Protocol Verification with Heuristic Search

Stefan Edelkamp and Alberto Lluch Lafuente and Stefan Leue
Institut fiir Informatik
Albert-Ludwigs-Universitit
Georges-Kdohler-Allee
D-79110 Freiburg
eMail: {edelkamp,lafuente,leue}@informatik.uni-freiburg.de

Abstract

We present an approach to reconcile explicit state
model checking and heuristic directed search. We pro-
vide experimental evidence that the model checking
problem for concurrent systems, such as communica-
tions protocols, can be solved more efficiently, since
finding a state violating a property can be understood
as a directed search problem. In our work we combine
the expressive power and implementation efficiency of
the SPIN model checker with the HSF heuristic search
workbench, yielding the HSF-SPIN tool that we have
implemented. We start off from the A* algorithm and
some of its derivatives and define heuristics for var-
ious system properties that guide the search so that
it finds error states faster. In this paper we focus on
safety properties and provide heuristics for invariant
and assertion violation and deadlock detection. We
provide experimental results for applying HSF-SPIN
to two toy protocols and one real world protocol, the
CORBA GIOP protocol.

Introduction

Concurrent software systems, such as communication
protocols, are inherently difficult to debug. This is
due to the non-deterministic structure of concurrent
systems which causes a combinatorial explosion of the
system’s global state space. Even if a thorough devel-
opment methodology is applied, software design docu-
ments as well as actual code typically contain numer-
ous residual faults. Classical software quality assurance
measures such as code inspections, simulations and test-
ing fail to find the majority of faults in real-world sized
protocols and telecommunication software models since
they usually only cover a small fraction of the entire
system’s state space. Model checking (Clarke, Grum-
berg, & Peled 2000) has been proven an efficient method
to find residual design and code faults. In this paper
the focus is on improving the efficiency of error detec-
tion in communication protocols through model check-
ing based on heuristic search techniques.

In model checking, concurrent systems are modeled
as sets of communicating finite state machines (CF-

Copyright © 2001, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

SMs) that communicate either via synchronous or asyn-
chronous message passing, or via shared variables. The
global state transition graph is that portion of the cross
product of the CFSMs that is reachable from the initial
system state. System properties are often expressed
in terms of assertions, dead- and life-lock predicates,
temporal logic formulae or property automata. The
model checker evaluates the validity of the properties
over the model by interpreting its global state tran-
sition graph as a Kripke structure. Safety properties
can be validated through a simple depth-first search
on the system’s state space, for liveness properties a
two-fold nested depth-first search is necessary (Clarke,
Grumberg, & Peled 2000). When property violations
are detected, the model checker will return a witness
which consists of a trace of events leading from the ini-
tial state into the violating state. The witness can eas-
ily be constructed from the contents of the search stack
at the moment when the property violation has been
observed.

Model checking techniques fall into two different
approaches: The first one, called symbolic model
checking (McMillan 1998), uses binary decision dia-
grams (Bryant 1985) to represent the state set. The
second approach represents states explicitly and ap-
plies reduction techniques such as partial order reduc-
tion (Peled 1998) and partial search (Holzmann 1990)
to traverse the global state graph.

In a practical software engineering setting model
checking is typically applied in two different ways. In
complete model verification a given state transition
model is completely explored and the desired properties
are verified. However, the size of the state graph is often
so large that it is impractical to traverse all states. In
this situation, only partial searches are performed and
hence the properties are only partially validated. Par-
tial validation has two benefits. Residual design errors
are typically located rather quickly. However, should
the state space search not terminate within a reason-
able time frame, or should memory bounds be exceeded,
then one can at least conclude that the probability of
residual design errors has been greatly reduced. This
increases the overall confidence in the correctness of the
model or code that has been scrutinized.

Various verification tools for concurrent systems
based on model checking have been developed, most
notably the SPIN validator (Holzmann 1990; 1997).
SPIN parses the concurrent protocol specification lan-
guage Promela and applies possibly bounded depth-
first search variants like Supertrace to examine vari-
ous beams in the search trees (Holzmann 1987). It
allows to apply partial order reduction to reduce the
state space (Peled 1998) and bit-state hashing (Holz-
mann 1990) to compress the state description of several
hundred bits down to only one or two to build hash
tables with over 2°° entries. Bit-state hashing algo-
rithms are not complete, since the hash function does
not disambiguate all synonyms. Moreover, due to the
depth-first traversal that SPIN employs, the length of
a witness is not minimal. However, since the density
of errors in the cross product state space is rather high
compared to that of single agent search problems (that
usually only have one target state), SPIN succeeds in
finding bugs efficiently, even though they are often lo-
cated at large search depths. We chose SPIN as a basis
for our implementation and provide an interface for Al
search algorithms for which there is ample evidence of
their capability to deal with huge problem spaces. Our
paper shows that using the power of heuristic search al-
gorithms we are capable of finding errors much faster,
hence requiring less search steps as well as less memory
which allows us to analyze more complex problems.

Central to our work is the A* (Hart, Nilsson, &
Raphael 1968) search algorithm which is a variant of
Dijkstra’s single-source shortest-path algorithm. A*
uses edges that are re-weighted by an estimator func-
tion that takes additional search information into ac-
count (Cormen, Leiserson, & Rivest 1990). Cur-
rent heuristic search techniques such as iterative deep-
ening (Korf 1985), transposition tables (Reinefeld &
Marsland 1994), finite state machine pruning (Taylor &
Korf 1993), relevance cuts (Junghanns 1999), symbolic
representation (Edelkamp & Reffel 1998) and memory-
based heuristics (Hernddvogyi & Holte 2000) efficiently
solve problems with 10?° states and beyond, which com-
pares with performance gains in symbolic model check-
ing (Burch et al. 1992).

In our work we handle safety errors such as violations
of system invariants, assertion violations and deadlocks.
Since the state space reduction due to heuristic search
algorithms strongly depends on the quality of the es-
timate we have developed different heuristics for these
purposes based on communication queue load, process
activeness and distances to dangerous process states.

The structure of our paper is as follows: First we take
a closer look at communication protocols and their rep-
resentations in Promela. Then we address the archi-
tecture of the new protocol validator HSF-SPIN. Af-
terwards we present different known heuristic search
strategies and present a new search paradigm based on

! Available from
http://netlib.bell-labs.com/netlib/spin.

the combination of partial and heuristic search. We
then discuss the automatic generation of heuristic esti-
mates for safety properties in communication protocols.
The impact of our heuristics on three protocol exam-
ples is evaluated. Finally, we discuss the results, draw
conclusions and indicate current and future work.

Protocol Modeling with Promela

Promela is a concurrent modeling language for the de-
scription of extended communicating finite state ma-
chine models. A Promela model consists of a set of
concurrent processes, known as “proctypes” in Promela
parlance. Proctypes can be dynamically instantiated
or deleted. Inside a proctype, execution is strictly se-
quential, and control flow is specified using Dijkstra-like
guarded commands, a goto/labeling mechanism and in-
lined procedure calls. Inter proctype communication is
either by shared variables, by synchronous rendez-vous
message passing, or by buffered asynchronous message
passing. The semantics of Promela is not fully formal-
ized and the SPIN tool’s interpretation is often used
as reference, in particular the interpretation provided
by SPIN’s state space exploration component. Con-
currency in SPIN is interpreted as interleaved state se-
quences. Since Promela was designed to be used in a
model checker special attention was paid to ascertain-
ing the finiteness of the resulting model. The basic data
types all represent finite domains, and the Promela typ-
ing mechanism allows only finite types to be derived.
Asynchronous communication is via buffered channels
with bounded, finite capacity. The number of concur-
rently executing proctype instances is not bounded in
the language definition, but all SPIN implementations
limit the number to a platform-dependent constant.

There are various ways of specifying and validating
state properties in Promela and SPIN. SPIN has built-
in routines checking a Promela model for dead- and
livelocks. To distinguish desired end states from dead-
lock states and in order to identify progress states for
livelock analysis, the user has to apply well-defined la-
bel names to states in the model. Promela also per-
mits the use of assertions in the code which can be
used for pre and post condition-style assertional spec-
ification. Finally, to specify temporal properties, par-
ticularly liveness properties, Promela has a format to
represent Biichi automata called never claims. SPIN
provides a translation from linear time temporal logic
(LTL) formulae into never claims, which greatly facili-
tates property specification with temporal logic.

We exemplify Promela with the well-known dining
philosopher problem posed by Dijkstra. We are con-
fronted with n philosophers sitting around a table and
trying to eat between meditations. Each philosopher
has his own plate of spaghetti and there is a fork be-
tween each plate for a total of n forks. Two forks (a left
and a right one) are necessary and sufficient to start
eating since the spaghetti are very slippery. The life
of a philosopher consists of alternate periods of lunch
and meditation time. The first obvious solution for a

#define MAX_PHILOSOPHERS 8
mtype={fork}
#define left forks[my_id]
#define right forks[(my_id+1)%MAX_PHILOSOPHERS]
chan forks[MAX_PHILOSOPHERS] = [1] of {bit};
proctype philosopher(int my_id)
{ do
::left?fork => /* try to get left fork */
right?fork; /* try to get right fork */
/% eat... %/
left!fork; right!fork /* release forks */
/* meditation... ¥/
od

init
{ byte philosophers=MAX_PHILOSOPHERS;
atomic {
do
::philosophers>0 ->
philosophers—-;
run philosopher(philosophers);
forks [philosophers] !fork
: :philosophers==0 ->
break
od

Table 1: The dining philosophers in Promela.

protocol to get and release the forks is implemented
in Table 1. To get the forks the philosopher tries to
take first the left fork and then tries to take the other.
After eating the philosopher can quitely release both
forks. This solution has a an obvious deadlock: If each
philosopher takes only his left fork there is no further
progress possible for requiring the other one.

The Validator HSF-SPIN

HSF-SPIN merges the SPIN model checker and the
Heuristic Search Framework (HSF) (Edelkamp 1999)
for single-agent exploration problems. The goal of this
merge was for HSF-SPIN to inherit most of the effi-
ciency and functionality of Holzmann’s original source
of SPIN as well as the sophisticated search capabilities
of HSF. In HSF-SPIN we modified the static represen-
tation of states to allow dynamic state vector alloca-
tion, since the predefined maximum size of the vector
is too pessimistic in general. We refined the state de-
scription of SPIN to incorporate solution length infor-
mation, transition labels and predecessors for solution
extraction. We newly implemented universal hashing,
and provided an interface consisting of a node expan-
sion function, initial and goal specification. In order
to direct the search, we realized different heuristic es-
timates. HSF-SPIN also writes trail information to be
visualized in the XSPIN interface. As when working
with SPIN, the verification of a model with HSF-SPIN
is done in two phases: first the generation of an analyzer

of the model, and second the verification run. The pro-
tocol analyzer is generated with the program hsf-spin
which is basically a modification of the SPIN analyzer
generator. By executing hsf-spin -a <model> several
c++ files are generated. These files are part of the source
of the model checker for the given model. They have
to be compiled and linked with the rest of the imple-
mentation, incorporating, for example, data structures,
search algorithms, heuristic estimates, statistics and so-
lution generation. The result is an analyzer which can
be invoked with a wide range of parameters: kind of er-
ror to be detected, applied algorithm, heuristic function
to be used, etc. HSF-SPIN allows textual simulation to
interactively traverse the state space which greatly fa-
cilitates in explaining witnesses that have been found.

We briefly present HSF2, an efficient c++ workbench
to define and solve solitaire games like the (n? — 1)-
Puzzle, Sokoban, and Rubik’s Cube. HSF further in-
cludes efficient implementations for a generalization to
the (n2—1)-Puzzle and some other challenging domains.
Tts predecessor (Miiller, Eckerle, & Ottmann 1996) was
effectively applied in teaching but the implementation
of the heuristic search algorithms were too slow for prac-
tical application purposes. HSF implements classical
and extended AI search strategies and includes differ-
ent automata-based duplicate pruning schemes. Since
such duplicate elimination is supposed to support only
very regular problems, which are typically not present
in concurrent system models, we decided to omit this
feature from the system. A state in HSF is a quadruple:
the packed state description for compactly and uniquely
memorizing problem states and the f-value as the sum
of generating path length and the estimate to a goal
state. For tracking the solution the predecessor and
the transition from the predecessor to the current state
are also stored. The lists of expanded and generated
states are kept in efficient priority queue structures and
hash tables. Conflicts are resolved by chaining.

The software architecture of HSF is designed to com-
bine the workbench design pattern of object-oriented
programming (Gamma et al. 1994) with efficiency as-
pects found in special-purposed heuristic puzzle solvers.
HSF provides an interface for a client-server Java visu-
alization system (Hipke & Schuierer 1999).

Heuristic Search Algorithms

The detection of a safety error consists of finding a
state in which some property is violated. Typically,
the algorithms used for this purpose are depth-first and
breadth-first searches. Depth-first search is memory ef-
ficient, but not very fast in finding target states. In this
section we describe how heuristic search algorithms can
be used instead in order to accelerate the exploration.

A* accommodates the information of the heuristic
h(u), which estimates the minimum cost of a path from

2pvailable from
http://www.informatik.uni-freiburg.de/~edelkamp.

node u to a target node. A heuristic h is called consis-
tent if and only if w(u,v) — h(u) + h(v) > 0 for all u
and v, where w(u,v) denotes the weight along the edge
from u to v. It is called optimistic if it is a lower bound
function. We characterize A* on the basis of Dijkstra’s
algorithm to find shortest paths in (positively) weighted
graphs from a start node s to a set of goal nodes T (Cor-
men, Leiserson, & Rivest 1990). Dijkstra’s algorithm
uses a priority queue maintaining the set of currently
reached yet unexplored nodes. If f(u) denotes the total
weight of the currently best explored path from s to
some node u the algorithm always selects a node with
minimum f-value for expansion, updates its successors’
f-values, and transfers it to the set of visited nodes
with established minimum cost path. A* can be cast as
a search through a re-weighted graph. More precisely,
the edge weights w are replaced by adding the heuris-
tic difference. By this transformation, negative weights
may be introduced, since not all heuristics are consis-
tent. Nodes that have already been expanded might be
encountered on a shorter path. Contrary to Dijkstra’s
algorithm, A* deals with them by possibly re-inserting
nodes from the set of already expanded nodes into the
set of priority queue nodes (re-opening). On every path
from s to u the accumulated weights in the two graph
structures differ by h(s) and h(u) only. Consequently,
re-weighting cannot lead to negatively weighted cycles
so that the problem remains (optimally) solvable. One
can show that given a optimistic heuristic the solution
returned by the algorithm is indeed a shortest one.

Weighted A* | WA* for short, can help when the
estimates are too weak. The combined merit function f
of the generating path length and the heuristic estimate
is weighted with two parameters w, and wp, where w,
influences the generated path length g and wy scales
the heuristic estimate h, i.e. f = wyg + wph. For
wy = w, = 1 WA* reduces to A*, for w, = 0,wp, # 0
we have best-first search, and for wy, # 0,w, = 0 the
algorithm reduces to breadth-first search.

Iterative deepening A* | IDA* (Korf 1985) for
short, expands all nodes in consecutive bounded depth-
first search traversal until the next horizon value has
been reached. As long as main memory can be al-
located, transposition tables memorize states and up-
dates to state merits.

Partial Search Algorithms

Invoking partial search implies that a retrieved node
might be an unexpected synonym, since there is no
way to distinguish a real duplicate from a false one.
Therefore, reopening a node is very dangerous; the in-
formation of generating path length and predecessor
path length might be false. Subsequently, we omit re-
opening in partial methods. Note that reopening will
not be encountered when the heuristic function is con-
sistent, since this implies that the priorities f =g + h

are monotonically increasing: f(u) = g(u) + h(u) <
g(v)+w(u,v)+h(v)—w(u,v) = f(v). Fortunately, most
heuristics satisfy this criterion. The lack of state space
coverage in partial search is compensated for by repeat-
ing the search with restarts on different hash functions.
We implemented a set of universal hash functions (Cor-
men, Leiserson, & Rivest 1990) from which the current
one is randomly chosen.

Partial A* | the bit-state version of A*, omits the
packed state description for each fully expanded node,
which is the list of visited nodes that are not contained
in the priority queue. For further compaction we sepa-
rate the visited list from the set of horizon nodes such
that for the latter only the executed move and link to
the predecessor of a node remain. These items are nec-
essary since the access to the priority queue is almost
impossible to predict and through the uncorrelated ac-
cess on the horizon once the goal is found, the solution
path cannot be generated.

Partial IDA* | like IDA*, can track the solution
path on the recursion stack no predecessor link is
needed. Therefore, the transposition table in IDA* is
represented by a large bit-vector. A hash function maps
a state S to position BT'(S). A state S is stored by set-
ting the bit at BT'(S) and searched by querying BT'(.S).

Unfortunately, the bit-state transposition table is ini-
tialized in each iteration of IDA*, since neither the pre-
decessor nor the f-value are present to distinguish the
current iteration from the previous ones. Since the
bit-vector is large this seems to be the only bottle-
neck of this approach. One solution to this problems
is to dynamically access the bit-vector depending on
the number of expansions of the previous iteration and
the branching factor, i.e. the ratio of nodes expanded
in two successive iterations.

Heuristics for Errors in Protocols

In this section we introduce some search heuristics to
be used in the detection of errors in models written in
Promela. We consider the violation of system invari-
ants, the violation of assertions, and deadlocks. We
use S to denote global system states. In S we have a
set P of currently active processes (proctype instances)
Py, Py, Ps,.... For a process P; with pc; we denote the
current local state (program counter), and 75 is the set
of transitions within the proctype instance P;.

Violation of Invariants System invariants are state
predicates that hold over every system state S. To ob-
tain estimator functions it is necessary to estimate the
number of system transitions until a state is reached
where the invariant does not hold. Given a logical pred-
icate f let Hy(S) an estimation of the number of tran-
sitions necessary until a state S’ is reached where f(S’)
holds, starting from state S. Similarly, we fix H¢(S) as
the number of transitions necessary until f is violated.

A first approach to recursively define these functions
is as given in the following table (a denotes a Boolean
variable and g and h are logical predicates):

f Hy (S) Hy(S)
true 0 oo
false oo 0
a if a then 0 else 1 if a then 1 else 0

-9 Hg(s) Hg(S)
gV h | min{Hy(S), Hn(S)} H;(S)+ Hy(S)

gAh Hy(S)+ Hin(S) | min{Hy(S),Hn(S)}

In the definition of Hyn, and Hgyp, we can replace
plus (+) with maz if we want a lower bound. Note that
in some cases the proposed definition is not optimistic,
e.g., when repeated terms appear in g and h.

System invariants may contain other terms such as
relational operators and Boolean functions over queues.
Thus Hy and Hj can be fixed as follows:

f Hy (S)

Full(q) capacity(q) — length(q)
empty(q) length(q)
q?[t] minimal prefix of ¢ without ¢

(+1 if ¢ contains no message tagged with t)

a®b if a ® b then 0, else 1

f H;(S)

full(q) if full(g) then 1, else 0
empty(q) if empty(q) then 1, else 0
q?[t] if head(q) # t then 0,

else maximal prefix of ¢’s

a®b if a ® b then 1, else 0

The function ¢?[t] is read as message at head of queue
q tagged with t. All other functions are self-explaining.
The expressions of the right sides are applied to state
S. For example, capacity(q) should be interpreted as
capacity of queue q in state S.

We have used the symbol ® for representing rela-
tional operators (=,#,<,<,>,>). We could refine
Hugp and H,gs. Supposing that in the model, vari-
ables are only decremented or incremented, we could
define H,_, as a — b. However, variables are usually
used in assignments (typically in read operations). A
possible idea is to perform an analysis of the model,
extracting the necessary information to decide how to
optimistically define the estimate functions.

Another statement that typically appears in system
invariants is the at predicate which is used to express
that a process P with a process id pid of a given proc-
type PT is in its local control state s. In Promela this
is expressed as PT[pid]@s. We will write this as i@s,
with s € S;. We extend our estimates as follows:

f Hy(S) Hy(S)
i@Qs | D;(pci,s) | if pc; =s 1, else 0

We use pc; to express the state of process P; in
state S. The value D;(u,v) is the minimal number of
transitions necessary for the finite state machine P; to
reach state u starting from state v, where u,v € ;.
The matrix D; can be pre-computed with the all-pairs
shortest-path algorithm of Floyd/Warshall in O(|S;|?)

time (Cormen, Leiserson, & Rivest 1990). Note that
|S;| is small in comparison to the overall search space.

Violations of Assertions The Promela statement
assert allows to label the model with logical asser-
tions. Given that an assertion a labels a transition
(u,v), with u,v € S;, then we say a is violated if the
formula f = (iQu) A —a is satisfied. We denote f as as-
sertion(i,u,a) to distinguish assertions in our heuristic
functions. The next step is to extend our functions H
and H. One possible solution is:

7 G
assertion(P;, u, a) H;04(S) + Ha(S) | not defined

As above, when aiming at optimal counterexamples
we can use maz instead of plus (+). Note that there is
no meaningful interpretation for H in this case.

Deadlock Detection In concurrent systems, a dead-
lock occurs if at least a subset of processes and resources
is in a cyclic wait situation. In Promela, S is a dead-
lock state if there is no possible transition from S to a
successor state S’ and at least one of the processes of
the system is not in a wvalid endstate. Hence, no pro-
cess has a statement that is executable. In Promela,
there are statements that are always executable: assign-
ments, else statements, run statements (used to start
processes), etc. For other statements such as send or
receive operations or statements that involve the eval-
uation of a guard, executability depends on the current
state of the system. For example, a send operation
q!m is only executable if the queue q is not full. The
following table describes executability conditions for a
significant portion of Promela statements:

untagged receive operation (q?x, with x variable)
not executable if the queue is empty.

tagged receive operations (q?t, with t tag)
not executable if the head of the queue is a message
tagged with a different tag than t.

send operations (q!m) not executable if q is full.

conditions (boolean expressions) not executable if
the value of the condition is false.

From the above characterization we derive the
boolean function ezxecutable, ranging over tuples of
Promela statements and global system states, as fol-
lows:

label(t) | ezecutable(t,S)

q?x, x variable —empty(q)
q?t, t tag q7?[t]

q'm = full(q)

condition c c

We now turn to the problem of estimating the number
of transitions necessary to reach a deadlock state.

Active Processes As mentioned above, in a dead-
lock state all processes are blocked. A naive approach
to deriving an estimator function is is to count the num-
ber of active (or non-blocked) processes in the current

state S:
H,p(s) = > 1
P; €PAactive(i,S)

where active(i, S) is defined as

active(i, S) = /\

t=(pc; W)ET;

- ezecutable(t)

The problem with this approach is that it is not very
informative. In typical two-side protocols in which only
two processes appear (sender and receiver for example)
the range of values of this estimate is very small.

Deadlocks as Formulae In a deadlock state S’ all
process are blocked, i.e.,

deadlock = /\ blocked(i, pci(S'), S")
P;eP
The predicate blocked(i, pc;(S'),S') is defined as: in
the system state S’ the process P; is blocked in its local

state pc;(S') (which is the program counter of P; in the
deadlock state). This predicate is defined as

blocked(i,u, §) = (i@u) A\

t=(u,v)€T;

- ezecutable(t, S).

Given the deadlock formula we would like to imple-
ment deadlock detection using a directed search strat-
egy with Hgeqqrocr, as heuristic estimate function. Un-
fortunately, since we do not know the set of states in
which the system will go into a deadlock in advance, we
cannot compute the formula at exploration time.

Approximating the Deadlock Formula A first
approach is to determine in which states a process can
block. We call such states dangerous.

A process P; is blocked if blocked(i, u,S) is valid for
some u € C;, with C; being the set of dangerous states
of P;. We define blocked(i, S) as a predicate for process
P; to be blocked in system state S:

blocked(i,S) = \/ blocked(i, S,u)
ueC;

Therefore, we approximate the deadlock formula with

deadlock’ =\ blocked(i, S)

P;,eP

The search for deadlocks can be now performed with
Hcadiock as an estimate.

Without designer intervention, all the reads, sends
and conditions are considered dangerous. Additionally,
the designer can explicitly define which states of the
processes are dangerous by including Promela labels
with prefix danger into the protocol specification.

Experimental Results

All experimental results were produced on a SUN Work-
station, UltraSPARC-II with 248 MHz. The SPIN com-
parison values were generated with version 3.3 of the
validator. If nothing else is stated, the parameters while
experimenting with SPIN and HSF-SPIN are as follows:

Parameter SPIN HSF-SPIN
Partial Order Reduction | yes no
Supertrace mode no no
Memory Limit 512 MB 512 MB
Depth bound 10,000 10,000

We will present experimental results on the detection
of deadlocks in three scalable protocols using the A* al-
gorithm with different heuristic functions. The heuris-
tic estimates we use are H,p and Hyeqdrock - As indi-
cated above, the approximation of the deadlock formula
can be improved with hand-coded labels, which reduces
the set of dangerous states (option +U). On the auto-
matic side we experiment with dangerous states accord-
ing to send operations (option +S), receive operations
(option +R) or conditions (option +C).

Table 2 depicts experimental data for different in-
stances of the dining philosophers problem. We tested
A* with the following heuristic estimates: H,), is the ac-
tiveness based heuristic, while H is the formula based
heuristic. When performing a breadth-first search (col-
umn H = 0) the number of expanded states grows ex-
ponentially, such that the 12-philosophers protocol is
already intractable. SPIN is capable of solving all in-
stances of the protocol with less than 16 philosophers,
but offers long solution trails, e.g. 1,362 steps in the
8-philosophers problem, compared to the optimal num-
ber of 34. The results achieved by A* are superior:
optimal solutions are found in all cases and the num-
ber of expanded states scales linearly. Moreover, for
some heuristics the number of expansions matches the
solution depth.

[2] | H=0] Hap | H +SRC | H; + R | SPIN
2 | exp 13 10 10 10 14
len 10| 10 10 10 10
3 [exp 23 | 16 16 14 22
len 14| 14 14 14 18
4 | exp 54 | 21 21 18 75
len 18 | 18 18 18 54
8 | exp | 2899 [41 41 34 1,797
len 34 | 34 34 34 | 1,362
12 | exp - et 61 50 | 278,007
len -| 50 50 50 | 9,998
16 | exp - s 81 68 -
len -| 68 68 68
25 | exp - | 126 126 102
len - | 102 102 102

Table 2: Number of expanded states and solution
lengths achieved by A* in the dining philosophers pro-
tocol (p=number of philosophers).

Table 3 refers to experiments with the optical tele-
graph protocol and includes experimental results with
best-first search (BF). The breadth-first search algo-
rithm achieves optimal solutions, but it is unable to
solve instances with more than 6 stations. A* finds op-
timal solutions, but in the most cases it does not scale
well. 'With the formula-based heuristic A* is not ca-
pable of solving problems with more than 9 stations.
Surprisingly, with an even number of stations A* with
H,, is optimal, but with an odd number of stations the
number of expanded states grows exponentially. SPIN
scales linearly offering near-to-optimal solutions. This
is due to the traversal order of depth-first search, which
in this case is close to optimal. The best-first search
algorithm with H,, the number of expanded nodes and
the length of the solution trail match.

[2] | H=0] Ha. | Hf+U | BF [SPIN
2 | exp 42 14 15] 14 17
len 14 14 14 | 14 16

3 | exp 296 96 73 | 21 24
len 21 21 21 | 21 23

4 | exp 1,772 26 48 | 26 31
len 26 26 26 | 26 30

5 | exp | 17,562 | 1,451 839 | 33 38
len 33 33 33 | 33 37

6 | exp | 110,746 38 366 | 38 45
len 38 38 38 | 38 44

7 | exp - [11630 | 11512 45 52
len - 45 45 | 45 51

8 | exp - 50 4,779 | 50 59
len - 50 50 | 50 58

9 exp - - - 57 66
len - - - | a7 65

10 | exp - 62 | 68,052 | 62 73
len - 62 62 | 62 72

11 exp - - - 69 80
len - - - | 69 79

12 | exp - 74 - s 87
len - 74 -l 86

Table 3: Number of expanded nodes and solution
lengths achieved by A* the optical telegraph protocol
(p=number of stations). In best-first search, H,, has
been used as an estimate.

Tables 4 and 5 show experimental results for a real-
world protocol: the CORBA General Inter Orb Pro-
tocol (Kamel & Leue 2000) (GIOP for brevity). The
algorithm evaluated in Table 4 is best-first search. The
solution lengths are substantially better than the solu-
tion lengths offered by SPIN except in the simplest con-
figuration. Note that in some cases, SPIN’s solutions
are about 4 times larger. Table 5 shows the effect of ap-
plying WA* with H,, and different values of wy, in the
GIOP protocol. With larger values of w, WA* is able
to solve larger problems, but with longer counterexam-
ples. The extreme case is best-first search (wy, = 0): it
scales best in the number of expanded nodes but one
pays a price in terms of solution lengths.

XD | H=0] H;+SRC | H;+ SR | H; +U | SPIN
1,1 | exp | 3,571 992 1,342 128 308
len 54 61 61 55 60

1,2 | exp | 53,547 108 749 123 376
len 60 61 95 61 135

1,3 | exp - 670 1,173 158 446
len - 79 86 79 210

2,4 | exp - 1,232 1,198 682 517
len - 113 97 82 391

Table 4: Number of expanded states and solution
lengths achieved by best-first in the GIOP protocol
(p=clients,g=servers).

[p.q] [wh=1] wn=4] wn=16 | wa=32 | wg=0
11 | exp | 2,944 | 1,530 104 337 228
len 54 54 54 54 72

1,2 | exp | 38,833 | 15,565 1478 1,234 314
len 60 60 60 60 82

1,3 | exp - - [22,813 9,342 152
len - - 70 78 111

24 | exp - - [47634 116
len . . . 81 112

2,5 | exp - - - ; 121
len - - - - 117

Table 5: Number of expanded nodes and counterex-
ample length achieved by WA* with H,, and different
values of wy, and wy, in the GIOP protocol (p=clients,
g=servers). If w, or wy are not cited then their value
is set to 1.

Table 6 depicts the results of searching the GIOP
protocol with 1 server and 3 clients. Given 1 GByte of
main memory A* can solve this problem with 545,141
node expansions. The minimal counterexample length
is 70. With a limit of 60 MByte A* runs out of mem-
ory. The same bound yields a full transposition table
in IDA* at depth 50 and a drastic increase in the num-
ber of expanded nodes, such that the time limit of one
hour is exceeded in a few iterations. Bit-state hashing
solves the problem in the optimal number of iterations
according to the given time and memory bound. In
the last iteration 5,752,690 elements were stored. The
prior call of IDA* helps to avoid initialization time for
the bit-vector but the difference in the number of ex-
pansion are very small, even though we provided twice
as much memory.

Related Work

There are two approaches that apply guided and heuris-
tic search techniques to symbolic model checking:
Validation with Guided Search of the State Space uses
BDD-based symbolic search of the Mur¢ validation
tool (Yang & Dill 1998). The best first search procedure
incorporates symbolic information based on the Ham-

len | IDA*+TT A* IDA*+BT | IDA*+BT+TT
47 29,027 29,027 29,020 29,027
48 34,439 34,439 34,432 34,439
49 40,508 40,508 40,499 40,508
50 46,991 - 46,948 46,948
51 71,944 - 54,206 54,206
52 265,365 - 62,408 62,408
53 | 1,500,812 - 71,872 71,872
54 - - 83,264 83,264
55 - - 97,303 97,303
56 - - 114,184 114,184
57 - - 133,755 133,755
58 - - 155,772 155,772
59 - - 179,759 179,759
60 - - 205,124 205,124
61 - - 231,400 231,400
62 - - 258,487 258,487
63 - - 286,695 286,695
64 - - 316,571 316,571
65 - - 347,998 347,998
66 - - 381,171 381,171
67 - - 416,194 416,194
68 - - 454,319 454,319
69 - - 495,364 495,364
70 - - 539,555 539,555

Table 6: The number of expansions with respect to
different algorithms and increasing search depth in the
GIOP protocol (1 server and 3 clients) with the H,p
heuristic. TT abbreviates a transposition table and BT
abbreviates a bit-state hash table.

ming distance between two states. The other consid-
ered options target enlargement (error state is searched
backwards with bounded depth), Tracks (approxima-
tion of pre-images) and Guideposts (explicit hints) are
not solution length approximations.

Directed Model Checking extends the pcke model
checker (Biere 1997) with a symbolic variant of the A*
algorithm (Reffel & Edelkamp 1999) in finding bugs of
scalable hardware circuits like the tree-arbiter and the
DME. The authors applied a backward, so-called re-
finement search to infer the estimate: The error speci-
fication is broadcasted within the circuit until a given
refinement depth is reached.

For explicit state model checking the use of best-first
exploration for protocol verification has been investi-
gated in the PROVAT strategy (Lin, Chu, & Liu 1988).
The system assumes that the two only available proto-
col operations are send and receive. The authors de-
scribe two different kinds of heuristics: global heuristics
and move ordering heuristics. Both approaches split
into three parts for different kinds of errors: unspeci-
fied reception, deadlocks and channel overflow. Global
heuristics correspond to the ordering of the priority
queue and in case of deadlock detection, the estimate
is the weighted sum of the number of states that try to

receive message from empty queues and the number of
states that try to send a message to a full queue. For
ordering the moves receive operations are considered
first with ties broken in favor of the shortest queue. We
have re-implemented the PROVAT strategy, but in the
experiments the automatic inferred heuristics H,, and
Hgcoqrocr scale exponentially better.

Very recently symbolic model checking techniques
have been reconciled with AI planning strategies. It
has been argued that model checking and planning are
identical (Giunchiglia & Traverso 1999). Communica-
tion protocols specify non-deterministic planning prob-
lems with resources. However, a single-state verification
planner has not been developed although it has recently
been shown that some standard LTL specifications can
be parsed into conditional operators with quantified ef-
fects (Rintanen 2000). Our approach provides another
bridge for the gap between Al-planning and verifica-
tion. Promela can be considered an input language for
non-deterministic planning problem in which channels
and shared variables represent resources. A planning
goal is encoded as a predicate that violates a certain
assertion such that directed search methods apply.

Conclusion and Future Work

We have shown that the efficiency of protocol vali-
dation based on model checking can greatly benefit
from directed and heuristic search. Our approach cen-
ters around variants of the A* algorithm. We dis-
cussed weighted A*, iterative deepening and partial
search variants of these algorithms. Next we introduced
weighting functions to be used in heuristics for invariant
verification, assertion violation and deadlock detection.
We described the architecture of the HSF-SPIN tool
which implements the heuristics that we described. We
finally discussed the validation of two toy protocols and
one real world protocol.

Our experiments show that the search heuristics we
proposed can greatly increase the perfomance of model
checking with respect to the number of explored states,
and in particular with respect to the length of error wit-
nesses. In the experiments, best-first search seems to be
the best choice, since it generally scales well in the num-
ber of expanded states compared to the solution length,
being near to optimal in many cases. When aiming at
optimality, A* is effective, but when working with large
protocols it has some drawbacks in performance due to
the weakness of our heuristics. The activeness based
estimate Hyj, is very simple and not very informative.
It works well on protocols with many simple processes,
but not in protocols with few complicated processes,
as our experiments with the GIOP example indicate.
The problem of the formula based heuristic for dead-
locks is that its quality depends on designer aid to de-
termine the set of dangerous processes. We expect that
future research will greatly increase the efficiency of our
heuristics. For instance, the values in the state distance
matrices currently do not adequately reflect the num-
ber of receive operations needed to consume the current

number of elements in the queue. Establishing good es-
timates for the actual number of transpositions without
necessarily encountering a combinatorial explosion is an
important research topic in the near future.

This study focuses on algorithms for detecting safety
property violations. Liveness properties refer to paths
of the state transition graph. The detection of live-
ness property violations entails searching for cycles in
the state graph. This is typically achieved by an algo-
rithm called nested depth-first search. In future work
we will investigate how nested-depth first search can be
improved with directed cycle-detection search. It has
already been shown that nested-depth first search and
partial order reductions can coexist (Holzmann, Peled,
& Yannakakis 1996). It is not yet clear what kind of
heuristic search algorithms could be used to accelerate
the detection of liveness errors. We suspect that the
directed approach can contribute to cycle detection by
minimizing the distance for the state we started from.
We currently re-implement partial order reduction al-
gorithms to achieve speed up through directed search.

Since interfaces in HSF were designed to serve single-
agent search problems, the main effort of implementing
the new protocol validator was to alter the SPIN code
generator to produce c++-source for a single-state prob-
lem representation to be compiled and executed with
different search algorithms. This allows to implement
new search algorithms, hash functions and estimates
without accessing SPIN-source.

For the long term we will develop an integrated proto-
col definition and validation system for Promela proto-
cols that integrates HSF-SPIN and visualization front-
ends for protocol design and visualized error traces.

Acknowledgments Stefan Edelkamp and Alberto L.
Lafuente are supported by the DFG project Heuristic
Search and its Application in Protocol Validation.

References

Biere, A. 1997. ucke - efficient p-calculus model checking.
In Computer Aided Verification, 468-471.

Bryant, R. E. 1985. Symbolic manipulation of boolean
functions using a graphical representation. In DAC, 688—
694.

Burch, J. R.; M.Clarke, E.; McMillian, K. L.; and Hwang,
J. 1992. Symbolic model checking: 10?° states and beyond.
Information and Computation 98(2):142-170.

Clarke, E.; Grumberg, O.; and Peled, D. 2000. Model
Checking. MIT Press.

Cormen, T. H.; Leiserson, C. E.; and Rivest, R. L. 1990.
Introduction to Algorithms. The MIT Press.

Edelkamp, S., and Reffel, F. 1998. OBDDs in heuristic
search. In KI, 81-92.

Edelkamp, S. 1999. Data Structures and Learning Algo-
rithms in State Space Search. Ph.D. Dissertation, Univer-
sity of Freiburg. Infix.

Gamma, E.; Helm, R.; Johnson, R.; and Vlissides, J. 1994.
Design Patterns: Elements of Reusable Object-Oriented
Software. Massachusetts: Addison Wesley.

Giunchiglia, F., and Traverso, P. 1999. Planning as model
checking. In ECP, 1-19.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A
formal basis for heuristic determination of minimum path
cost. IEEE Trans. on SSC 4:100.

Hernddvogyi, I. T., and Holte, R. C. 2000. The automatic
creation of memory-based search heuristics. Submitted to
A1J special issue on heuristic search.

Hipke, C. A., and Schuierer, S. 1999. Vega—a user-
centered approach to the distributed visualization of ge-
ometric algorithms. Technical Report 117, University of
Freiburg.

Holzmann, G.; Peled, D.; and Yannakakis, M. 1996. On
nested depth first search. In The Spin Verification System,
23-32. American Mathematical Society.

Holzmann, G. J. 1987. On limits and possibilities of auto-
mated protocol analysis. In Rudin, H., and West, C., eds.,
Proc. 6th Int. Conf on Protocol Specification, Testing, and
Verification.

Holzmann, G. J. 1990. Design and Validation of Computer
Protocols. Prentice Hall.

Holzmann, G. 1997. The model checker Spin. IEEE Trans.
on Software Engineering 23(5):279-295. Special issue on
Formal Methods in Software Practice.

Junghanns, A. 1999. Pushing the Limits: New Develop-
ments in Single-Agent Search. Ph.D. Dissertation, Univer-
sity of Alberta.

Kamel, M., and Leue, S. 2000. Formalization and val-
idation of the general inter-orb protocol (GIOP) using
Promela and SPIN. In Software Tools for Technology
Transfer, volume 2, 394-409.

Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artificial Intelligence 27(1):97—
109.

Lin, F. J.; Chu, P. M.; and Liu, M. 1988. Protocol verifica-
tion using reachability analysis: the state space explosion
problem and relief strategies. ACM 126-135.

McMillan, K. L. 1998. Symbolic model checking. In Inan,
M. K., and Kurshan, R. P., eds., Verification of Digital and
Hybrid Systems, 117-137. Springer.

Miiller, R.; Eckerle, J.; and Ottmann, T. 1996. An environ-
ment for experiments and simulations in heuristic search.
In Swiridow, A. P.; Widmayer, P.; Oberhoff, W.-D.; and
Unger, H., eds., New Media for Education and Training in
Computer Science, 130 — 139. Infix.

Peled, D. 1998. Partial order reductions. In Inan, M. K.,
and Kurshan, R. P., eds., Verification of Digital and Hybrid
Systems, 117-137. Springer.

Reffel, F., and Edelkamp, S. 1999. Error detection with di-
rected symbolic model checking. In FM, 195-211. Springer.
Reinefeld, A., and Marsland, T. 1994. Enhanced iterative-
deepening search. IEEE Transactions on Pattern Analysis
and Machine Intelligence 16(7):701-710.

Rintanen, J. 2000. Incorporation of temporal logic control
into plan operators. In ECAI 526-530.

Taylor, L. A., and Korf, R. E. 1993. Pruning duplicate
nodes in depth-first search. In AAAI 756-761.

Yang, C. H., and Dill, D. L. 1998. Validation with guided
search of the state space. In DAC, 599-604.

