
State Space c-Reductions of Concurrent Systems
in Rewriting Logic

Alberto Lluch Lafuente1, José Meseguer2, and Andrea Vandin1

1 IMT Institute for Advanced Studies Lucca, Italy
2 University of Illinois in Urbana-Champaign, USA

Abstract. We present c-reductions, a state space reduction technique.
The rough idea is to exploit some equivalence relation on states (possibly
capturing system regularities) that preserves behavioral properties, and
explore the induced quotient system. This is done by means of a can-
onizer function, which maps each state into a (non necessarily unique)
canonical representative of its equivalence class. The approach exploits
the expressiveness of rewriting logic and its realization in Maude to enjoy
several advantages over similar approaches: flexibility and simplicity in
the definition of the reductions (supporting not only traditional symmetry
reductions, but also name reuse and name abstraction); reasoning support
for checking and proving correctness of the reductions; and automati-
zation of the reduction infrastructure via Maude’s meta-programming
features. The approach has been validated over a set of representative
case studies, exhibiting comparable results with respect to other tools.

1 Introduction

State space reduction techniques have been extensively investigated since
the birth of automated verification and have contributed to their success by
enhancing the performance of tools and allowing for the analysis of larger and
larger systems. The most prominent case is probably that of model checking [1],
where techniques such as abstract interpretation, partial order reduction, and
symmetry reduction allow to consider smaller though equivalent systems and
thus save precious space and time resources.

Symmetry reduction, for instance, enjoys a vast literature [2] but, while most
of the authors agree on the effectiveness of the technique, symmetry reduction
has not established itself as standard feature of verification tools as is the case of
other state space reduction techniques. Notable examples are model checkers
such as SPIN [3], where symmetry reduction and abstract interpretation are not
built-in while other techniques like partial order reduction are.

There are several reasons for this. (i) automatic detection of system regularities
is a hard task, very often delegated to the system designer since there are only
few solutions available (e.g. [4]); (ii) their exploitation is done by complementing
(or enriching) the system description language with some meta-data in a different
language, so that the user is hence required to use this new language; (iii) the

2 A. Lluch Lafuente, José Meseguer, A. Vandin

implementation of state space reduction techniques has to be combined (both
theoretically and practically) with the rest of the techniques and algorithms
implemented in the model checker, and often this integration effort has to be
repeated for every new version, improvement or technique of the model checker;
and (iv) checking correctness of the defined reductions is not easy and requires
reasoning techniques (e.g. theorem proving) that are not integrated in the model
checking framework, or that are not part of the user’s skills.

Contributions. This paper proposes an approach called c-reductions that
substantially mitigates the above problems (i)–(iv). Its key idea is the reduction
of each state into a (non necessarily unique) canonical representative of an
equivalence class induced by a relation on states that preserves the system
properties under study (i.e. a bisimulation). The approach is fully general: it
subsumes many reduction techniques (symmetry reduction, name reuse and name
abstraction) and can be applied to any Kripke structure. Since any computable
Kripke structure can be formally specified by a finitely rewrite theory [5] we use
the setting of rewriting logic [6], and its realization in Maude [7], in order to
exploit its expressiveness and support of formal verification techniques like model
checking and theorem proving.

The c-reduction approach tackles the above mentioned issues in the following
way: (i) reductions are defined using ordinary ingredients of the system description
language, namely, equations; (ii) the implementation of reductions does not
interfere with the theory of rewriting logic or with the Maude engine and its
commands, since it is essentially based on equational simplification, a standard
feature of the setting; (iii) the approach is highly automatizable (thanks to
Maude’s metaprogramming facilities based on logical reflection) and, at the same
time, flexible enough to allow customization (e.g. by allowing the user to define
the canonization functions or parts of them); (iv) correctness checks are semi-
automatized by techniques well supported by the Maude formal environment, e.g.
critical pair analysis to check that canonizer functions do not “interfere” with
other functions and are “coherent” with respect to behavioural rules.

We have evaluated our approach over an ample set of examples by considering
the ease of defining reduction strategies, the effectiveness of the correctness checks,
and the performance of the resulting reductions. With respect to previous works
we have observed performance gains in some cases (including previous implemen-
tations of symmetry reductions in Maude [8]), more flexibility in the definition
of reductions, which allow us to subsume a wide range of reductions including
permutation and rotation symmetries, name reuse and name abstraction.

Synopsis. § 2 offers the necessary background. § 3 presents the c-reduction
technique in a generic way, focusing on Kripke structures. § 4 describes the
realization of c-reductions in rewriting logic, highlighting the theoretical results,
and the reasoning and verification mechanisms and tools, that can be exploited
to analyze and develop and c-reductions. § 5 evaluates the performance of c-
reductions through some representative examples. Finally, § 6 concludes the
paper, describes subjects of current work and outlines future research directions.

State Space c-Reductions of Concurrent Systems in Rewriting Logic 3

2 Preliminaries

We focus on system specifications in the form of theories of rewriting logic [6],
which can be realized in practice in terms of Maude modules [7].

Definition 1 (Rewrite theory). A rewrite theory R is a tuple R = (Σ,E ∪
A,R, φ) where Σ is a signature, specifying the basic syntax (function symbols) and
type infrastructure (sorts, kinds and subsorting) for terms, i.e., state descriptions;
E is a set of (possibly conditional) equations, which induce equivalence classes
of terms, and (possibly conditional) membership predicates, which refine the
typing information; A is a set of axioms which also induce equivalence classes of
terms, i.e., equational axioms describing structural equivalences between terms,
like associativity and commutativity; R is a set of (possibly conditional) non-
equational rules, which specify the local concurrent transitions in a system whose
states are E∪A-equivalence classes of ground Σ-terms; and where φ : Σ → Pfin(N)
is a frozenness map, assigning to each function symbol f of arity n a subset
φ(f) ⊆ {1..n} of its frozen argument positions, i.e. positions under which rewriting
with rules in R is forbidden.

For the sake of simplicity, we assume that the system under study is described
by a rewrite theory R = (Σ,E ∪ A,R, φ) whose rules are “topmost” for a
designated kind [State] of states. We also assume that an operator { } is used
to enclose states, so that all transitions in R have that operator as their top
operator in their lefthand sides. What follows can be of course generalized but
the former assumptions facilitate the presentation. Finally, we shall assume that
R has good executability properties, i.e., that E is sufficient complete, confluent
and terminating modulo A (that is that the equational part correctly defines
functions), and R is coherent with E modulo A [7] (that is that applying equations
to evaluate functions does not interfere with the application of the rules that
dictate the system transitions). All such properties can be checked using the
standard Maude tools.

We consider a well-known semantical domain for rewrite theories, namely,
Kripke structures, which are suitable to formulate state space exploration prob-
lems like model checking.

Definition 2 (Kripke structure). A Kripke structure K is a tuple K = (S,→
, L,AP) such that S is a denumerable set of states, →⊆ S × S is a transition
relation between states, and L : S → 2AP is a labelling function mapping states
into sets of atomic propositions AP (i.e. observations on states).

The Kripke semantics of a rewrite theory is defined as expected, with State-
sorted terms as states and one-step rewrites between State-sorted terms as
transitions. The labelling function is defined by Boolean predicates specified
equationally in the rewrite theory. As proved in [5], any computable Kripke
structure, even an infinite-state one, can be obtained this way from an executable
rewrite theory using only a finite signature Σ, and finite sets E of equations, A
of axioms and R of rules.

4 A. Lluch Lafuente, José Meseguer, A. Vandin

Definition 3 (Rewrite theory semantics). Let R = (Σ,E ∪ A,R, φ) be a
rewrite theory with a designated state sort State, symbols and equations for a
labelling function L, and atomic propositions AP. The Kripke structure associated
to R is KR = (TState/E∪A,→, LE/A,AP) such that TState/E∪A are all State-
sorted states, → is defined as {[t]→ [t′] | R ` u→1

R,State v} (i.e. transitions are
one-step rewrites between E ∪A equivalence classes of State-terms in R), and
LE/A is the interpretation of L the initial algebra TΣ/E∪A.

We will consider bisimulation as the key semantic equivalence.

Definition 4 (bisimulation). Let K = (S,→K , L,AP), H = (S,→H , L,AP)
be two Kripke structures, and let ∼⊆ S × S be an equivalence relation on S. We
say that ∼ is a bisimulation between K and H iff (i) s ∼ s′ implies L(s) = L(s′);
(ii) s →H r and s ∼ s′ implies that there is a r′ s.t. s′ →K r′ and r ∼ r′; and
(iii) s→K r and s ∼ s′ implies that there is an r′ s.t. s′ →H r′ and r′ ∼ r.

We recall here some basic notions of group theory, since we shall often
instantiate our approach to the case of equivalence classes of (bisimilar) states
which can be defined as the orbits of a group action, which yields the cases of
symmetry reductions as special instances of our approach.

Definition 5 (groups, generators and actions). A group is a tuple (G, ◦)
such that G is a set of elements and ◦ : G × G → G is a binary operation
on G where ◦ is associative; there is an identity element e ∈ G such that
∀f ∈ G.f ◦ e = e ◦ f = f ; and each element f ∈ G has an inverse f−1 ∈ G such
that f ◦ f−1 = f−1 ◦ f = e.

Let (G, ◦) be a group and H ⊆ G be a subset of G. The group generated by
H denoted 〈H, ◦〉 is defined as the closure of H under the inverse and product
operators ()−1 and ◦ of G. In general 〈H, ◦〉 will be a subgroup of (G, ◦), but if
〈H, ◦〉 coincides with (G, ◦), then H is said to generate G and its elements are
called generators.

Let (G, ◦) be a group and A be a set. A group action of G on A is a monoid
homomorphism J·K : G→ (A→ A), that is, Jf ◦ gK = JfK; JgK, where f ; g denotes
function composition in (A→ A), and JeK = idA, with idA the identity function
on A.

Notable examples are full symmetric and rotation groups, which capture
typical symmetries introduced by replication (e.g. of processes with identical
behavior) in concurrent systems. Generators define groups in a finite and concise
manner. Well known examples of generators for full symmetric and rotation
groups are transpositions and single rotations, respectively. Group actions (which
allow us to apply group operations to concrete domains like state descriptions)
can be defined by means of equations of the form [[f]](t) = t’ where f denotes
a group element (possibly a generator) and t, t’ are State-sorted terms. Since
rewriting logic (and its realization in Maude) allows to handle the axioms of
sets (associativity, commutativity, identity), a group action can be described
very concisely. Such conciseness is crucial for our approach since most of the
correctness checks rely on these equations: the fewer equations, the fewer proofs
and checks to be carried out.

State Space c-Reductions of Concurrent Systems in Rewriting Logic 5

3 C-Reductions for Kripke Structures

This section introduces the idea of canonical reductions, abbreviated c-reductions
as a generic means to reduce a Kripke structure by exploiting some equivalence
relation ∼ on states which is also a bisimulation. In the next section we will
explain how c-reductions are realized and analyzed in rewriting logic, where
Kripke structures are specified by rewrite theories.

We start defining canonizer functions, the means to compute (non necessarily)
unique canonical representatives for given equivalence classes of states (e.g. a
canonical permutation of the identifiers of processes with identical behavior).

Definition 6 (canonizer functions). Let K = (S,→, L,AP) be a Kripke
structure, and let ∼ be an equivalence relation which is a bisimulation on K. A
function c : S → S is a a ∼-canonizer (resp. strong ∼-canonizer) iff for each
s ∈ S we have s ∼ c(s) (resp. s ∼ c(s), and s ∼ s′ → c(s) = c(s′)).

Canonizer functions are used to compute smaller but semantically equivalent
(i.e. bisimilar) Kripke structures by applying canonizers after each transition.

Definition 7 (c-reduction of a Kripke structure). Let K = (S,→, L,AP)
be a Kripke structure, and let c : S → S be a ∼-canonizer function for some
equivalence relation ∼ which is a bisimulation on K. We call the Kripke structure
Kc = (S, (→; c), L,AP) the c-reduction of K, where the composed transition
relation →; c is defined as {(s, c(r)) ∈ S2 | s→ r}.

We sometimes decompose transitions s → c(s′) in Kc to make explicit
the canonization step from a state s to its canonical representative c(s) with
s→ s′ →c c(s′).

An important result is then that c-reductions are bisimulation preserving.

Theorem 1 (∼-preservation). Let K = (S,→, L,AP) be a Kripke structure,
let ∼ be a bisimulation on K, and let c be a ∼-canonizer function. Then ∼ is a
bisimulation relation between K and Kc.

Proof. The relation ∼ is obviously a simulation from K to Kc, i.e. it lets the latter
simulate the former (c.f. beside figure (i)). Indeed if we have s→ r, we know that
any s′ ∼ s can simulate the transition s→ r by a transition s′ → r′ since ∼ is a
bisimulation for K. But then we have s ∼ c(r′) (since c preserves ∼, and ∼ is
symmetric and transitive). Therefore, ∼ is a simulation relation from K to Kc.

s // r

s′ // r′
c
// c(r′)

s // r
c
// c(r)

s′ // r′

(i) (ii)

It is also easy to show that ∼ is a
simulation from Kc to K as well (c.f.
beside figure (ii)). Indeed, a transition
s → r →c c(r), can be simulated by
some transition s′ → r′ such that s ∼
s′ and r ∼ r′ since ∼ is a bisimulation for K. But, as in the above case, we also
have that r ∼ c(r′) (since c preserves ∼ and ∼ is transitive). Therefore, ∼ is a
simulation relation from Kc to K.

Since we have already shown that ∼ is a simulation from K to Kc, we conclude
that ∼ is a bisimulation between K and Kc. ut

6 A. Lluch Lafuente, José Meseguer, A. Vandin

4 C-Reductions in Rewriting Logic

We now describe a methodology for defining and analyzing c-reductions in
rewriting logic. We shall often mention how such formalization can benefit from
the tool support offered by the Maude framework such as Maude’s LTL Model
Checker, Invariant Analyzer [9], Inductive Theorem Prover [10, 11] and Church
Rosser and Coherence Checker [12].

We assume there is some regularity inR (e.g. replicated process) that implicitly
defines a bisimulation ∼ on states (e.g. a permutation of processes) to be exploited
to ease the analysis of R. Our methodology is then based on the following steps:
(i) implement the group action that induces ∼ and verify that it is indeed a group
action (§4.1) which ensures ∼ to be an equivalence relation; (ii) verify that ∼
preserves the state predicates (§4.2); (iii) verify that ∼ is a bisimulation (§4.3);
(iv) define a c-canonizer and show it to be a (possibly strong) ∼-canonizer (§4.4);
(v) build the c-reduction of R (§4.5); and (vi) evaluate its performance (§5).

We remark that the steps of this methodology proceed by tackling different
levels of abstraction so that they act as building blocks to be re-used whenever
needed. For instance verifying a c-reduction strategy does not require performing
all the verification steps if it is based on a state equivalence that has been already
proven to be correct. In practice, bisimulation relations and their canonizers
need not to be defined and proven to be correct for every system, as there will
be classes of systems for which they can be specified once and for all. In such
cases, one can define reductions as theory transformations for wide classes of
examples corresponding, for instance, to certain permutation groups, or to other
useful equivalence relations besides the symmetry reduction case. In Maude this
could be done by exploiting reflection so that the c-reduction is automatized as
a function at the metalevel, possibly after checking some proof obligations. In
addition, in some cases it might be more convenient to bypass some steps, for
instance to check the correctness of a canonizer when it is not clear which is the
underlying group action (which may not exist at all, since even if we focus here
on group-theoretic reductions, c-reductions are more general).

This paper puts the emphasis on steps (iv) to (vi) which constitute our main
contribution here; while steps (i) to (iii) enjoy less attention due to lack of space.

4.1 Checking group actions

In the case of equivalences yielded by group actions, one can start defining the
group, the generators and their group actions and provide a formal proof of their
properties. Many symmetries such as full and rotation symmetries have been
identified and thoroughly studied in the past so we won’t pay much attention
to this aspect in this work. In what follows we will sometimes instantiate our
methodology on the particular case of symmetries assuming correctly defined
groups, generators and actions.

We assume that the relation on states we have to analyze is equationally
defined by topmost equations relating two State-sorted terms. In the case of
group actions with generators, we can just give equations of the form [[g]]({t})

State Space c-Reductions of Concurrent Systems in Rewriting Logic 7

= {t’}, for g being a generator (plus the equations defining the inverse operation,
unless inverses of generators can be obtained by composition of generators as
in the case of transpositions and rotations). Such equations define the actual
application of a generator.

Of course, we need to check that for each generator g and each state u we
have Jg◦g−1K(u) = u, but this can be done easily because we can devise inductive
proofs exploiting generators. For instance, in the case of full symmetries all we
have to do is to prove the equality Ji↔ jK(Ji↔ jK({t})) = {t}, i.e. that applying
the same transposition i ↔ j twice amounts to applying the identity so that
rewrite steps are reversible.

If one has correctly specified a group action, and in particular checked (or given
as explicit equations) the monoid homomorphism equations [[id]]({t}) = {t}
and [[g◦g’]]({t}) = [[g]]([[g’]]({t})) plus the above-mentioned check of
the inverses for generators, one has already proved that ∼ is an equivalence
relation. Indeed a group action implicitly defines an equivalence relation between
states as follows {t} ∼ {t′} ⇔ ∃f ∈ G s.t.JfK({t}) = {t′}.

4.2 Checking that ∼ preserves atomic predicates

To ensure that ∼ preserves the atomic predicates AP under consideration we
can proceed as follows.

We first define a rewrite theory R∼ for the sole purpose of this analysis defined
as R∼ = (Σ ∪ Σ∼, E ∪ E∼ ∪ A, {{t} => [[g]]({t})) | g is a generator or the
inverse of a generator}, φ). In words, we substitute the rules of R by rules that
allows us to go from a state u to another state that v that results from applying
a generator (or the inverse of a generator) to u.

As we mentioned above, it is easy to see that in this rewrite theory two states
are reachable if and only if they are in the same orbit, i.e. that the relation ∼ is
defined by the rewrite relation →∗R∼

. That is, that u ∼ v exactly when the above
defined rewrite theory can prove u→∗R∼

v.
It is easy to see that proving that a predicate p is preserved by ∼ is exactly

proving that p is invariant under R∼. Such a proof can be greately facilitated if
p is defined by pattern matching, i.e. by topmost unconditional equations of the
form p({t}) = true.

More formally, if we let R∼ be the rewrite theory defined above (and we
check that the lefthand sides of all its rules are free constructor terms modulo A),
all we have to do is to prove that for each rule {t’} => {t’’} ∈ R∼, equation
p({t}) = true ∈ E, and A-unifier θ between t’ and t (i.e. a mapping θ of
variables into non-necessarily ground terms such that θ(t’) =A θ(t)), then we
have p({θ(t’’)}) = true. If such is the case, indeed, we can conclude that for
each pair of states u, v ∈ TStateE/A

it holds that u ∼ v implies p(u) = p(v), i.e.

that p is invariant under ∼.
Fortunately, Maude has a tool called the Invariant Analyzer [13, 9] (InvA)

which can automate a good part of the effort of proving such invariants, leaving
the remaining proof obligations for Maude’s inductive theorem prover [11].

8 A. Lluch Lafuente, José Meseguer, A. Vandin

As a matter of fact, as part of our experimentation we were able to use the
tool to check that a simple neighborhood property of a model of the dining
philosophers problem (“no two consecutive philosophers eating”) is invariant
under rotations but not under arbitrary permutations. The first result was
obtained in fully automatic way, while the second follows from an analysis of the
few proof obligations provided by InvA.

4.3 Checking that ∼ is a bisimulation

Once ∼ has been shown to preserve the atomic predicates of interest, all there is
left to check is that ∼ is a bisimulation. In our setting this amounts to checking
the joinability of suitable “critical pairs” between the state transition rules {t}
=> {t’} if cond in our original set R, and the rules {t’’} => {t’’’} of R∼.

For A-unifiers θ between t and t’’ bisimulation is ensured if we prove that for

{θ(t)}
R∼ ��

R
// {θ(t’)}
R∼ ∗��

{θ(t’’’)}
R
// {w}

each critical pair denoted with ordinary arrows
in the diagram on the right, there is a rule in R
giving us a one-step rewrite {θ(t’’’)} →R {w}
for which we can prove: {θ(t’)} →∗R∼

{w}.
Part of this can be automatized by us-

ing Maude’s automated reachability analysis capabilities, possibly including
narrowing-based ones since some of the above terms might not be ground (i.e.
they might contain variables). Of course, it is not as easy as it sounds, since the
above proofs are inductive, so that sometimes it may not be straightforward to
show these properties for all ground terms just by rewriting terms with variables:
some inductive arguments may also be needed.

4.4 Defining and analyzing canonizer functions

The next step is to define canonizers functions c : [State] → [State] in a
protecting extension of the rewrite theory R under study. Note that in order to
define the function c : [State]→ [State] we may need to define some auxiliary
functions (for example, the ordering relations used in symmetry reductions to
determine a representative for each orbit).

Definition 8 (c-extension of a rewrite theory). Let R = (Σ,E ∪ A,R, φ)
be a rewrite theory and c a canonizer function. The c-extension of R is the
rewrite theory Rc = (Σ] Σc, E ∪ Gc ∪ A,R, φc) where c ∈ Σc, and Σc \ {c}
are other auxiliary functions; (Σ]Σc, E ∪Gc ∪A) is a protecting extension of
(Σ,E∪A), and is ground confluent, ground terminating, and sufficiently complete
wrt. the same signature of constructors; and φc extends φ with frozenness maps
for all arguments of all functions in Σc.

For a given bisimulation ∼ many candidate canonizers may exist, each leading
to different results in terms of the size of the reduced state space and computa-
tional requirements.

In any case, all canonizer functions must enjoy correctness properties such as
the extended equational theory being confluent, terminating, sufficiently complete

State Space c-Reductions of Concurrent Systems in Rewriting Logic 9

with respect to constructors (which may be the same constructors as those of
(Σ,E ∪ A)). More importantly (for what regards our contribution), canonizer
functions must preserve ∼, i.e. they must be ∼-canonizers. This might require
some theorem proving but it can be relatively easy in most cases, since we can
use the equations Gc and show that each one preserves ∼.

For example, in the case of local reduction strategies [4] the equations Gc

defining c are of the form c({t}) = c([[g]]({t})) if [[g]]({t})<{t} for
each possible generator (or inverse generator) g with < defining an ordering rela-
tion on states, plus an equation c({t})={t} [owise] to deal with the case when
none of the previous equations is applicable (denoted by the keyword [owise]),
that is when there is no way to transform a state into a smaller equivalent one
by applying a generator. Since such equations define c in terms of group actions
or of the identity function when all conditions fail, preservation of ∼ is immedi-
ate by the very definition of c. A very similar situation is that of enumeration
strategies [4] where canonizers are defined as c({t}) = min{[[f]]({t})} where
f ranges over all elements of the group under consideration. Again, preservation
of ∼ by c follows from the very definition of c. Indeed, for all states u, c(u) will
be necessarily of the form Jg1 ◦ g2 ◦ · · · ◦ gnK(u), with each gi being a generator.
All the c-reduction strategies evaluated in §5 are essentially of these forms.

Proposition 1. Let R be a rewrite theory, R∼ be defined as usual, and Rc be
the c extension of R such that the equations of Ec defining c are of the above
described form. Then, for all states u ∈ TState/E∪A we have that c(u) ∼ u.

In practice, when implementing c-strategies in the above form, all we have
to check are the ordinary well-definedness properties of the equations of c:
termination and sufficient completeness with respect to constructors, for which
one can rely on the standard Maude tools.

Note that proving ground confluence of c is not sufficient to show that c is
a strong canonizer. It may still be the case that for some two states u, v such
that u ∼ v we have that c(u) 6= c(v). Indeed, what we need to prove to show
that c is a strong canonizer is that for all generators g and states s we have
c(s) = c(JgK(s)). It is easy to see that if the previous property holds, an inductive
argument allow us to conclude c(s) = c(JfK(s)) for any possible group operation
f and hence for any two equivalent states s ∼ s′ = JfK(s).

But the above check can be reduced to an ordinary (automatic) confluence
check if we extend Ec with the set of equations test(g,c({t})) = c([[g]](s))

and test(g,c({t})) = c((s)), for all generators g (and inverse generators) of
the group under consideration, where test is an auxiliary function symbol that
ensure that the generator is applied only once. We denote this extension of Ec

with Ec∼ . In words, the idea is that applying or not a group generator and then
canonizing should result in the very same state.

Proposition 2. Let R be a rewrite theory, R∼ be defined as usual, Rc be the
c extension of R, and let Ec∼ be defined as above. If (Σ ∪ Σc, E ∪ Ec∼ , A) is
confluent, then c is a strong canonizer.

10 A. Lluch Lafuente, José Meseguer, A. Vandin

This result allows us to rely on Maude’s confluence checker. Of course, there are
cases in which no check is needed. For instance, it is well-known that enumeration
strategies yield strong canonizers, while local strategies are not strong in general.

4.5 Building c-reductions

The next step is to build the c-reduction. Recall that we have defined the c-
reductionKc of a Kripke structureK in Def. 7. Starting from a system specification
given as a rewrite theory R, our goal is to build Kc(R), but this can be easily
done by applying a theory transformation mapping R into its c-reduction Rc,
which is defined as follows.

Definition 9 (c-reduction of a rewrite theory). Let Rc = (Σ ∪ Σc, E ∪
Gc ∪ A,R, φc) be the c-extension of a rewrite theory R = (Σ,E ∪ A,R, φ).
We call the rewrite theory Rc = (Σ ∪ Σc, E ∪ Gc ∪ A,Rc, φc) where Rc =
{t => c(t’) if cond | (t => t’ if cond) ∈ R} a c-reduction of R.

In words, Rc is very much like R, but each rule t => t’ if cond in R,
is transformed into a rule t => c(t’) if cond, i.e., into a rule where the
canonizer function c is applied to the right hand side to ensure that canonization
is performed after each system transition.

Note that in some cases it might be convenient not to apply the canonizer
after each step. For instance if we know that the rule will always result in a
canonical state we can save the time of applying the function.

It is trivial to show that Rc is a c-reduction by construction, and in particular
that Kc(R) = K(Rc). It can also be shown that it has good executability
properties. By the properties required for Gc, it inherits all the properties of the
equational part of R, namely sufficient completeness, confluence and termination
modulo A. What is left to show is that Rc is coherent modulo A.

Lemma 1 (coherence of Rc). Let R = (Σ,E ∪A,R, φ) be ground confluent,
terminating, sufficiently complete, and with R ground coherent with E modulo A.
Then Rc defined as above has Rc ground coherent with E ∪Gc modulo A.

Proof. SinceR is topmost and c is a frozen operator, any ground Σ∪Σc-term u of

u
1

R
//

E/A! ��

v
c
//

∗E/A ��

c(v)
∗

E/A %%

w c(w)

u′
1

R
// v′

c
//

∗

E/A

??

c(v’)

∗

E/A

99

sort State such that R ` u →1

v must be a Σ term. Therefore, its
E ∪Gc/A-canonical form u′ is exactly
its E/A-canonical form. By the ground
coherence of R with E modulo A we
obtain the inner pentagon in the dia-
gram on the right which trivially yields
the outer pentagon, proving E ∪Gc ` c(t′) = c(u′) as desired. ut
Theorem 2 (executability of Rc). Let R = (Σ ∪ c, E ∪ Gc ∪ A,R, φ) be a
rewrite theory with good executability properties, then Rc has good executability
properties.

Proof. The proof immediatedly follows from the fact that Rc has the same
equational part as Rc and from Lemma 1. ut

State Space c-Reductions of Concurrent Systems in Rewriting Logic 11

SymmSpin c-reductions
weak strong weak strong

Experiment n ideal %S %T %S %T %S %T %S %T

Peterson
2 -50.00% -47.90% +0.00% -49.05% +0.00% -45.46% +0.00% -45.46% +0.00%
3 -83.30% -74.90% -7.93% -82.54% -7.93% -76.60% +0.00% -82.98% +150.00%
4 95.80% -91.38% -76.96% -95.50% -83.62% -92.85% -75.00% -94.81% +50.00%

DBM
7 -99.98% -98.86% -99.99% -99.39% -80.00% -98.83% -87.00% -99.70% +20.00%
8 -99.99% -99.48% -99.99% -99.78% -47.37% -99.45% -95.33% -99.91% -64.76%

Table 1. SymmSpin vs c-reductions in Maude.

5 Performance experiments

We present here a subset of the experiments that we are carrying out, with
the main purpose of validating the effectiveness of the implementation of the
c-reduction approach in Maude.

Our main hypothesis to be checked is that the relative performance gain (in
terms of runtime and state space reductions) is comparable to the one obtained
by state-of-the-art model checkers. The second hypothesis is that c-reductions
are more efficient than the previous approach to symmetry reductions in Maude
described in [8]. Finally, we enrich the experiments where we combine various
c-reductions not supported by the previously mentioned tools.

Comparison with SymmSPIN We have chosen SymmSPIN [14, 15] as a
representative model checker with which to compare our approach. SymmSPIN
extends the SPIN [3] model checker with support for symmetry reductions. It
is worth to remark that we do not perform absolute comparison as we aim
at checking the usefulness of our approach (experiments with SymmSPIN are
anyway not reproducible since the tool is not available for download).

We have implemented in Maude two of the benchmark models tested in [14, 15],
namely Peterson’s mutual exclusion protocol [16], and a database management
system [17]. Both examples exhibit a full symmetry due to the presence of families
of replicated concurrent processes with identical behavior.

We have considered various c-reduction strategies. For the sake of simplicity,
we consider only the two best strategies of SymmSPIN and our implementation,
for which regards time and state space reduction. We call them strong and weak
as they are actually strong and non-strong canonizers.

Table 1 presents our results, for instances of the models with increasing
number of components (n). We offer only results for those instances for which
it has been possible to generate the unreduced state spaces, so to compare the
relative gain of the reductions. The table also includes the “ideal” gain, which in
the case of full symmetries is a factor of 1 divided by the factorial of the number
n of participants, since the size of each orbit is at most n!. Even if the experiment
is not a competition we highlight cells corresponding to the best results in each
category (state space and run-time gain) for each model instance.

From the table we see that the two approaches provide reductions near to the
ideal gain. The two strategies based on weak provide very similar outcomes, while
the ones based on strong reduces similarly. SymmSPIN is more time-efficient,
which is not a surprise, since the reduction algorithms are implemented in a
procedural language (C) and efficiently compile, while our implementation is

12 A. Lluch Lafuente, José Meseguer, A. Vandin

Reflection-based c-reductions

Params Not reduced weak strong

N M States Ideal States %S %T States %S %T States %S %T

2 5 38,029 -50% 19,295 -49% +962% 21,630 -43% +114% 19,025 -50% +463%

3 2 72,063 -83% 13,280 -82% +730% 29,534 -59% +101% 12,235 -83% +344%

3 3 952,747 -83% 174,428 -81% +565% 307,532 -68% -50% 160,121 -83% +30%

Table 2. Reflection-based symmetry reduction vs. c-reductions in Maude.

based on a declarative language (Maude) running over an intepreter (the Maude
engine).

Comparison with reflection-based symmetry reduction in Maude Our
second set of experiments aims at checking whether c-reductions offers better
performances than the symmetry reduction implementation in Maude described
in [8]. Very briefly, the main idea of [8] is to select the canonical representative
of a state on the basis of the lexicographical order of the meta-representation of
the state, which is achieved by exploiting Maude’s reflection capabilities.

The comparison is performed over the Chain-Replication protocol used in [8].
As in the previous case, the replication of identical processes yields a full symmetry.
Table 2 presents our results in the same format as Table 1 with the only exception
that the model is instantiated with two parameters: the number n of replicated
components and the number m of queries they perform. The table shows that the
reductions of the reflection-based approach of [8] stand in the ranges between the
ones obtained by our strategies. In particular our weak strategy offers worse space
reductions, while the strong one offers better space reductions. More interestingly,
our reduction strategies introduce much less time overhead, differing often by an
order of magnitude. This is not a surprise, since resorting to Maude’s meta-level
involves a considerable overhead.

Exploiting permutations, rotations, reuse and abstraction Our last set
of experiments regards the joint application of a number of c-reductions of
different nature, not supported by the previously mentioned tools. As a test case
we have considered a message-passing solution to the Dining Philosophers problem
along the lines of the case study used in [18], where newly generated messages
(representing forks) receive fresh identities (as the original purpose of [18] was to
reason about individual messages). There are a couple of regularities that can be
exploited in the form of c-reductions and that happen to yield bisimulations (for
an empty set of atomic predicates): the rotational symmetry of philosophers, the
full symmetry of messages, the reuse of message identifiers and their abstraction.
Of course, the situation is different when one considers state predicates that
involve the identity of philosophers or messages. However, our goal here is to
validate the effectiveness of the mentioned c-reductions.

Table 3 reports the results. The table presents the size of the state space and
the time (in ms) to generate it, for instances of the model with increasing number
of philosophers. The table considers the state spaces generated in the following
cases: reuse of message identifiers (NR), reuse together with (rotational and full)
symmetry reduction (NR+RS+FS), abstraction of name identifiers (NA), and
abstraction of name identifiers together with (rotational) symmetry reduction

State Space c-Reductions of Concurrent Systems in Rewriting Logic 13

NR NR+RS+FS NA NA+RS

N States Time States Time States Time States Time

2 21 0 10 0 18 0 10 0

3 115 8 27 12 76 0 27 8

4 801 100 86 60 322 20 86 48

5 6,251 1,456 275 320 1,364 124 275 248

6 54,869 20,765 982 1,732 5,778 740 982 1,412

7 541,731 463,080 3,499 11,828 24,476 6,624 3499 8,124

8 O.T. O.T. 13,016 49,651 103,682 29,329 13,006 35,594

9 O.T. O.T. 48,828 247,987 439,204 192,072 48,819 186,329

Table 3. c-reductions for the dining philosophers.

(NA+RS). The sizes of the unreduced state spaces are not shown since they are
infinite (due to the creation of messages with fresh identifiers).

The first clear advantage is that reuse of message identifiers yields finite state
spaces (since the number of messages in each state is bounded by n). Besides this,
we see how combining various c-reductions results in better and more performant
reductions. To be noticed is the fact that name reusing alone ran out of time
(more than 5 hours) for models instantiated with more than 7 philosophers, while
combining it with symmetry reductions (for messages and philosophers) allows
us to manage greater instances. In particular, the best reductions are obtained
with the combination “name abstraction + rotational symmetry”, while “name
abstraction” alone offers the fastest explorations from 2 to 8 philosophers, and is
outperformed by the combination “name abstraction + rotational symmetry” for
greater instances.

6 Conclusion

We have presented c-reductions, a state space reduction technique, whose
main idea is to use canonizer functions mapping each state into a (not necessarily
unique) canonical representative of its equivalence class modulo a bisimulation
equivalence relation, capturing some specific system regularities. The main dif-
ferentiating features with respect to other state space reduction techniques are
(i) reductions are defined using the system description language; (ii) (re)use of
the standard techniques of the verification setting to check correctness of the
reduction; (iii) automatization: both for applying the reduction and for checking
its correctness; and (iv) generality: it subsumes in an uniform way symmetry
reduction as well as other kinds of reductions (name reuse, abstraction).

We also presented a representative subset of the performance experiments
we are carrying out. We have observed a comparable performance with mature
tools such as SPIN and performance gains wrt. to a previous implementations of
symmetry reductions in Maude [8]. Moreover, the flexibility of our approach has
allowed us to define a wide range of reductions. Beyond the classical permutation
and rotation symmetries, we have considered some simple cases of name reuse
and name abstraction, which are crucial to deal with the infinite state spaces
of systems with dynamic allocation of resources. Compared to the approach
presented in [14, 15] we are able to treat a wider class of systems, where identifiers

14 A. Lluch Lafuente, José Meseguer, A. Vandin

of symmetric objects can appear as pointers in attributes of other objects, and
with wider classes of symmetries such as rotational ones. Similar remarks can be
made about the approach presented in [8], with respect to which we offer a wider
class of reduction strategies and better performance.

A closely related work is the automatic symmetry detection of [4] which
also provides an alternative symmetry reduction extension (TopSPIN) of the
SPIN model checker. Our approach does not consider automatic detection of
symmetries but, instead, user-definable ones, together with a methodology to
check their correctness, with the main advantage being that we rely on tools and
techniques used to perform the verification of the system itself. Both lines of
research are essentially complementary and can converge in a synergistic way.

We are also investigating how to apply our approach to improve the efficiency
of rewriting-logic based interpreters of programming languages with primitives
for dynamic memory allocation, and to further explore the combination of c-
reductions with other state space reduction techniques, with a particular attention
to those already proposed in the setting of rewriting logic and Maude, such as
the language-generic partial order reduction proposed in [19], and not forgetting
abstraction techniques [20] where some promising efforts have been carried
out [21].

Current efforts are also devoted to a deeper investigation of state space
reduction techniques based on name-reuse. Such techniques have a limited im-
pact on Kripke models, where object identifiers are “global”, in the sense that
they represent an entity through all the states of a model. These techniques
become instead fundamental using more sophisticated models (together with
non-propositional property specification languages), where object identifiers are
local to single states, and “trans-states identities” are explicitly represented
through suitable mappings associated to state transitions. Notable examples are
History Dependent Automata [22], High-level Allocational Büchi Automata [18],
Graph Transition Systems [23] and Counterpart models [24].

We are also working further (and experimenting) on the verification steps that
we could only sketch in this paper (steps §4.1-§4.3). Moreover we would like to
further explore reductions not based on group actions, extend the approach to deal
with equivalence preorder like simulations, and further develop the automatization
of our approach and the use of the integrated Maude formal environment [25].

References

1. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (1999)

2. Wahl, T., Donaldson, A.F.: Replication and abstraction: Symmetry in automated
formal verification. Symmetry 2 (2010) 799–847

3. Holzmann, G.: The SPIN model checker: primer and reference manual. Addison-
Wesley Professional (2003)

4. Donaldson, A.F., Miller, A.: A computational group theoretic symmetry reduction
package for the SPIN model checker. In: Algebraic Methodology and Software
Technology. (2006) 374–380

State Space c-Reductions of Concurrent Systems in Rewriting Logic 15

5. Meseguer, J., Palomino, M., Mart́ı-Oliet, N.: Algebraic simulations. Journal of
Logic and Algebraic Programming 79 (2010) 103–143

6. Meseguer, J.: Conditional rewriting logic as a united model of concurrency. Theo-
retical Computer Science (TCS) 96 (1992) 73–155

7. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.L.: All About Maude. Volume 4350 of LNCS. Springer (2007)

8. Rodŕıguez, D.E.: Combining techniques to reduce state space and prove strong
properties. In: Proceedings of the 7th International Workshop on Rewriting Logic
and its Applications (WRLA 2008). Volume 238(3) of ENTCS. (2009) 267 – 280

9. The Maude Invariant Analyzer Tool (InvA), camilorocha.info/software/inva.
10. Clavel, M., Palomino, M., Riesco, A.: Introducing the ITP tool: a tutorial. Journal

of Universal Computer Science 12 (2006) 1618–1650
11. Maude Interactive Theorem Prover, maude.cs.uiuc.edu/tools/itp/.
12. Durán, F., Meseguer, J.: A church-rosser checker tool for conditional order-sorted

equational maude specifications. In Ölveczky, P.C., ed.: Proceedings of the 8th
International Workshop on Rewriting Logic and its Applications (WRLA’10).
Volume 6381 of LNCS., Springer (2010) 69–85

13. Rocha, C., Meseguer, J.: Proving safety properties of rewrite theories. In Corradini,
A., Klin, B., Crstea, C., eds.: Algebra and Coalgebra in Computer Science. Volume
6859 of LNCS. Springer (2011) 314–328

14. Bosnacki, D., Dams, D., Holenderski, L.: A heuristic for symmetry reductions with
scalarsets. In: International Symposium of Formal Methods Europe on Formal
Methods for Increasing Software Productivity (FME’01), Springer (2001)

15. Bosnacki, D., Dams, D., Holenderski, L.: Symmetric SPIN. International Journal
on Software Tools for Technology Transfer (STTT) 4 (2002) 92–106

16. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc. (1996)
17. Valmari, A.: Stubborn sets for reduced state generation. In: Proceedings on

Advances in Petri nets 1990, Springer (1991)
18. Distefano, D., Rensink, A., Katoen, J.P.: Model checking birth and death. In

Baeza-Yates, R.A., Montanari, U., Santoro, N., eds.: 2nd International Conference
on Theoretical Computer Science (TCS’02). Volume 223., Kluwer (2002)

19. Farzan, A., Meseguer, J.: Partial order reduction for rewriting semantics of program-
ming languages. In: Proceedings of the 6th International Workshop on Rewriting
Logic and its Applications (WRLA’06). Volume 176 of ENTCS. (2007) 61–78

20. Meseguer, J., Palomino, M., Mart́ı-Oliet, N.: Equational abstractions. Theoretical
Computer Science 403 (2008) 239–264

21. Donaldson, A.F., Kaiser, A., Kroening, D., Wahl, T.: Symmetry-aware predicate
abstraction for shared-variable concurrent programs. In Gopalakrishnan, G., Qadeer,
S., eds.: Proceedings of the 23rd International Conference on Computer Aided
Verification (CAV’11). Volume 6806 of LNCS., Springer (2011) 356–371

22. Montanari, U., Pistore, M.: Structured coalgebras and minimal HD-automata for
the π-calculus. Theoretical Computer Science 340 (2005) 539–576

23. Rensink, A.: Isomorphism checking in GROOVE. ECEASST 1 (2006)
24. Gadducci, F., Lluch Lafuente, A., Vandin, A.: Counterpart semantics for a second-

order µ-calculus. In Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A., eds.: 5th
International Conference on Graph Transformation (ICGT’10). Volume 6372 of
LNCS. Springer (2010) 282–297

25. The Maude Formal Environment, http://maude.lcc.uma.es/MFE/.

