agreements. We take advantage
of the fact that its syntax and operational semantics are parametrically defined
with respect to the set of values, the syntax of expressions that operate on values
and, therefore, the definition of the pattern-matching function. We show that, by
specializing these parameters, we can obtain a dialect that properly integrates the
principle of ‘computing with partial information’, or constraints, that is at the basis
of the concurrent constraint programming paradigm [38].

We first provide some insights on the constraint system used. In COWS, a con-
straint is a relation among a specified set of variables which gives some information
on the set of possible values that these variables may assume. Such information is
usually not complete since a constraint may be satisfied by several assignments of
values to the variables. For example, we can employ constraints such as

cost � 350 cost = bw · 0.05 z =
1

1 + |x− y|
In practice, we do not take a definite standing on which of the many kind of con-
straints to use. From time to time, the appropriate kind of constraints to work with
should be chosen depending on what one intends to model.

Formally a constraint c is represented as a function c : (V → D) → {true, false},
where V is the set of constraint variables (that, as explained in the sequel, is included
in the set of COWS names), and D is the domain of interpretation of V , i.e. the
domain of values that the variables may assume. If we let η : V → D be an
assignment of domain elements to variables, then a constraint is a function that,
given an assignment η, returns a truth value indicating if the constraint is satisfied
by η. For instance, the assignment {cost �→ 500} satisfies the first constraint, while
{cost �→ 500, bw �→ 8000} does not satisfy the second constraint, that is, instead,
satisfied by {cost �→ 400, bw �→ 8000}. An assignment that satisfies a constraint is
called a solution.

The constraints we have presented are called crisp in the literature, because
they can only be satisfied or violated. In fact, we can also use more general con-
straints called soft constraints [18,6]. These constraints, given an assignment for the
variables, return an element of an arbitrary constraint semiring (c-semiring, [5]),
namely a partially ordered set of ‘preference’ values equipped with two suitable
operations for combination (×) and comparison (+) of (tuples of) values and con-
straints. Formally, a c-semiring is an algebraic structure 〈A,+,×, 0, 1〉 such that:
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A is a set and 0, 1 ∈ A; + is a binary operation on A that is commutative, associa-
tive, idempotent, 0 is its unit element and 1 is its absorbing element; × is a binary
operation on A that is commutative, associative, distributes over +, 1 is its unit
element and 0 is its absorbing element. Operation + induces a partial order ≤ on A

defined by a ≤ b iff a + b = b, which means that a is more constrained than b. The
minimal element is thus 0 and the maximal 1. For example, crisp constraints can be
understood as soft constraints on the c-semiring 〈{true, false},∨,∧, false, true〉 of
the boolean values.

The COWS dialect we work with in the rest of the paper specializes expressions
to also include constraints, ranged over by c, and constraint multisets, ranged over
by C, and to be formed by using the following operators.

• Consistency check: predicate isCons(C) takes a constraint multiset C and holds
true if C is consistent. Formally, isCons({c1, . . . , cn}) holds true if there exists
an assignment η such that c1η ∧ . . . ∧ cnη �= false, i.e. if the combination of
all constraints has at least a solution 2 . The predicate isCons( ) is defined for
crisp constraints. However, we can generalize its definition to soft constraints by
requiring that it is satisfied if there exists an assignment η such that c1η × . . . ×
cnη �= 0.

• Entailment check: predicate C  c takes a constraint multiset C and a constraint
c and holds true if c is entailed by C. Formally, {c1, . . . , cn}  c holds true if there
exists an assignment η such that c1η ∧ . . . ∧ cnη ≤B cη, where ≤B is the partial
ordering over booleans, defined by b1 ≤B b2 iff b1 ∨ b2 = b2. Also this predicate
can be generalized to soft constraints by requiring that {c1, . . . , cn}  c holds true
if there exists an assignment η such that c1η × . . . × cnη ≤ cη.

• Retraction: operation C − c takes a constraint multiset C and a constraint c and
returns the multiset C\{c} if c ∈ C, otherwise returns C.

• Multiset union: binary operator � is the standard union operator between mul-
tisets.

Since constraints and constraint multisets are expressions, they need to be eval-
uated. The (expression) evaluation function [[ ]] acts on constraints and constraint
multisets as the identity, except for constraints containing COWS variables, for
which the function is undefined. Therefore, evaluated constraints and constraint
multisets are values that can be communicated by means of synchronization of in-
voke and receive activities and can replace variables by means of application of
substitutions to terms. Substitutions (ranged over by σ) map variables to values
and are written as collections of pairs of the form x �→ v.

To efficiently implement the primitives of the concurrent constraint program-
ming paradigm, we tailor the rules defining the pattern-matching function M( , )
to deal with constraints and operations on them, as shown in Table 2. The original
matching rules (shown in the upper part of the table) are still valid and state that
variables match any value (thus, e.g., M(x, C) = {x �→ C}), two values match only

2 We do not consider here the well-studied problem of solving a constraint system. Among the many
techniques exploited to this aim, we mention dynamic programming [34,4] and branch and bound search [43].
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M(x, v) = {x �→ v} M(v, v) = ∅ M(a1, b1) = σ1 M(ā2, b̄2) = σ2

M((a1, ā2), (b1, b̄2)) = σ1 � σ2

isCons(C � {c})
M(〈c, x〉, C) = {x �→ C}

C  c

M(〈c�, x〉, C) = {x �→ C}

Table 2
Matching rules

if they are identical, and two tuples match if they have the same number of fields
and corresponding fields do match. The new rules (shown in the lower part of the
table) allow a two-field tuple to match a single value in two specific cases: a tuple
〈c, x〉 and a multiset of constraints C do match if C�{c} is consistent, while a tuple
〈c�, x〉 and a multiset of constraints C do match if c is entailed by C; in both cases,
the substitution {x �→ C} is returned. Notably, by applying the operator � to a
constraint one can require an entailment check instead of a consistency check.

The concurrent constraint computing model is based on a shared store of con-
straints that provides partial information about possible values that variables can
assume. In COWS the store of constraints is represented by the following service:

storeC � [n̂] ( n̂!〈C〉 | ∗ [x] n̂?〈x〉.( ps • oget!〈x〉 | [y] ps • oset?〈y〉.n̂!〈y〉 ) )

where ps is a distinguished partner, oget and oset are distinguished operations. Other
services can interact with the store service in mutual exclusion, by acquiring the
lock (and, at the same time, the stored value) with a receive along ps • oget and by
releasing the lock (providing the new stored value) with an invoke along ps • oset.
Notably, local stores of constraints can be simply modelled by restricting the scope
of the partner name ps.

The store is composed in parallel with the other services, which can act on it
by performing operations for adding/removing constraints to/from the store (tell
and retract, respectively), and for checking entailment/consistency of a constraint
by/with the store (ask and check, respectively). These four operations can be
rendered in COWS as follows:

〈〈tell c.s〉〉= [n̂] ( n̂!〈c〉
| [y] n̂?〈y〉.[x] ps • oget?〈〈y, x〉〉.({| ps • oset!〈x � {y}〉 |} | 〈〈s〉〉) )

〈〈ask c.s〉〉= [n̂] ( n̂!〈c�〉 | [y] n̂?〈y〉.[x] ps • oget?〈〈y, x〉〉.({| ps • oset!〈x〉 |} | 〈〈s〉〉) )

〈〈check c.s〉〉= [n̂] ( n̂!〈c〉 | [y] n̂?〈y〉.[x] ps • oget?〈〈y, x〉〉.({| ps • oset!〈x〉 |} | 〈〈s〉〉) )

〈〈retract c.s〉〉= [n̂] ( n̂!〈c〉 | [y] n̂?〈y〉.[x] ps • oget?〈x〉.({| ps • oset!〈x − y〉 |} | 〈〈s〉〉) )
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where n̂ is fresh. Essentially, each operation is a term that first takes the store
of constraints (thus acquiring the lock so that other services cannot concurrently
interact with the store) and then returns the (possibly) modified store (thus releasing
the lock). Since the invoke activities n̂!〈c〉 and n̂!〈c�〉 can be performed only if [[c]]
is defined, i.e. if c does not contain COWS variables, the store can only contain
evaluated constraints. Availability of the store is guaranteed by the fact that, once
the store and the lock have been acquired, the activities reintroducing the store and
releasing the lock are protected from the effect of kill activities. This disciplined
use of the store permits to preserve its consistency. Notably, the matching rules in
the lower part of Table 2 are essential for faithfully modelling the semantics of the
original operations.

While tell and ask are the classical concurrent constraint programming prim-
itives, operations check and retract are borrowed from [9]. In particular, opera-
tion retract is debatable since its adoption prevents the store of constraints to be
‘monotonically’ refined. In fact, in concurrent constraint programming a computa-
tion step does not change the value of a variable, but may rule out certain values
that were previously possible; therefore, the set of possible values for the variable
is contained in the set of possible values at any prior step. This monotonic evolu-
tion of the store during computations permits to define the result of a computation
as the least upper bound of all the stores occurring along the computation and
provides concurrent constraint languages with a simple denotational semantics in
which programs are identified to closure operators on the semi-lattice of constraints
[39]. Therefore, if one wants to exploit some of the properties of concurrent con-
straint programming that require monotonicity, he must consider the fragment of
COWS without retract. On the other hand, in the context of dynamic service
discovery and negotiation, the use of operation retract enables modelling many
frequent situations where it is necessary to remove a constraint from the store for,
e.g., weakening a request.

To avoid interference between communication and operations on the store, and to
correctly implement the operation retract, we do not allow constraints in the store
to contain variables, thus they cannot change due to application of substitutions
generated by communication. Indeed, suppose constraints in the store may contain
variables and consider the following example:

[x] ( store∅ | tell(x ≤ 5). (n̂!〈6〉 | n̂?〈x〉) )

After action tell has added the constraint x ≤ 5 to the store, communication along
the endpoint n̂ can modify the constraint in 6 ≤ 5. This way, the communication
can make the store inconsistent. As another example, consider the following term:

[x] ( store{x≤5} | tell(x = 3). retract(x = 3). tell(x = 4) )

where actions tell and retract can modify the store while preserving its consis-
tency. Now, let us change the term as follows:

[x] ( store{x≤5} | tell(x = 3). ( n̂!〈3〉 | n̂?〈x〉 | retract(x = 3). tell(x = 4) ) )
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After the first tell has taken place, due to the communication along n̂ the substi-
tution {x �→ 3} will be applied to the store, thus obtaining the term:

store{3≤5} | retract(3 = 3). tell(3 = 4)

Now, although the store is still consistent, action retract cannot modify it. This
means that the write-once variables of COWS are not suitable for modelling con-
straint variables.

Therefore, as we stated before, we do not allow constraints in the store to con-
tain variables. Instead, they can use specific names, that we call constraint vari-
ables and, for the sake of presentation, write as x, y, . . . (i.e. in the typewriter
style). Indeed, names are not affected by expression evaluation (i.e. [[x]] = x) and
by substitution application (i.e. x ·σ = x). Moreover, names can be delimited, thus
allowing us to model local constraints. In the sequel, we will use cv(t) to denote the
set of constraint variables occurring in a term t. Notice however that constraints
occurring as arguments of operations may contain variables so that we can spec-
ify constraints that will be dynamically determined. For example, we can write
tell (cost � xmin cost).s; of course, since [[cost � xmin cost]] is undefined, this
operation is blocked until variable xmin cost is substituted by a value.

4 Communication protocols for constraints generation

Besides ask, tell, retract and check, inter-service communication can be used
to implement many protocols allowing two parties to generate new constraints.
For instance, in [9], service synchronization works like two global ask and tell
constructs: as a result of the synchronization between the output x̄〈y〉 and the input
x〈y′〉 the new constraint y = y′ is added to the store. Therefore, synchronization
allows local constraints (i.e. constraints with restricted names) to interact, thus
establishing an SLA between the two parties, and (possibly) to become globally
available. Differently, COWS does not allow communication to directly generate
new constraints: e.g., an invoke p • o!〈x〉 and a receive p • o?〈y〉 cannot synchronize,
because M(y, x) does not hold. In the rest of this section, we present three example
protocols that permit establishing new constraints. For the sake of readability, in
the protocols we will use a sort of conditional choice, that can be thought of as a
‘macro’ encodable in COWS as follows

〈〈if (e) then {s1} else {s2}〉〉 = [m̂] (m̂!〈e〉 | (m̂?〈true〉.〈〈s1〉〉 + m̂?〈false〉.〈〈s2〉〉) )

where m̂ is fresh, and true and false are the values that can result from evaluation
of e.

A simple protocol.
To create constraints of the form x = y, where each of x and y is initially local to
only one party, we can use the standard COWS communication mechanism together
with operation tell. For example, the following term

storeC | p • o!〈x〉 | [z] p • o?〈z〉.tell (z = y).s (∗)
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for z fresh in s, adds to the store the constraint x = y, if it is consistent with C.
Indeed, the communication along endpoint p • o takes place before the consis-

tency check (performed by operation tell), and the term evolves into

storeC | tell (x = y).s

Now, if x = y is not consistent with the store, the receive and invoke activities along
p • o are definitively consumed and the execution of term s is blocked.

This protocol is simple and divergence-free, but it may introduce deadlocked
states in the terms. This fact has a relevant impact on the specification of protocols
for negotiation, particularly when there are more parties that provide (or require)
the same service. For example, consider the following term

storeC | p • o!〈x〉 | [z] p • o?〈z〉.tell (z = y).s | [z′] p • o?〈z′〉.tell (z′ = w).s′

where another receive activity is put in parallel with term (∗). Now, if x = y is not
consistent with C, then the term can non-deterministically evolve in a stuck state
by performing the receive p • o?〈z〉, although x = w might be consistent with C.

A divergent protocol.
To overtake the previous problems, the following more refined protocol restores the
communication activities if the constraints generated when communication takes
place are not consistent with the current store. To simplify the encoding, we assume
that a single communication cannot produce both substitutions and new constraints.
The extended communication activities can be rendered as follows:

〈〈p • o!ē〉〉 = [n̂] ( n̂!〈〉 | ∗ n̂?〈〉.[m̂] ( p • o!(m̂, ē) | m̂?〈〉.n̂!〈〉 ) )

〈〈p • o?w̄.s〉〉 =

⎧⎪⎨
⎪⎩

[x] p • o?(x, w̄).〈〈s〉〉 if cv(w̄) = ∅
s′ if w̄ = 〈x1, . . . , xn〉
undef otherwise

s′ � [n̂] ( n̂!〈〉 | ∗ n̂?〈〉.[x, x1, . . . , xn] p • o?〈x, x1, . . . , xn〉.[y] ps • oget?〈y〉.
[r̂] ( {| if (isCons(y � {x1 = x1, . . . , xn = xn}) )

then { ps • oset!〈y � {x1 = x1, . . . , xn = xn}〉 | r̂!〈〉 }
else { ps • oset!〈y〉 | x!〈〉 | n̂!〈〉 } |}

| r̂?〈〉.〈〈s〉〉 ) )

for n̂, m̂ and r̂ fresh in ē, w̄ and s. An invoke activity is encoded as a term that
performs the same invoke with, as an additional argument, a private endpoint m̂

where, if communication fails, it waits for an acknowledgement that triggers the
restart of the term. A receive activity with a tuple, as an argument, without con-
straint variables is encoded as a term that performs the same receive with, as an
additional argument, a dummy variable (i.e. x), that stores the endpoint for the
acknowledgement (that, however, is not sent in this case). A receive activity with,
as an argument, a tuple of constraint variables is encoded as a term that performs a
receive with a tuple of COWS variables which store the endpoint for the acknowl-
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edgement and the received data (i.e. constraint variables or values). After the
receive, the term takes the current store of constraints and checks its consistency
with the constraints that would be generated by taking place of the communication.
In the positive case, it updates the store with the new constraints and triggers the
(encoding of the) continuation term s by a signal along the endpoint r̂. Otherwise,
it leaves unchanged the store, sends an ack back to the corresponding invoking term,
and restarts its execution. As in the encodings of concurrent constraint program-
ming primitives, in order to guarantee the release of the lock on the shared store of
constraints, the activities following the acquisition of the lock are protected.

The encoded receives can be terms like s′, hence they cannot be used as guards
of a choice. Therefore, to implement a choice between encoded receives, they must
be put in parallel and synchronized by using a lock (as in [35]).

Communication can generate constraints expressing equalities between names
(alike fusions of [9]) or equalities between names and values. For example, the
invoke p • o!〈x〉 and the receive p • o?〈y〉 can synchronize and add the constraint
x = y to the store, if consistency is preserved, otherwise the synchronization is
forbidden. Similarly, the receive above can synchronize with the invoke p • o!〈v〉 and
generate the constraint y = v. Let us now consider the following term

storeC | 〈〈p • o!〈x〉〉〉 | 〈〈p • o?〈y〉.s〉〉 | 〈〈p • o?〈w〉.s′〉〉
and assume that x = w is consistent with the store while x = y is not. In this case,
by performing the receive p • o?〈y〉 the term will come back to the initial state, while
by performing the receive p • o?〈w〉 it becomes storeC�{x=w} | 〈〈p • o?〈y〉.s〉〉 | 〈〈s′〉〉
where, for simplicity sake, we omit the stuck terms produced by the encoding.

Of course, since the protocol can diverge (i.e. an invoke can synchronize infinitely
often with the same receive without modifying the store), a fairness assumption
is essential to guarantee progress properties: if an invoke can synchronize with
many receives and at least one synchronization produces consistent constraints,
then eventually this synchronization will succeed.

A divergence-free protocol.
To get rid of divergence, we could add the following pattern-matching rule

| x̄ |=| x̄ |=| v̄ | isCons(C � {x̄ = v̄})
M((x̄ : x̄, y), (v̄, C)) = {x̄ �→ v̄, y �→ C}

(notice that, since the tuples (x̄ : x̄, y) and (v̄, C) have different length, the rule does
not interfere with the other ones) and encode communication activities as follows:

〈〈p • o!ē〉〉 = [n̂] ( n̂!〈〉 | ∗ n̂?〈〉.[m̂] ( [x] ps • oget?〈x〉.
( p • o!〈(ē, x), m̂〉 | {| ps • oset!〈x〉 |} | m̂?〈〉.n̂!〈〉 ) ) )

〈〈p • o?w̄.s〉〉 =

⎧⎪⎨
⎪⎩

[z, x] p • o?〈(w̄, z), x〉.〈〈s〉〉 if cv(w̄) = ∅
s′ if w̄ = 〈x1, . . . , xn〉
undef otherwise

A. Lapadula et al. / Electronic Notes in Theoretical Computer Science 200 (2008) 133–154 145



s′ � [n̂] ( n̂!〈〉 | ∗ n̂?〈〉.[x1, . . . , xn, z, x] p • o?〈〈x1, . . . , xn, x1, . . . , xn, z〉, x〉.
[y] ps • oget?〈y〉.
[r̂] ( {| if (y == z)

then { ps • oset!〈y � {x1 = x1, . . . , xn = xn}〉 | r̂!〈〉 }
else { ps • oset!〈y〉 | x!〈〉 | n̂!〈〉 } |}

| r̂?〈〉.〈〈s〉〉 ) )

for n̂, m̂ and r̂ fresh in ē, w̄ and s. Essentially, the encoding of the invoke reads
the store and releases it, invoke and receive activities synchronize (i.e. the new
constraints are consistent with the store), the encoding of the receive reads the
store and, if the value is unchanged, adds the new constraints, otherwise it restarts
the terms. The encoding is divergence-free in the sense that whenever the terms
are restarted the value of the store of constraints differs from that in the previous
execution, namely the terms cannot stutter on the same store. Of course, more
robust protocols (that, e.g., avoid also starvation) could be defined. However, they
should rely on synchronization among more than two entities at the same time (as
it is permitted, e.g., by the join input of the Join-calculus [17]), that goes against
our choice to reconcile expressiveness and implementability.

5 A Web hosting scenario

We now present a scenario, inspired by [9], that shows how our framework can
be used to model both automatic service discovery mechanisms and negotiation
mechanisms with the aim of achieving service level agreements. Consider a client
C that needs a web hosting service, and some service providers P1, P2, . . . , that
offer different Web hosting solutions, varying in cost and bandwidth. In order
to be invoked by clients, provider services need to be discovered. The dynamic
service discovery mechanism relies on a (single) registry R that, similarly to an
UDDI registry, allows providers to publish their service description, as a WSDL
document, and clients to discover published services by performing search queries.
Suppose that providers obtain their bandwidth resources from third parties T1,
T2, . . . , and that each provider can cover only a delimited geographical area. The
whole system results from the parallel composition of C, R, store∅ and all provider
and third party services. In the following COWS specification of this scenario, we
implicitly rely on one communication protocol of those presented in Section 4.

The client service C is defined as

C � pR • osearch!〈“web hosting”, pC, (zip = 10012)〉
| [x] pC • ocorr?〈x〉. [k] ∗ [xP] pC • oresp?〈xP〉.

( xP • oreq!〈pC〉 | [z] pC • ostartNeg?〈z〉.Cneg )

The endpoint pR • osearch is used to perform a query on the registry and transmit the
client’s partner name pC. Besides the string identifying the kind of required service,
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a query contains a constraint identifying the location of the client 3 . The registry
will reply by sending along pC • ocorr a private name used to send a stop signal
to the registry, and along pC • oresp all partner names corresponding to providers
that satisfy the query. For each of them, an instance of the client is created that
starts a negotiation phase, implemented by term Cneg. We assume that once a
negotiation succeeds, Cneg forces termination of all the other parallel instances (by
performing kill(k)) and sends a signal to the registry to stop the database querying
(by performing {|pR • ostop!〈x〉|}). Client C issues one request at a time; in case of
concurrent queries, correlation can be exploited to relate a query and its answers.
The more general case of multiple clients can still be dealt with by using correlation
or by relying on the (very reasonable) assumption that clients’ partner names are
pairwise distinct.

A service provider is defined alike the following term P

P � pR • opub!〈“web hosting”, pP, ((zip � 10000) ∧ (zip � 14905))〉
| ∗ [xC] pP • oreq?〈xC〉. [p] (xC • ostartNeg!〈p〉 | pT • ostartNeg!〈p〉

| [xT] p • othird?〈xT〉.Pneg )

The endpoint pR • opub is used for invoking the registry service and transmitting the
description of the provided service. This description consists of a string identifying
the kind of provided service, the provider’s partner name pP, and a constraint that
defines the area covered by the provider 4 which, of course, may differ from provider
to provider. Notably, zip is a global constraint variable. Each request sent by a
client, say C, triggers a new negotiation phase. Specifically, when a request arrives
along the endpoint pP • oreq, the provider creates a new instance that generates a
new partner name p, that defines a private endpoint used to receive from C and
from the considered third party, say T. Indeed, the provider instance sends p to C
and T. After that, T replies with another private partner name (stored in xT), that
allows the instance of P to interact with the correct instance of T, and the provider
instance continues as Pneg.

The registry service R is defined as

R � [n̂] ( ∗ [xtype, xP, xc] pR • opub?〈xtype, xP, xc〉. n̂!〈xtype, xP, xc〉
| ∗ [xtype, xC, x′

c] pR • osearch?〈xtype, xC, x′
c〉.

[id] (xC • ocorr!〈id〉 | [ps] ( store∅ | tellx′
c. R

′ ) ) )

R′ � [k] ( ∗ [xP, xc] n̂?〈xtype, xP, xc〉.
(pR • opub!〈xtype, xP, xc〉 | checkxc. xC • oresp!〈xP〉)

| pR • ostop?〈id〉.kill(k) )

For each publication request received along the endpoint pR • opub from a provider
service, the registry service emits a tuple containing the service description along

3 A client position is expressed by a zip code. In the example, the client C is located at the Computer
Science Department of the New York University.
4 A geographical area is defined by a set of United States Postal Service zip codes. In the example, the
provider P covers the whole State of New York.
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the private endpoint n̂. The parallel composition of these outputs represents the
database of the registry service. When a client request is received along pR • osearch,
R replies by sending a new correlation identifier id, that will be used to correlate stop
signals sent from the client along pR • ostop, and initializes a new local store by adding
the constraint within the query message. Then, it cyclically reads a tuple (whose
first field is the string specified by the client) from the internal database, checks if
the provider constraints are consistent with the store and, in case of success, sends
the provider’s partner name to the client. Notably, reading a tuple in the database,
in this case, consists of an input along n̂ followed by an output along pR • opub; this
way we are guaranteed that, after being consumed, the tuple is correctly added to
the database. The termination of the loop is triggered by the receiving of a signal
along pR • ostop. It is worth noticing that database tuples are non-deterministically
chosen, thus the same provider name can be sent many times. This could be avoided
by refining the specification, e.g. by tagging each tuple with an identifier (stored in
an additional field), that permits reading the tuples in an orderly way.

Finally, the third party T which P relies on is defined as

T � ∗ [xP] pT • ostartNeg?〈xP〉. [p′] ( xP • othird!〈p′〉 | Tneg )

Once the discovery phase terminates, the client, the selected provider and the
corresponding third party initiate the negotiation phase, in order to sign an SLA
contract before the execution of the service. Notably, the success of the negotiation
also depends on the resources provided by the third party.

Each party specifies its SLA requirements or guarantees: the client C imposes
that 600 Euro is the maximum cost it is willing to pay for the service; the provider P
indicates the minimum annual cost of 350 Euro for the service and the cost per unit
of bandwidth cost = bw ·0.05; and the third party T fixes the maximum bandwidth
that it can supply at a rate of 10·000 Mbit/s. Thus, we have

Cneg � [bw′, cost′] tell (cost′ � 600).
( z • osync!〈bw′, cost′〉 | pC • osign?〈〉. ( z • oackC !〈〉 | C′ ) )

C′ � [x′, y] pC • ofix?〈x′, y〉.
check ((x′= bw′) ∧ (y = cost′)).(kill(k) | {|pR • ostop!〈x〉|})

Pneg � [bw, cost] tell ( (cost � 350) ∧ (cost = bw · 0.05) ) .

p • osync?〈bw, cost〉.
(xT • osync!〈bw〉 | p • oackT ?〈〉. (xC • osign!〈〉 | p • oackC?〈〉.P′ ) )

P′ � pP • oreqMetrics!〈p〉 | [xbw] p • ometrics?〈xbw〉 .

(xC • ofix!〈xbw, xbw · 0.05〉 | check ((xbw · 0.05 = cost) ∧ (xbw = bw)) )

Tneg � [bw′′] tell (bw′′ � 10·000). p′ • osync?〈bw′′〉. xP • oackT !〈〉
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Each party starts by adding its local constraints (i.e. constraints with restricted
constraint variables) to the shared global store by performing an operation tell.
Then, for sharing the local constraints, all parties synchronize each other by in-
voking operation osync (that each party provides). Finally, since all constraints
are consistent, by communicating along pC • osign and p • oackC , C and P sign the
following contract:

(cost � 350) ∧ (cost = bw · 0.05) ∧ (cost′ � 600) ∧ (bw′′ � 10·000)
∧ (bw = bw′) ∧ (bw = bw′′) ∧ (cost = cost′)

Once the contract is signed, P invokes an internal service (along the endpoint pP •

oreqMetrics) to obtain a run-time measurement of the bandwidth effectively supplied
to the client. For simplicity sake, P’s subservice performing the measurement is not
explicitly represented. Then, P fixes the bandwidth, communicates it to client C
(along the endpoint pC • ofix), and, by performing some operations check, the two
parties validate the signed contract with respect to the value fixed by the provider.
Afterwards, during the execution, the client service could use again operation check
in a similar way to verify compliance with the SLA defined at negotiation time,
by exploiting run-time data provided by some trustworthy measurement service.
Finally, in case contract validation succeeds, C stops all its other instances that are
concurrently performing negotiation phases, by means of a kill activity, and notifies
the registry that it does not need further query results, by communicating along
pR • ostop. Notably, our prioritized semantics guarantees that only one instance of C
signs a contract with the provider.

6 Other concurrent constraint programming constructs

In the previous sections, for the sake of presentation, only four operations have
been defined to interact with the store. We want now to show that variants of
these operations or other concurrent constraint programming constructs can be
easily implemented in COWS, to model some peculiar aspects of discovery and
negotiation processes.

Non-blocking operations.
The operations tell c, check c and ask c are blocking operations, i.e. if the
constraint c is not consistent with/entailed by the current store, the operations,
and their continuation, are suspended until the constraint is consistent/entailed.
Nevertheless, non-blocking variants of these operations can be defined. For example,
by adding the following pattern-matching rule

¬ isCons(C � {c})
M(〈c¬, x〉, C) = {x �→ C}

the non-blocking operation tell c {s1}{s2} – that adds c to the store and continues
as s1, if c is consistent with the store, or otherwise continues as s2 – can be rendered
as follows:
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〈〈tell c {s1}{s2}〉〉 = [n̂] ( n̂!〈c, c¬〉
| [y1, y2] n̂?〈y1, y2〉.
[x] ( ps • oget?〈〈y1, x〉〉.({| ps • oset!〈x � {y1}〉 |} | 〈〈s1〉〉)

+ ps • oget?〈〈y2, x〉〉.({| ps • oset!〈x〉 |} | 〈〈s2〉〉) )

This operation can be used, for example, to model a party of a negotiation that,
in case its first-rate constraint is too strong to reach an agreement, weakens the
requirements and retries with another constraint. For example, the term

tell cstrong {sstrongSuccess}{ tell cweak {sweakSuccess}{squit} }

continues as sstrongSuccess (resp. sweakSuccess) if constraint cstrong (resp. cweak) is
consistent with the current store; if both attempts fail, it gives up the negotiation
and continues as squit.

Getting the (best) solutions.
During the negotiation phase, one is usually interested in satisfaction or violation of
constraints. However, when the involved parties reach an agreement, one could be
interested to obtain (one of) the best solution of the resulting multiset of constraints.

To achieve this aim, we introduce a function getSol(C) that takes a constraint
multiset C and, if C is consistent, returns a solution. Formally, in case of crisp
constraints, getSol({c1, . . . , cn}) returns an assignment η such that c1η∧ . . .∧cnη �=
false. Instead, in case of soft constraints, it returns one of the optimal solutions, i.e.
an assignment η such that c1η× . . .× cnη �= 0 and c1η

′× . . .× cnη′ ≤ c1η× . . .× cnη

for any η′. Like for consistency and entailment predicates, we do not consider here
the problem of solving a constraint multiset and refer the interested reader to the
literature (see e.g. [34,4,43]).

We also add the following rule to those defining the pattern-matching function:

getSol(C) = η η |x̄= v̄

M(〈x̄, x̄, y〉, C) = {x̄ �→ v̄, y �→ C}
Here, |x̄ is a projection function that, given an assignment η, returns the tuple
of values associated by η to the constraint variables x̄. Therefore, the construct
getSol(x̄, x̄).s – that gets (one of) the best solution of the current store of con-
straints, assigns to x̄ the values associated to x̄ and continues as s – can be rendered
in COWS as follows:

〈〈getSol(x̄, x̄).s〉〉 = [y] ps • oget?〈x̄, x̄, y〉. ({| ps • oset!〈y〉 |} | 〈〈s〉〉)

Notably, if a variable within x̄ is replaced before the execution of getSol(x̄, x̄), the
pattern-matching rule above cannot be applied and, thus, the operation is stuck
forever. However, this unwanted behaviour can be easily prevented by properly
delimiting the variables, as in, e.g., the term [x̄] getSol(x̄, x̄).s.

We now illustrate the semantics of the operation getSol by means of some
examples. Suppose that the following crisp constraints are the result of a negotiation
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between a client and a provider:

cclient = cost � 600 cprovider = cost � 150

Then, any assignment that maps cost to a value between 150 and 600 is an ef-
fective solution. Thus, in this case, execution of getSol(cost, x) has the effect of
substituting x with a value between 150 and 600. As another example, consider the
soft constraints

c′client = �600/cost� c′provider = �cost/150�

defined over the domain of interpretation [100..800] for the variable cost and re-
turning values within the c-semiring 〈[0..6], max,min, 0, 6〉. Constraints c′client and
c′provider associate to each assignment for the variable cost an element of the c-
semiring, which represents a grade of preference. For example, from the client point
of view, the assignment {cost �→ 500} has grade of preference 1, while the as-
signment {cost �→ 300} has grade of preference 2, because (of course) the client
prefers to save money. Instead, from the provider point of view, the greater the
values of cost are the higher the grade of preference is. Moreover, c′client states
that values greater than 600 are not acceptable for the client, because the cor-
responding grade is 0; similarly, c′provider states that values lesser than 150 are
not acceptable for the provider. In this case, the operation getSol(cost, x) has
the effect of substituting x with one of the best solutions of the constraint sys-
tem, i.e. an assignment that produces the maximal grade of preference. For
instance, the assignment {cost �→ 300} is one of the best solutions, indeed
min(c′client · {cost �→ 300}, c′provider · {cost �→ 300}) = min(2, 2) = 2 and one
can prove that 2 is the highest grade of preference for the combination of the two
constraints.

Of course, more complex variants of the operation getSol could be implemented,
in order to get all the (best) solutions or all the solutions with a grade better than
a certain threshold.

7 Concluding remarks and related work

By focussing on QoS requirement specifications and SLA achievements, we have
demonstrated that COWS is a suitable formalism for modelling publication, discov-
ery, negotiation, deployment and execution of service-oriented applications. Specif-
ically, we have shown that constraints and operations on them can be smoothly
incorporated in COWS, and proposed a disciplined way to model multisets of con-
straints and manipulate them through appropriate interaction protocols. The nov-
elty of our proposal is that all the above different key aspects of SOAs are dealt
with in an homogeneous and direct way by using a single linguistic formalism that
already provides a number of analytical tools and techniques (see e.g. [29,37,16]).
Proof techniques, such as type systems and observational semantics, for analysing
properties of service-oriented applications modelled in COWS are currently under
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investigation.
We end by touching upon more strictly related work. Most of the proposals in

the literature result from the extension of some well-known process calculus with
constructs to describe QoS requirements. This is, for example, the case of cc-pi [9],
a calculus that generalises the explicit name ‘fusions’ of the pi-F calculus [44] to
‘named constraints’, namely constraints defined on enriched c-semiring structures.
Rather than on fusions of names, COWS relies on substitutions of variables with
values and can thus express also soft constraints by exploiting the simpler notion
of c-semiring. Moreover, COWS permits defining local stores of constraints while
cc-pi processes necessarily share one global store. A similar approach to SLAs
negotiation is proposed in [2], although it is based on fuzzy sets instead of constraints
and relies on three different languages, one for client requests, one for provider
descriptions and one for contracts creation and revocation. SLA compliance has
been also the focus of KoS [13] and Kaos [14], two calculi designed for modelling
network aware applications with located services and mobility. In both cases, QoS
parameters are associated to connections and nodes of nets, and operations have
a QoS value; the operational semantics ensures that systems evolve according to
SLAs. All the mentioned proposals aim at specifying and concluding SLAs, while
COWS permits also modelling other service-oriented aspects, such as e.g. service
publication, discovery and orchestration, fault and compensation handling, service
instances and interactions.

Integrations of the concurrent constraint paradigm with process calculi have
also been used to define foundational formalisms for computer music languages.
This is the case of the π+-calculus [15], an extension of the (polyadic) π-calculus
with constraint agents that can interact with a store of constraints by performing
‘tell’ and ‘ask’ actions. Differently from COWS, the store of constraints is not a
term of the calculus, indeed the operational semantics of π+-calculus is defined over
configurations consisting of pairs of an agent and a store, and local stores are not
supported.

A different approach to QoS is adopted in [37], where a stochastic extension
of COWS is presented to enable quantitative reasoning about service behaviours.
Specifically, COWS syntax and semantics are enriched along the lines of Markovian
extensions of process calculi [20], and then probabilistic verification is carried on by
using the PRISM probabilistic model checker.

There are also some other works that, differently from COWS, exploit static
service discovery mechanisms. For example, [3] introduces λreq, an extension of the
λ-calculus with primitive constructs for call-by-contract invocation. In particular,
an automatic machinery, based on a type system and a model-checking technique,
constructs a viable plan for the execution of services belonging to a given orchestra-
tion. Non-functional aspects are also included and enforced by means of a runtime
security monitor. In [30], user’s requests and compositions of web services are stat-
ically modelled via constraints. Finally, the calculi of contracts of [8] represent a
more abstract approach for statically checking compliance between the client re-
quirements and the service functionalities. A contract defines the possible flows of
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interactions of a service, but does not takes into account non-functional properties
and, thus, cannot be used for specifying and negotiating SLAs.
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