%N 10 %R doi:10.1109/TAC.2014.2324111 %J IEEE Transactions on Automatic Control %A Stefano Di Cairano %A W.P.M.H. Heemels %A Mircea Lazar %A Alberto Bemporad %K Asymptotic stability; Closed loop systems; Lyapunov methods; Optimal control; Optimization; Systematics %D 2014 %L eprints2260 %X This paper proposes a dynamic controller structure and a systematic design procedure for stabilizing discrete-time hybrid systems. The proposed approach is based on the concept of control Lyapunov functions (CLFs), which, when available, can be used to design a stabilizing state-feedback control law. In general, the construction of a CLF for hybrid dynamical systems involving both continuous and discrete states is extremely complicated, especially in the presence of non-trivial discrete dynamics. Therefore, we introduce the novel concept of a hybrid control Lyapunov function, which allows the compositional design of a discrete and a continuous part of the CLF, and we formally prove that the existence of a hybrid CLF guarantees the existence of a classical CLF. A constructive procedure is provided to synthesize a hybrid CLF, by expanding the dynamics of the hybrid system with a specific controller dynamics. We show that this synthesis procedure leads to a dynamic controller that can be implemented by a receding horizon control strategy, and that the associated optimization problem is numerically tractable for a fairly general class of hybrid systems, useful in real world applications. Compared to classical hybrid receding horizon control algorithms, the proposed approach typically requires a shorter prediction horizon to guarantee asymptotic stability of the closed-loop system, which yields a reduction of the computational burden, as illustrated through two examples. %I IEEE %V 59 %P 2629 -2643 %T Stabilizing dynamic controllers for hybrid systems: a hybrid control Lyapunov function approach