Architectural Design Rewriting
as an Architecture Description Language

Roberto Bruni Alberto Lluch Lafuente
Ugo Montanari

Department of Computer Science, University of Pisa
{bruni,lafuente,ugo}@di.unipi.it

Abstract

Architectural Design Rewriting (ADR) is a declarative rule-based
approach for the design of dynamic software architectures. The key
features that make ADR a suitable and expressive framework are
the algebraic presentation of graph-based structures and the use of
conditional rewrite rules. These features enable the modelling of,
e.g. hierarchical design, inductively defined reconfigurations and
ordinary computation. Here, we promote ADR as an Architectural
Description Language.

Categories and Subject Descriptors D.2 [Software Engineer-
ing]: Design Tools and Techniques, Software Architectures; G.2.2
[Discrete Mathematics]: Graph Theory—Graphs

Keywords Dynamic Software Architectures, Architectural Styles,
Graphs, Term Rewriting

1. Introduction

Architectural Design Rewriting (ADR) (Bruni et al. 2008b) is a
proposal for the design of reconfigurable software systems, con-
ceived in the spirit of conciliating software architectures and pro-
cess calculi by means of graphical methods. ADR offers a formal
setting where design development, run-time execution and recon-
figuration are defined on the same foot.

The key features of ADR are: (i) hierarchical and graphical
design; (ii) rule-based approach; (iii) algebraic presentation; and
(iv) inductively-defined reconfigurations. Architectures are mod-
elled by typed designs: a kind of interfaced graphs whose inner
items represent the architectural units and their interconnections
and whose interface expresses the overall type and its connection
capabilites. Architectures are designed hierarchically by a set of
composition operators called design productions which enable: (i)
top-down refinement, like replacing an abstract components with
a possibly partial realisation, (ii) bottom-up typing, like deducting
the type of and actual architecture, and (iii) well-formed composi-
tion, like composing some well-typed actual architectures together
so to guarantee that the result is still well-typed.

Domains of valid architectures, i.e. those compliant to styles,
patterns or constraints, are defined in a declarative way by means
of design productions. Such productions have both a functional
reading as valid architectural compositions and a grammar reading
as providing an inductive definition of valid architectures.

In the functional reading, the set of productions defines an alge-
bra of design terms, each encoding the structure of the architecture
and providing a proof of style conformance. The interpretation of a
design term is a design, i.e. the actual architecture.

Reconfiguration and behaviour are given as term rewrite rules
acting over design terms rather than over designs. This has many
advantages: (i) terms compactly and conveniently encode the hier-

Emilio Tuosto

Department of Computer Science, University of
Leicester

etb2@mcs.le.ac.uk

I <4

. f\, ...f\,—;x.

Figure 1. Design of a pipe (type s=). The internal structure is formed
by two partially specified pipes connected in sequence by binding the
respective left and right ports (arrows) directly (connectors are neglected
for simplicity) at the same node (bullet). Only the two ports at the extremes
of the pipe are exposed (waved lines) at the interface (dotted box). The
figure can also be interpreted as a design production composing two pipes
in a pipe or as a refinement of a pipe as two pipes.

archical structure of the architecture; (ii) ordinary term rewriting
techniques allow to specify complex reconfigurations and compu-
tations that can exploit the hierarchical structure encoded in terms;
(iii) preserving properties such as style-conformance during recon-
figuration can be ensured by construction.

2. ADR as ADL

ADR was not conceived as an Architecture Description Language
(ADL) but as a suitable model for style-consistent design and re-
configuration of software architectures. As a matter of fact, ADR
turned out to be a general mechanism, suitable for heterogeneous
models such as network topologies, architectural styles and mod-
elling languages (Bruni et al. 2007). Despite of its generality, we
think that the features of ADR are particularly tailored to ADL
problematics. Indeed, we believe that ADR can be seen as an ADL
itself, as a formal model of existing ADLs, possibly equipping them
with extended features, like conditional reconfigurations. We pro-
mote this vision of ADR by discussing the issues that the software
architectures community retains particularly relevant.

2.1 Components and Connectors

The main actors of ADR are design, which uniformly model both
components and connectors. Designs are technically defined by
hierarchical hyperedges whose internal structure can range from
an empty graph to an arbitrarily complex graph (see Figure 1).

Interface. The interface of a design is given by the tentacles of
the outerface hyperedge. Each tentacle represents a port (resp. role)
of the corresponding component (resp. connector). Attaching a port
to a role is done by connecting the respective tentacles to the same
node. As usual in many ADLs, ports and roles are typed.

Types. Most of the ingredients of ADR such as design terms,
designs, hyperedges and nodes are typed. This enables, e.g. the

—> © <

mlﬂ

> ”

.N...xm. .N..
s

e
o

T ~—"
4] =

aly: ‘

Figure 2. Reconfiguration rule for migrating tasks in a pipe. The design on the left is a pipe (type =) that consists of two concatenated servers of different
types (e and k) to which a collections of tasks of appropiate type (X and ") are attached. The reconfiguration requires 2 to evolve into x/, in order to
migrate from s1 to s2. Types are changed consistently and the design obtained is still of type s=.

construction of style-consistent architectures and the distinction
between design classes (types) and their instances (designs).

Semantics. ADR is a formal model with a well-defined se-
mantics. As a matter of fact, ADR builds on well-founded tech-
niques such as algebraic approaches to graph transformation and
rewrite rules in Plotkin’s structural operational semantics style and
Meseguer’s conditional term rewriting.

Constraints. Architectural constraints are typically given in some
logic-based language. Instead, ADR promotes to encode con-
straints as types when possible: the set of all architectures satisfying
some constraint should correspond to the set of all terms of a cer-
tain type, guaranteeing constraint consistency and its preservation
by construction.

Evolution. Architectural evolution can be given in terms of soft-
ware modes. In each mode different behaviour, constraints or re-
configurations might apply. Modes and mode changes can be suit-
ably modelled in ADR with types and rewrite rules, respectively.

Non-functional properties. The current version of ADR does not
consider non-functional properties. However, we intend to model
QoS aspects by means of constraints systems associated to designs.

2.2 Architectural Configurations

Architectural configurations are modelled by designs, allowing the
uniform treatment of components, connectors and configurations.
Hence, we restrict the discussion to configuration particularities.

Compositionality. Composite configurations, components and
connectors are constructed hierarchically via design productions.
Non admissible configurations, like connecting a client with an-
other client instead of a server, can be ruled out by construction.

Refinement. Refinement is straightforwardly supported by a par-
ticular reading of design productions.

Traceability. ADR supports traceability aspects by means of
equipping architectures (designs) with a witness of their construc-
tion (design terms). ADR promotes to carry such information over
run-time to support efficient and autonomous reconfiguration.

Scalability. Adding entities to an architecture can be achieved
in ADR via suitable refinements or rewrite rules. The features
of ADR favour a modular approach, so that, e.g. the addition of
new components can be localised in the desired sub-architecture,
without affecting the rest of the system.

Dynamism. Complex behaviours and reconfigurations are ex-
pressed in ADR by flexible rewrite rules (see Figure 2). ADR does
not marry any particular kind of dynamism (such as programmed
or repairing); it is general enough to cover most of them.

Understandability. Architectural configurations in ADR improve
understandability due to their hierarchical composition, which al-
lows to browse complex structures inductively and to focus on the
most convenient level of detail. A further support to understand-
ability is the immediate visual representation as (typed) graphs.

2.3 Tool Support

ADR tool support is under development (Bruni et al. 2008a). At
its current status prototype specifications can be simulated and
some structural and behavioural properties can be analysed with
verification techniques working at different levels of abstraction.

3. Conclusion

ADR suitably captures most of the features that an ADL should
consider. The main advantages of ADR over similar approaches is
given by the use of architectural construction information in form
of design terms which enables hierarchical reconfigurations, which,
most notably, are style-consistent by construction and easy to un-
derstand. Over most ADLs, ADR offers a unifying model to repre-
sent architectural design, reconfiguration, and ordinary behaviour.
We believe that ADR can help in understanding and solving ADL
problematics and that it can serve as the basis to formalise or ex-
tend them. For instance, the term-based feature of ADR can be ex-
ploited by ADLs that do not consider dynamism by defining archi-
tectural specifications as terms and modelling dynamism as suit-
able term rewrite rules. The tool-support for ADR is in a primitive
but promising stage. Further information on ADR can be found at
http://www.albertolluch.com/adr.html.

Acknowledgments

ADR is supported by the EU FETPI-GC2 project IST-2005-016004
SENSORIA (Software Engineering for Service-Oriented Overlay
Computers) and by the Italian FIRB project TOCAI (Knowledge
Oriented Technologies for Enterprise Integration in Internet).

References

Roberto Bruni, Alberto Lluch Lafuente, Ugo Montanari, and Emilio Tu-
osto. Service Oriented Architectural Design. In Proceedings of the 3rd
International Symposium on Trustworthy Global Computing (TGC’07),
volume 4912 of Lecture Notes in Computer Science, pages 186-203.
Springer, 2007.

Roberto Bruni, Alberto Lluch Lafuente, and Ugo Montanari. Hierarchical
Design Rewriting with Maude. In Proceedings of the 7th International
Workshop on Rewriting Logic and its Applications (WRLA’08), Elec-
tronic Notes in Theoretical Computer Science. Elsevier, 2008a.

Roberto Bruni, Alberto Lluch Lafuente, Ugo Montanari, and Emilio Tuosto.
Style Based Architectural Reconfigurations. Bulletin of the European
Association for Theoretical Computer Science (EATCS), (94):161-180,
February 2008b.

