Abstraction in Directed Model Checking

Stefan Edelkamp

Fachbereich Informatik

Universitdt Dortmund
stefan.edelkamp@cs.uni-dortmund.de

Abstract

Abstraction is one of the most important issues to cope
with large and infinite state spaces in model checking
and to reduce the verification efforts. The abstract
system is smaller than the original one and if the ab-
stract system satisfies a correctness specification, so
does the concrete one. However, abstractions may in-
troduce a behavior violating the specification that is
not present in the original system.

This paper bypasses this problem by proposing the
combination of abstraction with heuristic search to im-
prove error detection. The abstract system is explored
in order to create a database that stores the exact dis-
tances from abstract states to the set of abstract error
states. To check, whether or not the abstract behavior
is present in the original system, efficient exploration
algorithms exploit the database as a guidance.

Introduction

The ultimate goal of model checking (Clarke et al.
1999) is to prove the correctness of a system with re-
spect to a given property. The correctness proof is
often given through a complete exploration of the un-
derlying state space. If the system does not satisfy the
property, model checking algorithms return a witness
of the error in form of a counterexample, which allows
to locate and repair the faulty behavior. As a matter of
fact, much of the success of model checking is due to its
ability to find and report errors. The main drawback
of model checking is the state explosion problem. State
spaces of software designs are large enough in practice
to make an exhaustive exploration infeasible. More-
over, many systems have an infinite state space. For
instance, a simple program with only one integer vari-
able may easily span the entire integer range. In this
case, abstraction is one of the only chances to retain
tractability.

It is not always easy to find abstractions that are
correct with respect to the correctness specification
and, at the same time, provide significant reductions.
Exact approximations are abstractions that induce an

Alberto Lluch-Lafuente
Dipartimento di Informatica
Universita di Pisa
lafuente@di.unipi.it

abstract system, which is observationally equivalent
to the original one; where the notion of observational
equivalence depends, of course, on the logic used by
specifications. They are difficult to be obtained and
might result in weak reductions. Subsequently, re-
search has mainly focused on over-approximations that
induce simulations (Milner 1995), since they are found
easier and provide more drastic reductions. Roughly
speaking, system M simulates a system M if every be-
havior of M is also present in M. If the abstraction
applied induces a simulation, then the abstract system
simulates the original one. As a consequence, if it sat-
isfies the specification so does the original one. The
opposite direction, however, is not true. A bad behav-
ior in the abstract system might not be present in the
original one. In this case we call the bad behavior a
spurious error. Frequently, the approximation is re-
fined for a new abstraction that is consistent with the
counterexample established, and the verification pro-
cess starts again. Our approach is different. If an error
is found in the abstract system, we check for errors in
the original system, using information collected in the
exploration of the abstraction system as guidance.

Directed model checking incorporates heuristic
search algorithms like A* to enhance the bug-finding
capability of model checkers, by accelerating the search
for errors and finding (near to) minimal counterexam-
ples. In that manner we can mitigate the state explo-
sion problem and the long counterexamples provided
by some algorithms like DFS, which is often applied in
explicit model checking.

One can distinguish about four main classes of eval-
uation functions based on the information they try to
exploit. Property specific heuristics (Edelkamp et al.
2001) analyze the error description as the negation of
the correctness specification. In some cases the un-
derlying methods are only applicable to special kinds
of errors. A heuristic that prioritizes transitions that
block a higher number of processes focuses on deadlock
detection. In other cases the approaches are applica-

ble to a wider range of errors. For instance, there are
heuristics for invariant checking that extract informa-
tion from the invariant specification and heuristics that
base on already given errors states. The second class
has been denoted as being structural (Groce and Visser
2004), in the sense that source code metrics govern the
search. This class includes coverage metrics (such as
branch count) as well as concurrency measures (such
as thread preference and thread interleaving). Next
there is the class of user heuristics that inherit guid-
ance from the system designer in form of source an-
notations, yielding preference and pruning rules for
the model checker. The last class are planning heuris-
tics (Edelkamp 2003), where the problem of finding an
error in the system is reduced to a planning task and
solved using heuristic search action planners.

We introduce abstraction databases as a general
paradigm to enhance the efficiency of directed model
checkers. Our approach analyzes the abstract model in
order to create a database which stores the shortest dis-
tance from a given abstract state to the set of abstract
error states. This database is used as a heuristic dur-
ing the exploration of the original system. As a result,
proving that an abstract error is present in the origi-
nal system can be done more efficiently. The resulting
heuristics have a property, namely monotonicity, which
guarantees optimal counterexamples if A* (Hart et al.
1968) is used as search algorithm. Another view of the
paper’s contribution is that while abstractions turned
out to be a universal tool to verify a temporal prop-
erty, they were only of limited help for falsifying it.
With abstraction databases we utilize abstractions for
improved falsification.

Our approach has a further advantage. It fits to both
explicit and symbolic model checking approaches. Ab-
straction databases are constructed by exploring the
abstract state space. As a consequence, this explo-
ration can be done in a form of symbolic reachability
analysis. The inferred symbolic representation of the
set of reachable states together with the according dis-
tances to the goal, then serves as an estimate that can
be referenced either in explicit and symbolic heuristic
search.

The paper is structured as follows. First we intro-
duce pattern databases as applied in Al search and
give a theoretical foundation on abstraction databases
based on Kripke structures. This will exploit similari-
ties between the concepts developed in Al and model
checking. Then we describe how abstraction databases
can be applied in practice. We use the SPIN model
checker and two of related tools, namely a-SPIN (for
abstractions) and an HSF-SPIN (for heuristic search).
We present a small set of experiments performed with

such tools. Finally, we draw conclusions, discuss re-
lated work, and indicate future research avenues.

From Patterns to Abstractions

Pattern database search (Culberson and Schaeffer
1998) is an automatic technique for the improved de-
sign of admissible heuristics. Admissible heuristics are
lower bounds on the distance to the set of goal states.
This guarantees optimal goal paths and efficiency. A
pattern database is a mere (hash) table, where indices
are patterns and entries contain heuristic values. Pat-
terns itself are simplified states according to a state re-
laxation function. The pattern database technique was
first applied to define effective heuristics for sliding-tile
puzzles. For this case, problem relaxation corresponds
to removing a selected set of tiles from the board. The
remaining set of tiles is referred to as the pattern. The
pattern database stores all pattern states together with
their shortest path distance on the simplified board to
the pattern state for the goal. It is constructed in a
BFS starting with the goal pattern and using inverse
relaxed state transitions.

The idea of a pattern can be generalized as follows.
If a state s is represented as a state vector (s!,...,s")
with variables s’ in some finite domains, then patterns
are established by a projection, reducing the domains
of some s¢, i € {1,...,k}. In a drastic, for example,
the domain is reduced to the empty set, which entails
ignoring the value of the variable.

In model checking this corresponds to a form of data
abstraction, which exploits the fact that specifications
for software models usually consider fairly simple re-
lationships among the data values in the system. In
such cases, one can map the domain of the actual data
values into a smaller domain of abstract data values.
Such mapping induces a mapping of the states of the
system, which in turn induces an abstract system.

In many cases the abstract system simulates the
original one (Clarke et al. 1999). Data abstraction
is not the only approach. With predicate abstraction
the concrete states of a system are mapped to abstract
states according to their evaluation under a finite set
of predicates (S. Graf and H. Saidi 1997). Automatic
predicate abstraction approaches have been designed
and implemented for finite and infinite state systems.
The predicates p1,...,p, define an abstraction func-
tion ¢ : S — {0,1}" with ¢(s) = § if for all i we
have §; = p;(s), that is abstract states refer to truth
vectors of atomic propositions. Both data and predi-
cate abstraction induce abstract systems that simulate
the original one. We such an abstraction a simulation
abstraction.

The common use of abstraction in practice consists

of a simple life cycle. First, the abstraction simulation
is defined, according to the correctness property one
wants to analyze. Then the model checker is used to
verify the property on the abstract system. If the result
is positive, then we know, that the original system sat-
isfies the property. A negative answer, however, does
not ensure that the original system violates the prop-
erty too. There are various ways to proceed. Usually,
a negative answer is accompanied with a counterexam-
ple, which is just a finite path that violates the prop-
erty. An abstract path might not have a correspond-
ing path in the concrete system. In this case, the path
is called spurious. Hence, an abstract counterexam-
ple has to be analyzed in order to check whether it is
spurious or not. One possible approach is to use the
symbolic algorithm described in (Clarke et al. 2000),
which basically consists of a forward search. Given an
abstract counterexample path 3g, ..., §,, the algorithm
starts with the set of states given by ¢=1(3g). Then, it
computes the set of successors of such states and per-
forms the intersection with the set of states given by
¢~ 1(81). The algorithm goes on until it establishes an
empty set or ¢~1(5,).

The procedure is simpler if there is a clear corre-
spondence between the abstract and the concrete sys-
tem, where each code line in the abstract system cor-
responds to a line in the concrete system. As a con-
sequence, each abstract transition has a correspond-
ing concrete transition and one can just try to simu-
late the abstract counterexample in the original sys-
tem (Pasareanu et al. 2001). If this is not possible,
then the counterexample is spurious. Otherwise, the
abstract counterexample is said to be feasible and one
has to check whether it really violates the property.

Another approach is to analyze the chose-free state
space of a system (Pasareanu et al. 2001). The idea
is to bound non-deterministic branches of the state
space, such that counterexamples are always deter-
ministic paths. This approach uses a result, which
states that every abstract non-deterministic path has
a corresponding concrete path (Saidi 2000). If one of
these methods certificates the existence of a spurious
counterexample, the abstraction must be refined ac-
cordingly, and the previously described abstract-check-
refinement cycle starts again.

In some cases, however, the strategy of validat-
ing abstract counterexamples is not suitable. We
claim that an abstract counterexample might be the
symptom of an error, even if it has no correspond-
ing concrete counterexample. Consider the following
trivial example for abstraction of a simple program:
x:=0; while x&1t;n do x++; end do. As an ab-
straction on variable xz we take ¢(0) = ZERQ, ¢(n) = N,

and ¢(i) = MIDDLE for i € {1,...,n—1}, thus inducing
the following abstract program:

x:=ZERO
while x&l1t;N do

if (x=0) then x=MIDDLE

else x=nondeterministically MIDDLE or N
end do

In this trivial example, a state of the program is
uniquely determined by the value of x. The original
program has a finite path (sq,...s,), where s; rep-
resents the state in which x = . It is easy to see
that ¢ is a simulation that induces an abstract sys-
tem with infinitely many paths (é(so), #(51)7, ¢(sn)),
where j > 1. Clearly, only the path given by j =n —2
has a corresponding concrete path. However, a model
checker looking for an abstract state in which = = n,
would find path (¢(sg), ¢(s1), @(sn)), which is a spu-
rious counterexample. Classical approaches would try
to refine the abstraction, while we propose to consider
the path as a symptom for the existence of a similar
path in the original system.

Abstraction Databases in Theory

For a formal treatment of abstraction databases we as-
sume that the model is given in form of a Kripke struc-
ture. A Kripke structure M = (S, L, AP,—) consists
of a set of states S, a set of atomic propositions AP
which represent the observable properties of the sys-
tem, a labelling function L : S — 247 that associate
each state with the set of atomic propositions that hold
in it, and a transition relation —C S x S. A set of ini-
tial states is often associated together with M. In the
following we abbreviate (s,t) €— with s — t.

Given two Kripke structures M = (S, L, AP, —) and
M = (S, L, AP, =) with AP C AP, relation ~ C Sx S
is a simulation relation between M and M whenever
for all s ~ § we have L(s) N AP = L(3) and for every
state s; with s — s; there is a state s7 and $§>5; and
s1 ~ §1. We also say that M simulates M denoted by
M =< M.

It has been show that if M < M , then for every
universal path quantified CTL* formula f with atomic
propositions that are contained in AAP7 M E f im-
plies M = f (Clarke et al. 1999). In addition, for
every path (sg,s1,...) there is a corresponding path
(80,81 ...) with s; ~ §1, 4 > 0. So every behavior of M
is also a behavior of M.

An abstraction ¢ of a Kripke structure M =
(S,L, AP, —) is a mapping from states to abstract
states that induces an abstract Kripke structure M=
(8,L,AP,>) as follows: S = ¢(S) = {¢(s) | s €
S}, and if s — s; then ¢(s)>¢(s1), ie. = =

{(¢(s),0(s1)) | s — s1}. Generally speaking, we ap-
ply a surjection of the state space graph (S,—) into
(S,2). Abstraction ¢ is a homomorphism, since for
all transitions s — s; we have ¢(s)>¢(s1). This im-
plies that if state ¢ is reachable from state s then ¢(t)
is reachable from ¢(s).

We see that the definition of an abstraction is more
restrictive than the definition of a simulation relation
between M and M with § = ¢(s) and §1 = ¢(s1).
One difference is that in case of a simulation only the
existence of a successor state s; of s with §; ~ s7 is
required, where here we fix §1 to be ¢(s1). We are
not only interested in the existence of paths but also
in shortest paths between states in the original and in
abstract space.

Theorem 1 Let M be a Kripke structure, ¢ be an ab-
straction, and M be the abstract structure under 0.
For each two concrete states s and t we have that the
shortest path from the abstract state ¢(s) to ¢(t) is not
longer than the shortest path from s to t.

Proof 1 Let p = (s = vo,...v, = t) be the shortest
path form s to t in M. By homomorphism ¢(p) =

(¢(vo), ... ¢d(vy)) connects ¢(s) to ¢(t). The optimal
path from ¢(s) to ¢(t) can only be shorter or equal.

Recall that we focus on safety error detection, and
that safety error detection can be reduced to invariant
checking. Let f be the invariant. Error states are
states in which f does not hold. Suppose that we have
a set of error states T, then the abstract error is ¢(T) =
{6(t) | t € T}.

Theorem 1 suggests to use the shortest path in the
abstract state space to the abstract error as an es-
timator in M. Hence, before checking for an error
in the original system, we explore the abstract one
to construct an abstraction database. An abstraction
database according to an abstraction ¢ is a table with
shortest path distances from each abstract state § to
the abstract error set. While Theorem 1 proves the ad-
missibility of the heuristic estimate we can also prove
monotonicity.

Theorem 2 Let M be a Kripke structure, ¢ be an
abstraction, and M be the abstract structure under
¢. The shortest path distance to the abstract error is
monotone.

Proof 2 For each transition s — s1, homomorphism
yields ¢(s)>d(s1). By the triangular inequality of
shortest paths we have that 1 plus the shortest path
from &(s1) to the abstract error is larger than or equal
the shortest path from ¢(s) to the abstract error.

Theorem 2 is important, since monotonicity guaran-
tees that A* variants can be implemented without any

reopening strategy, which is more difficult to code and
can lead to exponential running time with respect to
the model size.

Until now, we have assumed that the state space
graph for M is given explicitly. In practice, we have to
explore it on-the-fly by successive enumeration. There-
fore, defining = by abstract state pairs is not sufficient,
so that we also need to define abstract transitions to
span abstract space. This brings us back to the simu-
lation relation. If we define a mapping ¢ on the suc-
cessor generation function, abbreviated as ¢(—), we
require that each successor in abstract space has at
least one successor in original space as a preimage. For
Kripke structures M = (S, L, AP, —) this means that
if ¢(s) ¢(—) 81, then there exists s; with s — s; and
¢(s1) = §1. Now the definition matches the one given
for a simulation relation. Therefore, the two aspects
coincide. For abstractions that are simulations, Theo-
rems 1 and 2 remain valid, so that the shortest path
distance heuristic for abstract space is a monotone es-
timator function.

Consequently, we can use any abstraction that is a
simulation relation to build an abstraction database. In
database construction, the main limitation is the num-
ber of (abstract) states that can be hold in memory.
Since databases are pre-computed, it is important to
approximate an upper bound on the storage require-
ments each abstraction imposes. While there are ap-
proximations for the size of the abstract state spaces
in the AI search domains, for general model checking
we have not yet sufficient answers.

What is the running time for database construction?
Backward breadth-first search starting from the set of
abstract error states suffices to determine the state-to-
goal distances in abstract space. This corresponds to
linear time and space with respect to the size of the
abstract model.

One of the main advantages of abstraction databases
is that one can combine different abstractions to ob-
tain a more informed heuristic. However, in order to
get an admissible and monotone heuristic, each ab-
traction databases must be disjoint. Two abstraction
databases according to abstractions ¢ and i are dis-
joint, if for all transitions ¢’ in the abstract model for ¢
and transitions ¢” in the abstract model for 1) we have
¢~ L) Ny~L(t") = 0. In other words, each operator
introduces cost 1 in at most one abstraction, and cost 0
in all others. It =1 (') N ~1(¢") # 0 then the sum of
the cost of ' and " in the respective abstract models
is less than or equal to 1. Since in this case each op-
erator is counted at most once, for each state we have
that the sum of the shortest path distances from ¢(s)
and 9 (s) to their respective abstract error state set is

still a lower bound to the shortest path from s to the
error in the original space.

An example of the combination of abstraction
databases is the FSM distance, which has been shown
to be of practical use to shorten already established
counterexamples (Edelkamp et al. 2001). Originally,
this heuristic is defined as follows. Suppose the system
consits on the asychronous composition of various pro-
cesses given as communicating finite state machines.
Suppose further that we have a state s’ and we want to
find the optimal path from an initial state to it. Since
the composition is asynchronous, each system transi-
tion entails a transition in only one of the processes.
Hence, in order for the system to reach state s’ from
state s each process must move from its local state in
s to its local state in s’. The optimal local distance
between process states can be efficiently computed be-
fore the verification starts. Then the distance between
s and s’ is estimated by the sum for all processes of
the local optimal distances between the process states
in s and in s’. Implictly, one is applying abstraction.
The optimal distance between local states of a process
1 is a database corresponding to an abstraction of the
system in which the value ofx every variable and every
process except i is ignored. Implicitly, the FSM dis-
tance combines various disjoint abstraction databases,
one for each process of the system.

The FSM distance heuristic is monotone and has
been ported to program model checking to determine
distances in Java byte- and C++ object-code (Leven
et al. 2004).

Abstraction Databases in Practice

Nowadays, model checkers are frequently used for ad-
vanced Al planning, e.g. the Model-Based Planner
(MBP) by Cimatti et al.! based on nuSMV has been
applied for solving non-deterministic and conformant
planning problems, including partial observable state
variables and temporally extended goals. On the other
hand, first model checking problems have been auto-
matically converted to planning benchmarks?. Our
empirical work takes the SPIN model checker (Holz-
mann 1997) as a practical case study model together
with two tools: HSF-SPIN and a-SPIN.

SPIN takes a protocol specification written in the
Promela language and produces source files that en-
code the state description and state transition func-
tion in native C code. These are linked together with
the validator to allow exploration of the model. The
user interface XSPIN allows to code the model, to run
the validator with different parameters, to show the in-

"http://sra.itc.it /tools/mbp
2http://ipc.icaps-conference.org

ternal automata representation, and to simulate traces
with message sequence charts.

a-SPIN (Merino et al. 2002) extends the SPIN val-
idator by allowing the user to abstract the Promela
model with suitable abstraction functions. The func-
tions can be archived in a library for later reuse. The
tool especially features data abstraction to the finite
domain variables in the systems. The information flow
is as follows. The model is scanned, processed with
an XML parser, and simplified by the user selecting
appropriate variables and abstraction functions, also
coming in XML format. The result is another XML
representation of the abstract model which, in turn, is
translated back into Promela. Consequently, the ap-
proach produces no source conflict with SPIN.

The experimental HSF-SPIN model checker has
been designed to allow different search algorithms to
apply by providing a general state expanding subrou-
tine, that generates a list of all successors of a sys-
tem state. In its current implementation it provides
blind search algorithms like depth-first search (DFS)
and breadth-first search (BFS), heuristic search algo-
rithms like best-first search, A* and IDA*, and local
search algorithms like hill-climbing and genetic algo-
rithms. The set of evaluation function ranges from
property specific heuristics to user and structural ones.
Moreover, exploration refinements like state compres-
sion, bit-state hashing, partial order and symmetry re-
duction have been successfully integrated to this al-
gorithm portfolio. HSF-SPIN can handle a significant
fraction of Promela and works with the same trace for-
mat as SPIN.

To use general abstraction functions we combined
a-SPIN and HSF-SPIN as follows. First, HSF-SPIN
has been extended to generate abstraction databases.
With each state we attached a list of all predecessors
on which a state is encountered. In fact this reflects
the inverse of the underlying state space graph. In case
of an error, the traversal is not terminated but the ab-
stract error states are collected in a (priority) queue.
Next, backward traversal is invoked on the implicitly
represented inverse of the state space graph, starting
with the queued set of abstract error states. Since we
need estimates for each abstract state, we chose Dijk-
stra’s single source all target shortest path algorithm.
The established shortest path distances to the abstract
error state are associated with each state in the hash
table, yielding our abstraction database.

In the experiments we choose a problem that comes
with the a-SPIN tool. By the novelty of the product
the library of available abstractions and corresponding
models is small. We took the model of an air condi-
tion system with n users in the room, everyone trying

heuristic | states time space
hy 21,987 2.1s + 6.9s | 8,449 KB

Popse 381 13.0s 4+ 0.01s 13 MB
h=0 26,087 6.6s 5,953 KB
hm 25,195 6.6s 7,129 KB
hy 25,936 7.1s 5.937 KB

Table 1: Using A* with abstraction database and other
heuristics in the air condition model with n = 2. Ab-
straction databases time is split into file reading and
pure search.

to change the temperature. We selected n € {2,3}.
The model contained no bug, so that we had to seed
one. We choose a simple assertion to be violated by the
system in large depths. In the original system temper-
ature ranges over integers. Heuristic (h,) corresponds
to an abstraction function that reduces the domain of
the temperature. To illustrate the maximal reduction
of our method and to indicate the range of different
estimator functions that can be established, we also
conducted experiments with an abstraction databases
for the original model, which was possible, since the
state spaces were small enough. Hence, heuristic hx),
represents the actual optimal distance between system
states. We compare the results of the pattern database
heuristics with BFS (A = 0) and with previously pub-
lished heuristics like the formula-based heuristic (hy)
and the FSM distance (h,,) that takes a given error
trail as an additional input. Tables 1 and 2 sum-
marize the outcome of our small set of experiments.
As expected, more space is needed to memorize the
databases.

However, the abstraction database heuristics signifi-
cantly reduced the number of states that are explored
during search. Compared to the other heuristics the
savings of h, in the number of states are larger by a
factor of about 5. For n = 2 an abstraction database
was built, containing 15,858 states found while explor-
ing the inverse graph structure. The initial state was
re-encountered in depth 18 of 28 in total. For n = 3
the final databases had 28,782 entries, generated in 32
layers with the initial state re-established in depth 19.
On our 248 MHz SUN Ultra the time to create the
databases accumulated to about 10s for n = 2, and
to about 6 min for n = 3. We observe a time slow-
down in the exploration with respect to BFS and A*
search and the other heuristic estimates. Time con-
sumption for exploration increased from about 7s to
about 9s (n = 2) and from about 1 min to about 1:30
min (n = 3). The profiler showed that almost all of
the extra time is due to file scanning.

heuristic states time space
hy 149,818 | 22s + 1:07 min | 35 MB

D 532 1:45 min + 2.2s | 94 MB
h=0 183,475 1:01 min 24 MB
hom 176,382 1:02 min 24 MB
hy 182,961 1:07 min 24 MB

Table 2: Using A* with abstraction database and other
heuristics in the air condition model with n = 3. Ab-
straction database time is split into file reading and
pure search.

That we have not established a larger time gain dur-
ing search is due to the additional time for the search in
the (abstract) hash table. Twice as many calls to the
hash table and state equality checks were needed. For
n = 2 and BFS, we observed 124,463 table look-ups,
while the abstraction database heuristic yields 222,925
calls. For n = 3 we found a discrepancy of about 1.2
to about 2.03 million calls.

For perfect databases (h,~) the exploration results
were by far better. The exploration turned out to be
optimal in the number of state expansions. Search was
no longer harmed by additional hash table operations.
With 1ms (n = 2) and 2.2s (n = 3) the pure search
time was smaller than all other approaches by orders of
magnitude. For n = 3 the construction of the perfect
database with 805,760 entries took about 1.5 hours.
For n = 2 the database with 113,072 entries was build
in less than a minute.

Conclusions

This work combines abstraction reduction with heuris-
tic search in order to improve the bug-finding capabil-
ities of model checking. Automatically created heuris-
tics in form of pre-computed heuristic databases are
obtained by a backward traversal of the abstract state
space. The entries are retrieved as estimate values
error detection in the original system. The general
scheme allows to refine heuristics for explicit and sym-
bolic model checkers, where in this paper we concen-
trated on the explicit state model checking. Symbolic
pattern databases for model checking are currently
studied by (Nymeyer and Qian 2004). The abstraction
process that comes along with every heuristic estima-
tion can be automated and is suited to general model
checking. The approach is not limited to data abstrac-
tion, any simulation with an abstract state space that
fits into main memory can be used to enhance error
detection. The new aspect is not only to consider the
existence of behaviors in abstract space but also dis-
tance information.

Acknowledgements The first author is supported
by DFG in the projects ED 74/2 and ED 74/3. The
second author is supported by the European Research
Training Network SEGRAVIS.

References

E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, 1999.

E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and
H. Veith. Counterexample-guided abstraction refine-
ment. In Computer-Aided Verification (CAV), pages
154-169, 2000.

J. C. Culberson and J. Schaeffer. Pattern databases.
Computational Intelligence, 14(4):318-334, 1998.

S. Edelkamp, A. Lluch-Lafuente, and S. Leue. Di-
rected model-checking in HSF-SPIN. In Model Check-
ing Software (SPIN), pages 57-79, 2001.

S. Edelkamp. Promela planning. In Model Checking
Software (SPIN), pages 197-212, 2003.

A. Groce and W. Visser. Heuristic model checking for
Java programs. Software Tools for Technology Trans-
fer, 2004.

P. E. Hart, N. J. Nilsson, and B. Raphael. A formal
basis for heuristic determination of minimum path
cost. IEEFE Transactions on Systems Science and Cy-
bernetics, 4:100-107, 1968.

G. J. Holzmann. The model checker Spin. [EEE
Transactions on Software Engineering, 23(5):279—
295, 1997.

P. Leven, T. Mehler, and S. Edelkamp. Directed er-
ror detection in C++ with the assembly-level model
checker SSEAM. In Model Checking Software (SPIN),
2004.

P. Merino, M. del Mar Gallardo, J. Martinez, and
E. Pimentel. aSpin: Extending spin with abstraction.
In Model Checking Software (SPIN), pages 254-258,
2002.

R. Milner. An algebraic definition of simulation be-
tween programs. In Joint Conference of Artificial In-
telligence (IJCAI), pages 481-489, 1995.

A. Nymeyer and K. Qian. Guided invariant model
checking based on abastraction and symbolic pattern
databases. In Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS), 2004.

C.S. Pasareanu, M. B.Dwyer, and W. Visser. Finding
feasible counter-examples when model checking ab-
stracted Java programs. In Tools and Algorithms for
the Construction and Analysis of Systems (TACAS),
pages 284-298, 2001.

S. Graf and H. Saidi. Construction of abstract state
graphs with PVS. In Computer Aided Verification
(CAV), pages 72-83, 1997.

H. Saidi. Model checking guided abstraction and anal-
ysis. In Static Analysis Symposium (SAS), pages 377
396, 2000.

