Robust optimization in simulation:
Taguchi and Response Surface Methodology

Gabriella Dellino\(^a\),*, Jack P.C. Kleijnen\(^a\), Carlo Meloni\(^b\)

\(^a\)Department of Information Management / CentER,
Faculty of Economics and Business Administration, Tilburg University,
Postbox 90153, 5000 LE Tilburg, Netherlands

\(^b\)Department of Electrical Engineering and Electronics, Polytechnic of Bari,
Via E. Orabona 4, 70125 Bari, Italy

Abstract

Optimization of simulated systems is tackled by many methods, but most methods assume known environments. This article, however, develops a ‘robust’ methodology for uncertain environments. This methodology uses Taguchi’s view of the uncertain world, but replaces his statistical techniques by Response Surface Methodology (RSM). George Box originated RSM, and Douglas Montgomery recently extended RSM to robust optimization of real (non-simulated) systems. We combine Taguchi’s view with RSM for simulated systems. We illustrate the resulting methodology through classic Economic Order Quantity (EOQ) inventory models, which demonstrate that robust optimization may require order quantities that differ from the classic EOQ.

Key words: Pareto frontier, bootstrap, Latin hypercube sampling

* Corresponding author.

Email addresses: G.Dellino@uvt.nl (Gabriella Dellino),
meloni@deemail.poliba.it (Carlo Meloni).

URL: http://center.uvt.nl/staff/kleijnen (Jack P.C. Kleijnen).

Preprint submitted to IJPE 17 July 2009
1 Introduction

The major purpose of this article is to present a methodology for robust simulation-optimization. Simulation is much applied in production economics. The goal of these simulations is often the optimization of the real production system being simulated. The resulting problem domain is called simulation optimization; this domain includes a variety of methodologies (see Fu, 2007).

Unfortunately, these methodologies ignore the fact that, in practice, some inputs of the given simulation model are uncertain so the optimum solution that is derived—ignoring these uncertainties—may be completely wrong. Therefore we derive our methodology, which combines (i) Taguchi’s view of the world, and (ii) RSM. The Taguchian worldview has been very successful in production engineering (see the references below). Nevertheless, statisticians have criticized Taguchi’s statistical techniques; see Nair (1992). (Our example shows that the classic EOQ and our robust EOQ differ nearly 25% if the managers are risk-averse.) Therefore Myers and Montgomery (1995) combine the Taguchian worldview with RSM; RSM has already built a track record in the ‘classic’ (non-robust) optimization of real-life (non-simulated) system.

We adapt Myers and Montgomery’s robust RSM to account for the particularities of simulation-optimization; i.e., whereas in real-life experiments it is hard to vary a factor over many values, this restriction does not apply in simulation experiments (we use Latin Hypercube Sampling (LHS), which has as many values per factor as it has combinations; see Section 4.2). So a change of mindset of the simulation experimenter is necessary; also see Kleijnen et al. (2005). Moreover, we further adapt Myers-Montgomery’s RSM; e.g., we add bootstrapping (a statistical technique), Mathematical Programming, and Pareto frontiers.

More precisely, RSM uses low-order polynomial regression metamodels (metamodels are also called response surfaces, surrogates, emulators, auxiliary mod-
els, repromodels, etc.). These metamodels run much faster than the—possibly computationally expensive—simulation models. RSM was introduced by Box and Wilson (1951) as an iterative heuristic for optimizing real (non-simulated) systems. RSM was further developed for robust optimization of such systems by Myers and Montgomery (1995). We use a less restrictive assumption; i.e., we replace Myers and Montgomery (1995, p. 493)'s assumption for the environmental variables e (namely $E(e) = 0$ and $\text{cov}(e) = \sigma^2_e \mathbf{I}$) by a more general and realistic assumption (namely, $E(e) = \mu_e$ and $\text{cov}(e) = \Omega_e$). When the noise factors do not have constant variances (so $\text{cov}(e) \neq \sigma^2_e \mathbf{I}$), then Myers and Montgomery (1995, p. 504) point out that confidence intervals for the robust optimum become complicated; to solve this problem, we use parametric bootstrapping. To find a ‘robust’ solution, Myers and Montgomery (1995, p. 504) superimpose contour plots for the mean and variance of the output, whereas we use more general and flexible Mathematical Programming, to minimize the mean output such that the output variance remains below a given threshold. Our Mathematical Programming approach, however, requires specification of threshold values that managers may find hard to quantify; we therefore try different values, and estimate the corresponding Pareto frontier showing a trade-off between the output and its variability. To estimate the variability of this Pareto frontier, we use bootstrapping. Our methodology has the following particularities. Simulation experiments (unlike real-life experiments) enable the exploration of many values per input and many combinations of these values; whereas Myers and Montgomery (1995, pp. 463–534) use only two values per environmental factor, we use LHS. Instead of the F lack-of-fit test used in classic and robust RSM, we use leave-one-out cross-validation. Notice that we assume that the decision variables are continuous (like Myers and Montgomery (1995, p. 486) do).

In practical applications, simulation may be computationally expensive; e.g., a single run took 36 to 160 hours of computer time to simulate a crash model at
Ford; see Simpson et al. (2004). In such applications, the extra computer time needed for fitting RSM metamodels, followed by bootstrapping and Mathematical Programming is negligible. We illustrate our methodology through a simple simulation model, namely the EOQ model. Our choice has several advantages: it saves much computer time; its results can be verified through the analytical EOQ solution (in practice, simulation is used because there is no known analytical solution); yet this EOQ simulation enables us to illustrate some details of our methodology. (The EOQ model is closely related to the Economic Production Quantity or EPQ; see Darwish (2008). The EOQ model is also a building block for realistic supply chain simulations.)

The rest of this article is organized as follows. Section 2 summarizes Taguchi’s worldview. Section 3 summarizes and extends Myers and Montgomery (1995)’s approach that uses RSM for robust optimization. Section 4 illustrates our new methodology through the classic EOQ simulation. Section 5 presents our conclusions and possible topics for future research. Our online companion paper, Dellino et al. (2008), gives more details and additional references enabling further study of robust simulation-optimization.

2 Taguchi’s worldview

Based on Kleijnen (2008, pp. 130–137), we summarize the extensive literature on Taguchi’s view as follows. Taguchi distinguishes between two types of variables: (i) decision (or control) factors, which we denote by d_j ($j = 1, \ldots, k$), and (ii) environmental (or noise) factors, e_g ($g = 1, \ldots, c$). Taguchi assumes a single output (say) w. He focusses on the mean and the variance of this output. By definition, the decision factors are under the control of the users; e.g., in inventory management, the Order Quantity (OQ) is controllable. The environmental factors are not controlled by the users; e.g., in inventory management, the demand rate may not be controllable.
In this article, we use Taguchi’s view, but not his statistical methods; instead we use RSM. Our main reason is that simulation experiments enable the exploration of many more factors, factor levels, and combinations of factor levels than real-life (physical) experiments do. Moreover, we do not use a scalar Taguchian loss function such as the signal-to-noise or mean-to-variance ratio; instead we allow each output to have a statistical distribution, which we characterize through its mean and standard deviation. We solve the resulting problem through the Pareto-optimal efficiency frontier—briefly called the Pareto frontier. Also see Beyer and Sendhoff (2007), Lee and Nelder (2003), Myers and Montgomery (1995, p. 491), Park et al. (2006), Wu et al. (2009); the latter authors focus on the mean-variance trade-off in the newsvendor’s inventory problem.

3 RSM and robust optimization

In their robust RSM Myers and Montgomery (1995) use a polynomial of a degree as low as possible. They fit a second-order polynomial for the decision factors \(d_j \), to estimate the optimal combination of these factors. To model possible effects of the environmental factors \(e_g \), they fit a first-order polynomial for these factors. To estimate interactions between the two types of factors, they fit ‘control-by-noise’ two-factor interactions. Altogether, they fit:

\[
y = \beta_0 + k\sum_{j=1}^{k}\beta_j d_j + \sum_{j=1}^{k}\sum_{j'\geq j}^{k}\beta_{j,j'} d_j d_{j'} + \sum_{g=1}^{c}\gamma_j e_j + \sum_{j=1}^{k}\sum_{g=1}^{c}\delta_{j,g} d_j e_g + \epsilon
\]

\[
= \beta_0 + \beta' d + d' B d + \gamma' e + d' \Delta e + \epsilon,
\]

where \(y \) denotes the regression predictor of the output \(w \), \(\epsilon \) the residual with \(E(\epsilon) = 0 \) if this metamodel has no lack of fit and with constant variance \(\sigma_\epsilon^2 \), \(\beta = (\beta_1, \ldots, \beta_k)' \), \(d = (d_1, \ldots, d_k)' \), \(B \) denotes the \(k \times k \) symmetric matrix with main-diagonal elements \(\beta_{j,j} \) and off-diagonal elements \(\beta_{j,j'}/2 \),
\(\gamma = (\gamma_1, \ldots, \gamma_c)' \), \(e = (e_1, \ldots, e_c)' \), and \(\Delta = (\delta_{jg}) \).

Design Of Experiments (DOE) uses coded—also called standardized or scaled—factor values (say) \(x_j \). So the experiment consists of \(n \) factor combinations of the ‘original’ factors (say) \(z_j \), which correspond with \(d_j \) and \(e_g \) in (1). Coding is also discussed in Kleijnen (2008, p. 29).

Myers and Montgomery (1995, p. 493) assume that the environmental variables satisfy \(E(e) = 0 \) and \(\text{cov}(e) = \sigma_e^2 I \). We, however, use the more general and realistic assumption \(E(e) = \mu_e \) and \(\text{cov}(e) = \Omega_e \). Analogous to Myers and Montgomery (1995), we then derive that this metamodel (1) implies the regression predictor for the true mean \(E(w) \)

\[
E(y) = \beta_0 + \beta' d + d' B d + \gamma' \mu_e + d' \Delta \mu_e
\]

(2)

and the regression predictor for the true variance \(\text{var}(w) \)

\[
\text{var}(y) = (\gamma' + d' \Delta) \Omega_e (\gamma + \Delta' d) + \sigma_e^2 = l' \Omega_e l + \sigma_e^2
\]

(3)

where in (3) \(l = (\gamma + \Delta' d) = (\partial y/\partial e_1, \ldots, \partial y/\partial e_c)' \); i.e., \(l \) is the gradient with respect to the environmental factors—which follows directly from (1). So, the larger the gradient’s elements are, the larger the predicted variance of the simulation output is—which stands to reason. Furthermore, if \(\Delta = 0 \) (no control-by-noise interactions), then \(\text{var}(y) \) cannot be controlled through the control variables \(d \). Notice the difference between the predicted variance, \(\text{var}(y) \), and the variance of the predictor, \(\text{var}(\hat{y}) \) with \(\hat{y} = \zeta' x \); see (4) and (5) below.

Equation (3) implies that the predicted output \(y \) has heterogeneous variances, because changing the control factors \(d \) changes \(\text{var}(y) \) (heterogeneous variances arise even if \(\text{cov}(e) = \sigma_e^2 I \)). If a particular decision factor has no effects on the mean output but has important interactions with the noise factors, then
these interactions can be utilized to decrease the output variance. If there are multiple decision factors (unlike our EOQ example), then we first select the values of some decision factors such that $1 = 0$, so $\text{var}(y)$ in (3) is minimized; next we select the remaining decision factors such that the predicted mean output $E(y)$ in (2) gets the desired threshold value. For more details we refer to Myers and Montgomery (1995, p. 494).

Myers and Montgomery (1995, p. 495) also discuss constrained optimization, which minimizes (e.g.) the variance in (3) subject to a constraint on the mean in (2). To select an appropriate compromise or ‘robust’ solution, those authors often superimpose contour plots for the mean and variance. We, however, shall use Mathematical Programming, because it is more general and flexible.

To estimate the unknown (regression) parameters in (1) we reformulate (1) as the following linear regression model:

$$y = \zeta'x + \epsilon$$

with $\zeta = (\beta_0, \beta, b, \gamma, \delta)'$ where b denotes the vector with the $k \times (k - 1)/2$ interactions between the decision factors plus their k purely quadratic effects, and δ denotes the $k \times c$ control-by-noise interactions; x is defined in the obvious way; e.g., the element corresponding with the interaction effect $\beta_{1,2}$ is d_1d_2. Note that (4) is linear in the regression parameters ζ, whereas (1) is not linear in the decision variables d. Then (4) gives the Least Squares (LS) estimator

$$\hat{\zeta} = (X'X)^{-1}X'w$$

where X is the $n \times q$ matrix of explanatory variables with n denoting the number of scenarios (combinations of decision and environmental factors) determined by DOE that are actually simulated, and q denotes the number of parameters collected in ζ; w consists of the n simulation outputs. The covari-
The covariance matrix of this estimator is

$$\text{cov}(\hat{\zeta}) = (X'X)^{-1}\sigma_w^2.$$ \hfill (6)

The RSM metamodel (1) implies that σ_w^2 equals σ_ϵ^2. This variance is estimated
by the Mean Squared Residuals (MSR)

$$MSR = \frac{(\hat{y} - w)'(\hat{y} - w)}{n - q}$$ \hfill (7)

where $\hat{y} = \hat{\zeta}'x$; also see Kleijnen (2008, p. 23).

Furthermore, we assume that y is normally distributed; i.e., e and ϵ in (1) are normally distributed. We can then test the estimated regression parameters $\hat{\zeta}_j$ through the following t statistic with $n - q$ degrees of freedom:

$$t_{n-q} = \frac{\hat{\zeta}_j - \zeta_j}{s(\hat{\zeta}_j)} \text{ with } j = 1, \ldots, q$$ \hfill (8)

where $s(\hat{\zeta}_j)$ is the square root of the j^{th} element on the main diagonal of (6) with σ_w^2 estimated through (7). Myers and Montgomery (1995, p. 488) keep only the significant effects in their response model. It is well-known that this test is not very sensitive to nonnormality. We agree that when estimating the robust optimum, we should use the reduced metamodel, which eliminates all non-significant effects in the full model—except for those non-significant effects that involve factors that have significant higher-order effects; see the ‘strong heredity’ assumption in Wu and Hamada (2000). For example, if the estimated main effect $\hat{\beta}_1$ is not significant but the estimated quadratic effect $\hat{\beta}_{1:1}$ is, then $\hat{\beta}_1$ is not set to zero.

when the noise factors do not have constant variances. We shall therefore use parametric bootstrapping in the EOQ examples; by definition, parametric bootstrapping assumes that the distribution of the relevant random variable is known; e.g., in the EOQ examples, the distribution of the unknown demand rate is modified normal (to avoid negative demand rates). In general, bootstrapping is a simple numerical method for obtaining the Estimated Density Function (EDF) of a—possibly complicated—statistic for a—possibly non-Gaussian—parent distribution; e.g., our Mathematical Programming solution (output) of the EOQ problem is non-normal, and the input distribution is modified normal. Also see Efron and Tibshirani (1993), and Kleijnen (2008, p. 86).

Like Myers and Montgomery (1995, p. 495) we simply plug in the LS estimators (5) for β_0, β, B, γ, and Δ in the right-hand side of (2); the factors d and μ_e are known. To estimate (3), we again plug in the estimators for γ, Δ, and σ^2_e; Ω_e is known. However, we point out that (3) has products of unknown parameters, so it implies a nonlinear estimator $\hat{\sigma}_y$. Plugged-in estimators certainly create bias; this bias we ignore when estimating the Pareto frontier that balances \hat{y} and $\hat{\sigma}_y$. To study the variability of this estimated Pareto frontier caused by estimating the regression parameters, we use bootstrapping.

Analogous to Myers and Montgomery (1995, pp. 41–54) we wonder whether the RSM model (1) adequately approximates the true Input/Output (I/O) function implicitly defined by the underlying simulation model. There are several methods for answering this question; see Kleijnen (2008, p. 54). Following Kleijnen (2008, p. 57), we use leave-one-out cross-validation:

Step 1: Delete I/O combination i from the complete set of n combinations, to obtain (X_{-i}, w_{-i}). Assume that X_{-i} is not collinear; a necessary condition is $n > q$.
Step 2: Recompute the LS estimator from the I/O data in Step 1:

\[\hat{\zeta}_{-i} = (X'_{-i}X_{-i})^{-1}X'_{-i}w_{-i}. \] \hspace{1cm} (9)

Step 3: Use \(\hat{\zeta}_{-i} \) from Step 2 to compute \(\hat{y}_{-i} \), the regression predictor of the simulation output generated by \(x_i \) which is the simulation input of the combination deleted in Step 1:

\[\hat{y}_{-i} = x'_i \hat{\zeta}_{-i}. \] \hspace{1cm} (10)

Step 4: Repeat the preceding three steps, until all \(n \) combinations have been processed. This gives \(\hat{y}_{-i} \) \((i = 1, \ldots, n)\).

Step 5: To judge whether the metamodel is adequate, use a scatterplot with the \(n \) pairs \((w_i, \hat{y}_{-i})\).

Step 6: Because the scaling of this scatterplot may give the wrong impression, also evaluate the relative prediction errors \(y_{(-i)}/w_i \).

Step 7: Examine the recomputed effects \(\hat{\zeta}_{-i} \) \((i = 0, 1, \ldots, n)\) where \(\hat{\zeta}_{-0} \) denotes the estimator when zero combinations are deleted (so \(\hat{\zeta}_{-0} = \hat{\zeta} \)); these effects should not change much if the regression model is adequate.

The final goal of our robust optimization is to minimize the estimated mean \(\hat{y} \) while keeping the estimated standard deviation \(\hat{\sigma}_y \) below a given Threshold (say) \(T \). We solve this constrained minimization problem through a Mathematical Programming solver. We decide to use Matlab’s \texttt{fmincon}, but a different solver may be used; Gill et al. (2000). This gives the values of the ‘estimated robust decision variables’ (say) \(\hat{d}^{\dagger} \) and the corresponding estimated mean \(\hat{y} \) and standard deviation \(\hat{\sigma}_y \). Next, we vary the threshold value \(T \) (say) 100 times. These changes may give different solutions \(\hat{d}^{\dagger} \) with their corresponding \(\hat{y} \) and \(\hat{\sigma}_y \). These pairs \((\hat{y}, \hat{\sigma}_y)\) enable us to estimate the Pareto frontier. We estimate the variability of this frontier through bootstrapping of the estimated regression estimates that gave \(\hat{y} \) and \(\hat{\sigma}_y \). This methodology is illustrated in the
4 EOQ inventory simulation

The EOQ inventory model is often used in practical supply chain management. First, we define this model, including symbols and assumptions; also see Pentico, Drake, and Toews (2009) and Teng (2008). We use the following assumptions, following Zipkin (2000, pp. 30-39): (i) The demand is a constant \(a \) units per time unit. (ii) The order quantity is \(Q \) units. (iii) No shortages are allowed. (iv) Delivery lead time is zero. (v) Review is continuous. (vi) Total costs consist of setup cost per order, \(K \); cost per unit purchased or produced, \(c \); holding cost per inventory unit per time unit, \(h \). The goal is to minimize the costs per time unit (say) \(C \), over an infinite time horizon. It is easy to derive that this problem has the following true I/O function, which we shall use to check our simulation results:

\[
C = \frac{aK}{Q} + ac + \frac{hQ}{2}.
\]

(11)

Differentiation of (11) shows that the true EOQ is

\[
Q_o = \sqrt{\frac{2aK}{h}},
\]

(12)

and the corresponding cost is

\[
C_o = C(Q_o) = \sqrt{2aKh} + ac.
\]

(13)

In our illustration we use the parameter values in a famous textbook; namely, Hillier and Lieberman (2001, pp. 936–937, 942–943): \(a = 8000 \), \(K = 12000 \), \(c = 10 \), and \(h = 0.3 \); such a high cost \(K \) argues for buying products in large batches, leading to orders approximately placed once every three periods (for
further comments see Hillier and Lieberman, 2001). So (12) gives \(Q_o = 25298 \) and (13) gives \(C_o = 87589 \). (We also run another numerical example with a smaller ratio between the ordering cost coefficient \(K \) and the unit holding cost coefficient \(h \); namely, an example from Chase et al. (2006) with \(a = 1040, K = 10, c = 15, h = 2.50 \). For this example the benefits of the robust optimal solution are even more evident; e.g., if the manager is risk averse, then the robust optimum differs approximately 25% from the estimated classic optimum, and the corresponding mean cost differs approximately 57% from the estimated classic cost.)

4.1 Classic simulation optimization of the EOQ model

We start the simulation run with an inventory of \(Q \) units. Our simulation experiment consists of the following four steps.

Step 1 (design): To select the experimental area, we start with the interval \([0.5Q_o, 1.5Q_o]\). This selection, however, would imply that the midpoint coincides with the true optimum input \(Q_o = 25298 \). We therefore shift the interval a little bit (namely, by less than 5000 units) to the right so that it is centered at \(Q = 30000 \). Furthermore, we pick five equally spaced points, including the extreme points; namely, the lowest point \(0.5 \times 30000 = 15000 \) and the highest point \(1.5 \times 30000 = 45000 \); see row 1 of Table 1. The input parameters are fixed to their base (nominal) values \((a = 8000, \text{ etc.}) \). Note that a Central Composite Design (CCD), which is popular in RSM, would also have five points—albeit not equally spaced; see Dellino et al. (2008) and Myers and Montgomery (1995, p. 55).

Step 2 (simulation model): Simulation gives \(C(Q_i) = C_i \), the cost corresponding with input value \(i \) \((i = 1, \ldots, 5) \) selected in Step 1; see the I/O combinations \((Q_i, C_i) \) displayed in Table 1.

Step 3 (RSM metamodel): Based on the I/O data resulting from Steps 1 and
Table 1

I/O data of EOQ simulation

<table>
<thead>
<tr>
<th>Q</th>
<th>15000</th>
<th>22500</th>
<th>30000</th>
<th>37500</th>
<th>45000</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>88650</td>
<td>87641.66</td>
<td>87700</td>
<td>88185</td>
<td>88883.34</td>
</tr>
</tbody>
</table>

Table 2

Cross-validation of EOQ regression metamodel

<table>
<thead>
<tr>
<th>i</th>
<th>(\hat{\beta}_0(-i))</th>
<th>(\hat{\beta}_1(-i))</th>
<th>(\hat{\beta}_{1:1}(-i))</th>
<th>(\hat{y}(-i))</th>
<th>(\hat{y}(-i)/C_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>87663.4257</td>
<td>202.004</td>
<td>1097.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>87731.998</td>
<td>522.008</td>
<td>640</td>
<td>87849.94</td>
<td>0.991</td>
</tr>
<tr>
<td>2</td>
<td>87769.82</td>
<td>139.94</td>
<td>1008.49</td>
<td>87952.11</td>
<td>1.004</td>
</tr>
<tr>
<td>3</td>
<td>87628.88</td>
<td>202.004</td>
<td>1137.79</td>
<td>87628.92</td>
<td>0.999</td>
</tr>
<tr>
<td>4</td>
<td>87583.63</td>
<td>155.46</td>
<td>1163.64</td>
<td>87951.95</td>
<td>0.997</td>
</tr>
<tr>
<td>5</td>
<td>87603.997</td>
<td>479.34</td>
<td>1493.34</td>
<td>89576.98</td>
<td>1.008</td>
</tr>
</tbody>
</table>

When we apply a second-order polynomial. We focus on the effects of the coded decision variable, because the resulting effects (say) \(\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_{1:1})'\) show the relative importance of the intercept, the main effect, and the quadratic effect; moreover, their numerical accuracy is better. This \(\hat{\beta}\) is displayed in the row with \(i = 0\) in Table 2.

Step 4 (cross-validation): The remaining rows of Table 2 display the re-estimated regression parameters following from (9), and the re-estimated regression prediction following from (10). This table also presents the relative prediction errors \(\hat{y}(-i)/C_i\), which supplement the scatterplot in Figure 1. The first four columns of Table 2 show that the estimated regression coefficients remain more or less the same.

Fig. 1. Scatterplot for regression metamodel of EOQ simulation model

When we apply the \(t\) statistic defined in (8), we see that the estimated main effect is not significantly different from zero; the estimated quadratic effect \(\hat{\beta}_{1:1}\) is. Because of the ‘strong heredity’ assumption discussed below (8), we do not replace the estimated main effect by zero. Notice that the estimated effects are not independent, because \((X'X)^{-1}\) in (6) is not diagonal.
The estimated optimum (say) \hat{Q}_o follows from the first-order optimality condition $\partial \hat{C}/\partial Q = \hat{\beta}_1 + 2\hat{\beta}_{1,1}x_1 = 0$, where x_1 is the coded variable corresponding with Q. This condition gives $\hat{Q}_o = 28636$. This \hat{Q}_o gives the estimated minimal cost $\hat{C}_o = 87654$. In this simple example, we can verify the estimated optimum: $\hat{Q}_o/Q_o = 28636/25298 = 1.13$ and $\hat{C}_o/C_o = 87654/87589 = 1.001$ so the cost virtually equals the true minimum, even though the input is 13% off. This illustrates the well-known insensitivity property of the classic EOQ formula.

We also experiment with a smaller experimental area; i.e., a smaller Q range. The Taylor series suggests that this smaller area gives a better approximation. The smaller Q range indeed gives a more accurate metamodel; the resulting estimated optimum is only 1% below the true EOQ and the corresponding cost virtually equals the true cost; see Dellino et al. (2008).

4.2 Robust optimization of the EOQ model

In this subsection, we still assume that the demand per time unit is a constant a but this constant is unknown. Uncertainty in parameters of inventory management is addressed in Borgonovo and Peccati (2007) and Yu (1997). We assume—without loss of generality—that a has a Normal (Gaussian) distribution with mean μ_a and standard deviation σ_a: $a \sim N(\mu_a, \sigma_a)$. Furthermore, we assume that μ_a denotes the ‘base’ value used in the classic simulation-optimization in Section 4.1 (so $a = 8000$), and σ_a quantifies the uncertainty about the true value of this input parameter. We experiment with a ‘low’ and ‘high’ uncertainty: $\sigma_a = 0.10\mu_a$ and $\sigma_a = 0.50\mu_a$. Because these standard deviations can give a negative value for a, we resample until we get non-negative values only; i.e., we adjust the normal distribution slightly. This adjustment, however, is ignored in our further analysis.
In their robust RSM, Myers and Montgomery (1995, pp. 463–534) use only two values per environmental factor; this suffices to estimate its main effect and its interactions with the decision factors. We, however, use LHS to select (say) $n_e = 5$ values for the environmental factor because LHS is popular in risk and uncertainty analysis (see Kleijnen (2008)). In our EOQ example, we split the range of possible a values ($0 < a < \infty$) into five equally likely subranges. We use \texttt{lhsnorm} from the Matlab Statistics Toolbox to select these five values from $N(\mu_a, \sigma_a)$; see The Mathworks Inc. (2005) and the first row in Table 3, which uses the relatively high uncertainty $\sigma_a = 0.50 \mu_a$. Results for the smaller uncertainty $\sigma_a = 0.10 \mu_a$ are presented in Dellino et al. (2008).

For the decision variable Q we select the five values that we also used in Table 1; see the first column in Table 3. We cross the two designs for a and Q respectively, as is usual in a Taguchian approach. (Nevertheless, we could also have used LHS to get a combined design for a and Q. Dellino et al. (2008) use a CCD instead of LHS to get a combined design. Myers and Montgomery (1995, p. 487) also discuss designs that are more efficient than crossed designs.)

We run the EOQ simulation model for all 5×5 combinations of the inputs (decision and environmental inputs), which gives the other entries of Table 3.

To analyze the I/O data of Table 3, we might compute the estimated conditional variance $\hat{\text{var}}(\widetilde{C}|Q_i)$ from the row with Q_i ($i = 1, \ldots, 5$); also see Lee and Nelder (2003). Instead we follow Myers and Montgomery (1995) and

<table>
<thead>
<tr>
<th>$Q \backslash a$</th>
<th>4530.34</th>
<th>5478.85</th>
<th>7687.37</th>
<th>9329.26</th>
<th>11559.02</th>
</tr>
</thead>
<tbody>
<tr>
<td>15000</td>
<td>51177.72</td>
<td>61421.54</td>
<td>85273.65</td>
<td>103006.0</td>
<td>127087.4</td>
</tr>
<tr>
<td>22500</td>
<td>51094.63</td>
<td>61085.52</td>
<td>84348.68</td>
<td>101643.2</td>
<td>125130.0</td>
</tr>
<tr>
<td>30000</td>
<td>51615.59</td>
<td>61480.0</td>
<td>84448.7</td>
<td>101524.3</td>
<td>124713.8</td>
</tr>
<tr>
<td>37500</td>
<td>52378.16</td>
<td>62166.7</td>
<td>84958.71</td>
<td>101902.9</td>
<td>124914.1</td>
</tr>
<tr>
<td>45000</td>
<td>53261.54</td>
<td>62999.49</td>
<td>85673.71</td>
<td>102530.4</td>
<td>125422.6</td>
</tr>
</tbody>
</table>
estimate the variance from all the elements in this table, using (3). The latter approach gives a better estimator, provided the RSM metamodel (1) is correct.

To compute the LS estimates in the RSM model, we must re-arrange the 5×5 elements of Table 3 into the $n \times q$ X-matrix of (5) with $n = 25$ and $q = 5$; w is the vector with the 25 simulation outputs C. This gives the estimated intercept $\hat{\beta}_0 = 88150.40$, the estimated first-order effect $\hat{\beta}_1 = 190.56$ and the second-order effect $\hat{\beta}_{1;1} = 1058.33$ of Q, the estimated first-order effect $\hat{\gamma}_1 = 36774.03$ of a, and the interaction $\hat{\delta}_{1;1} = -899.67$. Dellino et al. (2008) also display the cross-validation results (analogous to Table 2) and the scatterplot (analogous to Figure 1). Their results suggest that this metamodel is adequate for robust optimization through RSM. To verify the negative sign of $\hat{\delta}_{1;1}$ (this estimate is -899.67), we use the analytical solution (11) to derive $\partial^2 C / \partial Q \partial a = -K/Q^2$, which is indeed negative.

Using a similar RSM metamodel for their example, Myers and Montgomery (1995, p. 501) derive contour plots for the mean and variance. Because our EOQ example has a single decision variable, we do not superimpose contour plots but present Figures 2 and 3. Figure 2 shows the (Q, \hat{C}) plot; Fig. 3 shows the $(Q, \hat{\sigma}_C)$ plot. We prefer to use the standard deviation instead of the variance, because the former uses the same scale as the simulated cost C and its regression estimate \hat{C}. We use (3) with γ, Δ, and σ^2_ε replaced by their estimates, including (7). This figure shows a second-order polynomial that resembles a
linearly decreasing function in the relatively small domain of \(Q \). For this simple example we know the true I/O function of the simulation model—namely (11)—so we derive the true standard error of the cost \(C \):

\[
\sigma_C = \sigma \left(\frac{aK}{Q} + ac + \frac{hQ}{2} \right) = \sigma \left(\frac{hQ}{2} + \left[\frac{K}{Q} + c \right] a \right) = \left(\frac{K}{Q} + c \right) \sigma_a = c \sigma_a + \frac{K \sigma_a}{Q}.
\]

(14)

We also plot this \(\sigma_C \) against \(Q \) in Figure 3. Comparing the two curves in this figure, we conclude that the estimated curve is an adequate approximation.

From Figures 2 and 3 we derive the ‘estimated robust optimal’ order quantity (say) \(\hat{Q}^+ \), which we define as the quantity that minimizes the estimated mean \(\hat{C} \) while keeping the estimated standard deviation \(\hat{\sigma}_C \) below a given threshold \(T \). We solve this constrained minimization problem through Matlab’s \texttt{fmincon}. For example, if \(T = 42500 \), then Figure 3 implies \(\hat{Q}^+ = 28568 \). However, when \(T \) becomes smaller (e.g., \(T = 41500 \)) then Figure 3 implies \(\hat{Q}^+ = 35222 \); see Figure 4, in which the curve becomes a horizontal line with ‘height’ \(\hat{Q}^+ \) if the threshold is high enough.

Fig. 4. Estimated robust optimal value for EOQ against threshold for standard deviation of cost.

Section 4.1 gave the classic estimated EOQ—namely \(\hat{Q}_o = 28636 \)—assuming that the demand rate equals the nominal value. Now we assume different demand rates. The corresponding model gives an estimated optimal order quantity \(\hat{Q}^+ \) that differs from \(\hat{Q}_o \). This difference is nearly 25% if the managers are risk-averse (low threshold \(T \)).

We assume that management cannot give a single, fixed value for the threshold. Therefore we vary the threshold over the interval \([41067, 43200]\). This interval gives the estimated Pareto frontier in Figure 5. This figure demonstrates that if management prefers low costs variability, then they must pay a price; i.e., the expected cost increases.
Fig. 5. Estimated Pareto frontier for EOQ simulation with threshold for standard deviation of cost

We repeat the experiment with a smaller σ_a, which implies a less volatile environment. Some reflection shows that we cannot keep the threshold values T the same in environments with different magnitudes of volatility. The new threshold values give a new estimated Pareto frontier. Dellino et al. (2008) report that a less volatile world gives lower mean cost. Their result quantifies the benefits of obtaining more information on the uncertain demand rate; e.g., such information may be provided by a marketing survey that decreases σ_a.

The estimated Pareto frontier is built on estimates only; namely $\hat{\zeta}$ using (5). We therefore analyze this frontier further. Whereas Myers and Montgomery (1995, pp. 496-503) use rather complicated confidence intervals, we use parametric bootstrapping. So we sample (say) B times from the q-variate normal distribution with mean vector and covariance matrix given by (5) and (6), where we use the superscript * for bootstrapped values:

$$\hat{\zeta}^* \sim N_q(\hat{\zeta}, (\mathbf{X}'\mathbf{X})^{-1}\hat{\sigma}^2_w).$$ \hspace{1cm} (15)

This sampling gives $\hat{\zeta}_b^*$ with $b = 1, \ldots, B$. This $\hat{\zeta}_b^*$ gives \hat{C}_b^*; see (2) with the regression parameters replaced by their bootstrapped estimates computed from the bootstrapped \hat{C}_b. It also gives $\hat{\sigma}_{\hat{C}_b^*}$; see (3) where $\hat{\sigma}^2$ is replaced by the estimate computed from the bootstrapped parameters. These two bootstrapped variables \hat{C}_b^* and $\hat{\sigma}_{\hat{C}_b^*}$ give the bootstrapped optimal decision variable \hat{Q}_b^{**}, computed through Matlab’s fmincon. This bootstrap sample gives the B estimated Pareto frontiers of Figure 6, with $B = 50$ and the true Pareto frontier derived from the analytical costs (11) and its standard deviation (14), and the original estimated frontier of Figure 5. Figure 6 demonstrates that bootstrapping gives a good idea of the variability of the estimated Pareto frontier; the bundle of bootstrapped curves ‘envelop’ the original estimated curve and the
true curve. The bundle of bootstrapped estimated costs does not completely envelop the true curve; neither does the bundle for the bootstrapped standard deviations; see Figures 7 and 8.

Fig. 6. Bootstrapped Pareto frontiers, original estimated frontier (dashed curve), and true frontier (heavy curve)

Fig. 7. Bootstrapped estimated costs, and true cost (heavy curve)

Fig. 8. Bootstrapped standard deviations of the cost, and true standard deviation of the cost (heavy curve)

Besides the crossed design for \(Q \) and \(a \) Dellino et al. (2008) also use a CCD. They report that the CCD with its \(n = 9 \) combinations gives a better estimate of the true frontier than the \(5 \times 5 \) crossed-design does. We conjecture that the bigger (crossed) design gives a more accurate estimator \(\hat{\zeta} \) of the wrong (misspecified) metamodel (namely, a second-order polynomial) for the true I/O function implied by the EOQ simulation model; see (11).

5 Conclusions and future research

This article leads to the following conclusions. Robust optimization of simulated systems may use Taguchi’s worldview, which distinguishes between decision variables to be optimized and environmental variables that remain uncertain but do affect the optimum. However, Taguchi’s statistical techniques may be replaced by RSM. Myers and Montgomery (1995)’s RSM for Taguchian optimization may be further adapted through bootstrapping, which better enable management to make the final compromise decision. Application of this new methodology to the classic EOQ model shows that—for a known
environment—the methodology gives a good estimate of the true EOQ, and—for an environment with a demand rate that has a known distribution—the classic EOQ and the robust EOQ differ.

Future research may address the following issues. We conjectured that the bigger crossed design gave a more accurate LS estimator $\hat{\zeta}$ of a misspecified metamodel. This is a good reason for using a different type of metamodel, namely Kriging models (Generalized Linear Models or GLMs are proposed by Lee and Nelder (2003)) as alternatives for RSM models. In a next article we shall present Kriging for robust optimization. Furthermore, we shall adjust our methodology for discrete-event simulation models that have so-called aleatory uncertainty; we focus on (s, S) models, with either explicit out-of-stock costs resulting in scalar output or a service constraint resulting in vector output (the difference $S - s$ is often based on the EOQ model)); this adjustment includes a switch from parametric bootstrapping to nonparametric (distribution-free) bootstrapping. Finally, we hope to apply our methodology to complex supply chain models (also see Hassini (2008)).

Acknowledgements

Carlo Meloni wishes to thank CentER for the financial support when he visited Tilburg University. We thank Wim van Beers (Tilburg University) for helpful discussions on our research.

We thank the two anonymous reviewers for their valuable comments on two preceding versions, which lead to the present paper.
References

Nair, V.N., editor (1992), Taguchi’s parameter design: a panel discussion. Technometrics, 34, no. 2, pp. 127–161

The MathWorks Inc. (2005), *Statistics Toolbox*, Natick, Massachusetts

Wu, J., J. Li, S. Wang and T.C.E. Cheng (2009), Mean-variance analysis of the newsvendor model with stockout cost *Omega*, 37, no. 3, pp. 724–730

Vitae

Dellino graduated cum laude in Computer Science Engineering at the Politecnico di Bari, in 2005. In 2009 she got a Ph.D. in Applied Mathematics from the University of Bari. She took part in research projects funded by academic organizations and companies. Her main research interests are optimization models and methods, computer simulation methodologies, and Multidisciplinary Design Optimization. She is a member of INFORMS. In 2008 she has been visiting the CentER Graduate School, at Tilburg University.

Kleijnen is Professor of ‘Simulation and Information Systems’ at Tilburg University. He is a member of the ‘Department of Information Management’ and the ‘Operations Research’ group of CentER. His research concerns simulation (especially its statistical design and analysis), information systems, and supply chains. He has been a consultant for several organizations in the USA and Europe. He serves on many international editorial boards and scientific committees. He spent some years in the USA, at universities and private companies. He received a number of national and international awards, including a Knight-hood in the Order of the Netherlands Lion in 2008 and the INFORMS Simulation Society’s Lifetime Professional Achievement Award (LPAA) in 2005. More details are given on his website (http://center.uvt.nl/staff/kleijnen/).
Meloni got a Ph.D. in Operations Research from La Sapienza University of Rome in 2000. Then he joined the Università degli Studi Roma Tre as postdoctoral fellow in Operations Research. In July 2002 he became Assistant Professor of Systems Engineering at the Politecnico di Bari. He participated in several research projects funded by various academic organizations and companies. His main research interests concern applications of optimization and other OR/MS methodologies to Multidisciplinary Systems Design, Supply Chain Management, Advanced Planning & Scheduling, and Health Care Service Operations Management. He presented his research at several international conferences, and published in various international journals. He is a member of the Italian Society of Operations Research (AIRO) and INFORMS.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 8