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Abstract. Building adaptive systems with predictable emergent behav-
ior is a challenging task and is becoming a critical need. The research
community has accepted the challenge by proposing approaches of vari-
ous nature: from software architectures, to programming paradigms, to
analysis techniques. Our own contribution in this regard is a conceptual
framework for adaptation centered around the stressed role of control
data. The framework is naturally realized in a reflective logical language
like Maude by using the Reflective Russian Dolls model, as we show in
this paper. We exploit the recently released statistical model checker
PVesta to analyze a prominent example of adaptive system: robot swarms
equipped with obstacle-avoidance self-assembly strategies.
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1 Introduction

How to engineer autonomic system components so to guarantee that certain goals
will be achieved is one of todays’ grand challenges in Computer Science. First,
autonomic components run in unpredictable environments, hence they must be
engineered by relying on the smallest possible amount of assumptions, i.e. as
adaptive components. Second, no general formal framework for adaptive systems
exists that is widely accepted. Instead several adaptation models and guidelines
are presented in the literature that offer ad hoc solutions, often tailored to a
specific application domain or programming language. Roughly, there is not even
general agreement about what “adaptation” is. Third, it is not possible to mark
a b/w distinction between failure and success, because the randomized behaviour
of the system prevents an absolute winning strategy to exist. Fourth, efforts spent
in the analysis of handcrafted adaptive components are unlikely to pay back,
because the results are often scarcely reusable when the components’ software is
updated or extended with new features.
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Given the above premises and our background, we address here some of the
above concerns, presenting the methodology that we have devised and applied for
prototyping well-engineered self-adaptive components. Our case study consists
of modeling and analyzing self-assembly strategies of robots having the goal of
crossing a hole while navigating towards a light source, as detailed later. We
specified such robots with Maude, exploiting on one hand the Reflective Russian
Dolls (RRD) model [21] and on the other hand the conceptual framework we
proposed in [5], which provides simple but precise guidelines for a clean structuring
of self-adaptive systems. We report also on the results of the analysis of our
model using PVesta [2], as well as on some relevant aspects of our experience
when using this tool.

When is a software system adaptive? Self-adaptation is considered a fundamental
feature of autonomic systems, that can specialize to several other so-called
self-* properties (like self-configuration, self-optimization, self-protection and
self-healing, as discussed for example in [10]). Self-adaptive systems have become
a hot topic in the last decade: an interesting taxonomy of the concepts related
to self-adaptation is presented in [18]. Along the years several contributions
have proposed reference models for the specification and structuring of self-
adaptive software systems, ranging from architectural approaches (including the
well-known MAPE-K [9,10, 12], FORMS [23], the adaptation patterns of [6],
and the already mentioned RRD [21]), to approaches based on model-based
development [24] or model transformation [11], to theoretical frameworks based
on category theory [17] or stream-based systems [4], among others.

Even if most of those models have been fruitfully adopted for the design
and specification of interesting case studies of self-adaptive systems, in our view
they missed the problem of characterizing what is adaptivity in a way that is
independent of a specific approach. We have addressed this problem in [5], where
we have proposed a very simple criterion: a software system is adaptive if its
behaviour depends on a precisely identified collection of control data, and such
control data can be modified at run time. We discuss further this topic in §2.

Is Maude a convenient setting to study self-adaptation? A “convenient” frame-
work must provide a reusable methodology for modelling self-adaptive systems
independently from their application domain together with a flexible analysis
toolset to investigate formal properties of the semantics of such systems. There
are several reasons why we think that Maude [7] is a good candidate. First, the
versatility of rewrite theories provides the right level of abstraction for address-
ing the specification, modelling, and analysis of self-adaptive systems and their
environments within one single coherent framework. Second, since Maude is a
rule-based approach, the control-data can be naturally expressed as a sub-set
of the available rules and the reflection capability of Maude can be exploited to
express control-data manipulation via ordinary rewrite rules, along the so-called
tower of reflection and its modular realization as the RRD approach [14]. Third,
the above sketched architecture, to be further elaborated in §3, facilitates the
rapid prototyping of self-adaptive systems, to be simulated, analyzed and vali-
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dated exploiting the formal analysis toolset of Maude, including statistical model
checking via the PVesta tool [2]. Pragmatically, the possibility to rapidly develop
and simulate self-adaptive systems and to compare the behaviour emerging from
different adaptation strategies is very important for case studies like the robotic
scenario described in the next paragraphs. In fact, such physical devices are
very sophisticated to program and their experimentation in real world testing
environments involve long time consumption (6 hours or more for a single run)
and a limited number of pieces is available (around 25 units) because they are
expensive to maintain. In fact, their hardware (both mechanics and electronic)
and software are updated very frequently, which makes it harder to build and
rely on sophisticated simulators that take as input exactly the same code to be
run on the robots. Even when this has been attempted, the tests conducted on
the real systems differ substantially from the simulated runs.

Case study: Self-assembling robot swarms. Self-assembling robotic systems are
formed by independent robots that are capable to connect physically when
the environment prevents them from reaching their goals individually. Self-
assembly units must be designed in a modular way and their logic must be more
sophisticated than, say, that of cheaper pre-assembled units, because self-assembly
is a contingency mechanism for environments where versatility is a critical issue
and the size and morphology of the assembly cannot be known in advance. Such
features make the self-assembling robot swarm a challenging scenario to engineer.

In [16], different self-assembly strategies are proposed to carry out tasks that
range from hill-crossing and hole-crossing to robot rescue: case by case, depending
e.g. on the steep of the hill, the width of the hole, the location of the robot to be
rescued, the robots must self-assemble because incapable to complete the task
individually. We focus on the hole-crossing scenario as a running case study,
where “the robots in the swarm are required to cross a hole as they navigate to a
light source” and depending on the width of the hole “a single unit by itself will
fall off into the crevice, but if it is a connected body, falling can be prevented”.

The experiments in [16] were conducted on the SWARM-BOT robotic plat-
form [15], whose constituents are called s-bots (see Fig. 5, bottom right). Each
s-bot has a traction system that combines tracks, wheels and a motorised rota-
tion system, has several sensors (including infra-red proximity sensors to detect
obstacles, ground facing proximity sensors to detect holes, and a 360 degrees
view thanks to a camera turret), and is surrounded by a transparent ring that
contains eight RGB colored LEDs (Light Emitting Diodes) distributed regularly
around the ring. The LEDs can provide some indications about the internal state
of the s-bot to (the omni-directional cameras of) nearby s-bots (e.g. the color
green can be used to mark the will to connect to an existing ensemble, and the
color red can be used for the will to create a new assembly). The ring can also
be grasped by other s-bots thanks to a gripper-based mechanism.

Roughly, the experimented strategies are: (i) the independent execution strat-
egy, where s-bots move independently one from the other and never self-assemble;
(ii) the basic self-assembly response strategy (see Appendix A), where each s-bot
move independently (light blue) until an obstacle is found, in which case tries to
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aggregate (light green) to some nearby assembly, if some available, or it becomes
the seed of a new assembly (light red); (iii) the preemptive self-assembly strat-
egy, where the s-bots self-assemble irrespective of the environment and not by
emergency as in the basic self-assembly response; (iv) the connected coordination
strategy, where the sensing and actuation of the assembled robots is coordinated
according to a leader-follower architecture from the seed of the assembly.

The experiments were conducted with different strategies in different scenarios
(with holes of different dimension and random initial positions of the s-bots)
and repeated for each strategy within each scenario (from a minimum of 20
times and 2 s-bots to a maximum of 60 times and 6 s-bots). Videos of the
experiments described in [16] are linked from the web page describing our Maude
implementation: http://sysma.lab.imtlucca.it/tools/ensembles.

Synopsis. In §2 we summarize the conceptual framework for adaptation that we
have proposed in [5] and along which we will design adaptive systems in Maude.
The general guidelines and principles to be exploited in Maude for modelling
self-adaptive systems are described in §3, together with the concrete software
architecture used to realize our conceptual framework. In §4 we illustrate the
concrete modelling of hole-crossing swarm-bots. The conducted experimentations
are described in §5, focusing, for the sake of presentation, on the basic self-
assembly response strategy. Some concluding remarks and ongoing research
avenues are discussed in §6.

We assume the reader to have some familiarity the Maude framework. For
reviewers convenience, we reported in the appendices a detailed description of
one self-assembly strategy from [16], and some significant fragments of the source
code of our case study.

2 A framework for adaptation

Before describing the way we have modeled and analysed the scenarios presented
in the previous section, let us explain some guidelines that we followed when
designing the system. The fundamental goal was to develop a software system
where the adaptive behaviour of the robots is explicitly represented in the system
architecture. To this aim, we found it necessary to first understand “when is
a software system adaptive”, by identifying the characterizing features that
distinguish such systems from ordinary (“non-adaptive”) ones.

We addressed this problem in [5], proposing a simple structural criterion to
characterize adaptivity. Oversimplifying a bit, according to a common black-box
perspective, a software system is often called “self-adaptive” if it can modify its
behaviour as a reaction to a change in its context of erecution. Unfortunately
this definition is hardly usable, because according to it almost any software
system can be considered self-adaptive. Indeed, any system can likely modify
its behaviour (e.g., executing different instructions, depending on conditional
statements) as a reaction to a change in the context of execution (like the the
input of a data from the user).
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Therefore we argue that to distinguish situations where the modification
of behaviour is part of the application logic from those where they realize
the adaptation logic, we must follow a white-box approach, where the internal
structure of a system is exposed. Our framework requires to make explicit that
the behavior of a component depends on some well identified control data. We
define adaptation as the run-time modification of the control data. From this
definition we derive several others. A component is called adaptable if it has a
clearly identified collection of control data that can be modified at run-time. Thus
if the control data are not identified or cannot be modified, the system is not
adaptable. Further, a component is adaptive if it is adaptable and its control data
are modified at run-time, at least in some of its executions. And a component is
self-adaptive if it is able to modify its own control data at run-time.

Under this perspective, and not surprisingly, any computational model or
programming language can be used to implement an adaptive system, just by
identifying the part of the data that governs the behavior. Consequently, the
nature of control data can vary considerably depending both on the degree of
adaptivity of the system and on the nature of the computational formalisms
used to implement it. Examples of control data include configuration variables,
rules (in rule-based programming), contexts (in context-oriented programming),
interactions (in connector-centered approaches), policies (in policy-driven lan-
guages), aspects (in aspect-oriented languages), monads and effects (in functional
languages), and even entire programs (in models of computation exhibiting
higher-order or reflective features).

In [5] we discussed how our simple crite-
rion for adaptlwty can be apphed to several of AUTONOMIC MANAGER
the reference models cited in the introduction,
identifying for each of them what would be a
reasonable choice of control data. Interestingly,

Analyze

Control

in most situations the explicit identification Monitor Knowledge
of control data has the effect of revealing a
precise interface between a managed compo- ol

Data
MANAGED COMPONENT

nent (mainly responsible for the application
logic) and a control component (encharged
of the adaptation logic). As a paradigmatical
example, let us consider the MAPE-K archi-
tecture [9], according to which a self-adaptive system is made of a component
implementing the application logic, equipped with a control loop that monitors
the execution through sensors, analyses the collected data, plans an adaptation
strategy, and finally executes the adaptation of the managed component through
effectors; all the phases of the control loop access a shared knowledge repository.
Applying our criterion to this reference model suggests an obvious choice for
the control data: these are the data of the managed component which are either
sensed by the monitor or modified by the execute phase of the control loop. Thus
the control data represent the interface exposed by the managed components
through which the control loop can operate, as shown in Fig. 1. Clearly, by our

Fig. 1. Control data in MAPE-K.
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definitions the managed component is adaptive, and the system made of both
the component and the control loop is self-adaptive.

The construction can be iterated, as the
control loop itself could be adaptive. Think e.g.

of an adaptive component which follows a plan /o \
to perform some tasks. This component might

have a manager which devises new plans ac-

cording to changes in the context or in the com- M p g

ponent’s goals. But this planning component

might itself be adaptive, where some compo- / @ X\
nent controls and adapts its planning strategy,
for instance determining the new strategy on

the basis of a tradeoff between optimality of M K E

the plans and computational cost. In this case
also the manager (the control loop) should ex-

/ cD \
pose in an interface its control data, which are
conceptually part of its knowledge repository.
In this way, the approach becomes composi- M K E
tional in a hierarchical way, which allows one to
build towers of adaptive components (Fig. 2). £ D \
MANAGED ELEMENT

3 Adaptivity in Maude Fig. 2. Tower of adaptation.

We argue here the suitability of Maude and

rewriting logic as language and model for adaptivity (§3.1), describe a generic
architecture for developing adaptive components in Maude (§3.2) and show that
it conforms to our framework (§3.3).

3.1 Maude, logical reflection and adaptivity

Maude [7] is particularly suitable for the specification of adaptive systems, thanks
to the reflective capabilities of rewriting logic. The reflection mechanism of the
logic yields what is called the tower of reflection. At the ground level, a rewrite
theory R (e.g. software module) allows us to infer a computation step R F¢ — ¢
from a term ¢ (e.g. a program state) to a term ¢’. A universal theory U lets us
infer the computation at the “meta-level”, where theories and terms are meta-
represented as terms: U F (R, ) — (R, t'). The process can be repeated again
and again as U itself is a rewrite theory. This mechanism is efficiently supported
by Maude and has given rise to many interesting meta-programming applications
like analysis and transformation tools.

In particular, the reflection mechanism of rewriting logic has been exploited
in [14] to formalize a model for distributed object reflection, suitable for the
specification of adaptive systems. Such model, suggestively called Reflective
Russian Dolls (RRD), has a structure of layered configurations of objects, where
each layer can control the execution of objects in the lower layer by accessing
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and executing the rules in their theories, possibly after modifying them, e.g., by
injecting some specific adaptation logic in the wrapped components. Even at this
informal level, it is pretty clear that the RRD model falls within our conceptual
framework by identifying as “control data” for each layer the rules of its theory
that are possibly modified by the upper layer. Note that, while the tower of
reflection relies on a white-box adaptation, the russian dolls approach can deal
equally well with black-box components, because wrapped configurations can
be managed by message passing. The RRD model has been further exploited
for modeling policy-based coordination [21] and for the design of PAGODA, a
modular architecture for specifying autonomous systems [22]. The case study
presented in the next sections will conform to this model.

3.2 Generic architecture

Intra-layer architecture The structure of each layer 0 G
is illustrated in Fig. 3. The main constituents are: @
knowledge (K), effects (E), rules (R) and managed
components (M). Some of them are intentionally on
the boundary of the component, since they are part of
its interface: knowledge and effects act respectively as
input and output interfaces, while rules correspond to
the component’s control interface (i.e. they are the control data).

The knowledge represents the information in possess of the component. It
can contain data that represent the internal state or assumptions about the
component’s surrounding environment. For example, the knowledge in our case
study includes the status of the gripper, but also the presence of a nearby hole
in the ground and the existence of light-emitting artefacts around each robot.

The effects are the actions that the component is willing to perform on its
enclosing context. The effects in our example are the actions to be performed on
the robot being controlled: e.g. the instruction to move towards some direction,
to attach to another component, or to turn on/off some colored led.

The rules determine how the effects are generated in reaction to the knowledge.
They constitute the control data of the component. Typically, some rules take
care of updating the knowledge of managed components, executing them and
collecting (and possibly propagating) their effects. This is the case in which a
component acts as a sort of interpreter. In other cases rules can act upon the
rules of managed components. These are adaptation rules. In our case study, the
rules define, for instance, the assembly strategies.

The managed components are those components in the underlying layer. This
part is absent in the innermost layer.

Fig. 3. Intra-layer.

Inter-layer architecture Layers are organized hierarchically. The left part of
Fig. 4 shows a three-layered architecture. Each layer contains its own knowledge,
effects and rules and, in addition, has the underlying layer as managed component.
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Layer 1

Layer 2

Fig. 4. Inter-layer architecture (left), ordinary flow (center), adaptation flow (right).

The diagram in the middle highlights the control and data flow of ordinary
behavior. Knowledge is propagated down to the core (layer 0) and the effects are
collected up to the skin (layer 2). This flow of information is governed by the
rules. Knowledge and effects are subject to modifications.

Instead the diagram depicted on the right of Fig. 4 corresponds to adaptation.
The outermost layer acts ordinarily, but in layer 1 an adaptation is triggered.
This can be due to some condition on the present knowledge or the status of the
managed components. The result is that the rules of layer 1 act (among other
things) upon the rules of layer 0 (denoted by the arrow passing through them).

3.3 Architecture as a framework instance

In which sense is the architecture in §3.2 an instance of the framework in §27
Fig. 5 illustrates the answer. The main idea is that our architecture imposes the
encapsulation of all components of the tower, apart from the managed element (i.e.
the robot itself). This way we obtain several advantages: (i) management becomes
hierarchical (e.g. self-management is forbidden); and (ii) the managed element is
controlled by the topmost manager component. This does not necessarily mean
that the outer layer implements the basic operation logic but, as we see in § 4.1,
that this can be demanded to an inner layer, of which the outer can be a monitor,
a filter or an interface adaptor (i.e. as a wrapper).

How are the elementary constituents of the framework correlated to the ones
of the presented architecture? The rules (R) of the architecture implement the
MAPE activities of the framework and are exposed as the control data (CD); the
knowledge (K) of the architecture corresponds to the knowledge of the framework
(minus the rules); the effects (E) of the architecture correspond essentially to the
outgoing control flow in the framework (see the curved arrow in Fig. 5).

4 Architecture and implementation of the case study

This section describes the concrete architecture of our case study (§4.1) and some
details of the actual implementation (§4.2).
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Fig. 5. Architecture as an instance of the framework.

4.1 Architecture of the case study

The layers of the concrete architecture of the case study (cf. Fig. 5, right)
essentially capture the informal description of [16]: the high-level state machine of
self-assembly strategies, the code executed in each of its states, and the elementary
robot functionalities are mapped to separate layers.

Level 0 (managed component). This level®> models the core functionalities of a
robot (see §3 of [16]). Rules are used to model basic movements, color emissions
through the LEDs and actioning of the attachment gripper.

Level 1 (basic controller). This level represents the basic controller governing
the core functionalities of the robot according to the context. For example, a
basic controller may allow to move only along certain directions (e.g. towards
particular light sources), or to search for a robot to grab. With respect to the
description of §5 and §7 of [16], this layer corresponds to the individual states of
the state machines implementing the adaptation strategies.

Level 2 (adaptation). This is the level of the adaptation manager, who decides
how to react to changes in the environment by activating the corresponding basic
controller. With respect to the description of [16], this layer corresponds to the
state machines that model the self-assembly strategies (see Fig. 8 in Appendix A
or Fig. 3, 4, 8 and 10 and §5 and §7 of [16]), and in particular takes care of the
transitions between its states. In doing so it monitors the environment and its

3 Which corresponds to PAGODA'’s hardware abstraction layer [22].
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managed component M, and possibly executes an adaptation phase changing the
rules of M.

All layers differ in their sets of rules and, of course, in their sets of managed
components, but they share the same signature for knowledge and effects. In
particular, the knowledge includes predicates about properties of the ground (wall,
hole, free) and the presence of robots (their LED emissions) in the surrounding,
and the direction of light sources (the goal).

Effects include moving towards one of the four directions, emitting a color
towards one of the four directions and trying to grab a robot located at one of
the four adjacent cells.

4.2 Implementation details

Components. Our implementation (see §B for an excerpt), similar to the
systems described in [14], relies on Maude’s object based signature (see chapter
8 of [7]). Without detailing its concrete syntax, we recall that such signature
allows us to model concurrent systems as collections (multisets) of objects called
configurations, where objects are defined by an identifier, a class and a set of
attributes.

Each layer is implemented as an object having knowledge, effects, rules and
managed components as attributes.

Knowledge and effects are currently implemented as plain sets of predicates.
More sophisticated forms of knowledge representation based on some inference
mechanism (like PROLOG specifications, ontologies or databases) are subject of
current investigation but not necessary in the presented case study.

Managed components are just configurations, whose objects implement the
underlying layer. In this case study we consider single managed objects with the
same identifier of their manager. In terms of [14] we use homunculus objects.

Rules are implemented as system modules. That is, every object is equipped
with an attribute of type Module implementing its behavior. This enormously
facilitates their implementation as ordinary Maude specifications and their treat-
ment both for execution (by resorting to rewriting and reachability features of the
Maude meta-level) and monitoring and adaptation (by examining and modifying
the meta-representation of modules).

A generic rule can be used to self-execute an object: an object with rules R
proceeds by executing R in its meta-representation. The rules in R can execute
the managed components and decide what to do with the outcome, or manipulate
the managed components to enact adaptation.

Simulator. Our simulator consists basically of three blocks: the arena, the
orchestrator and the scheduler.

The arena defines the scenario where robots run. We abstracted arenas in
discrete grids, very much like a chessboard. Each grid’s cell has different attributes
like the type of the ground or the presence of robots. Only one robot per cell is
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allowed. We currently discretized the possible directions towards which a robot
can perform an action into up, down, left and right.

The orchestrator synchronizes robots with the arena, determining their knowl-
edge and managing their effects. For instance, it decides if a robot can effectively
move towards the direction it is willing to move, or to let a robot sink in a hole.

Finally, the scheduler determines when a robot or the orchestrator can perform
an action. It is implemented as an ordinary discrete-event scheduler.

5 Analysis of adaptation strategies

This section describes some of the analysis activities carried out with our im-
plementation, available at http://sysma.lab.imtlucca.it/tools/ensembles
together with some additional material such as animated simulations.

The analysis has been carried out in two phases: (§5.1) discrete event simula-
tion; and (§5.2) statistical analysis. The rationale is the following.

In the early development phases we have mainly concentrated on performing
single simulations that have been informally analyzed by observing the behavior
of the assemblies in the automatically generated animations. A couple of trial-and-
error iterations (where the model was fixed whenever some anomalous behavior
was spotted) were enough for the model to acquire sufficient maturity to undergo
a more rigorous analysis in terms of model checking.

Ordinary model checking is possible in the Maude framework (via Maude’s
rechability analyzer of LTL model checker) but suffers from the state explosion
problem and is limited to small scenarios and to qualitative properties. To tackle
larger scenarios, and to gain more insight into the probabilistic model reasoning
about probabilities and quantities rather than possibilities, we have resorted to
statistical model checking techniques.

We now provide the details of these analysis phases, centered around one
crucial question: How many s-bots can reach the goal by crossing the hole?.

5.1 Simulations

Simulations are performed thanks to the discrete-event simulator described in
§4.2 along the lines of the ones reported in [1,2,20]. Valuable help has been
obtained implementing an exporter from Maude Configuration terms to DOT
graphs?, offering the automatic generation of images from states: they have
greatly facilitated the debugging of our code.

For example, Fig. 6 illustrates three states of one interesting simulation,
in which s-bots execute the basic self-assembly strategy. The initial state (left)
consists of three s-bots (grey circles with small dots on their perimeter) in their
initial state (emitting blue light), a wide hole (the black rectangle) and the goal
of the s-bots, i.e. a source of light (the orange circle on the right). After some
steps, where the s-bots execute the basic self-assembly strategy, two s-bots finally

4 http://www.graphviz.org/
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-—hole

Fig. 6. Three states of a simulation: initial (left), assembly (middle), final (right).

get assembled (middle of Fig. 6). The assembled s-bots can then safely cross the
hole and reach the goal (right of Fig. 6), while the not assembled one remains
abandoned in the left part of the arena.

While performing such simulations with different scenarios, varying the loca-
tion of the goal and number and distribution of the s-bots, and with different
parameters for duration of timeouts and actions, we observed several bizarre
behaviors. For instance, in various simulations we observed some not-assembled
s-bots erroneously believing to be part of an assembly, moving into the hole and
disappearing. In other simulations we instead noticed pairs of s-bots grabbing
each other. These observations triggered the following questions: Is there an error
in our implementation? Is there an error in the strategies defined in [16]?

Examining carefully the description of the strategy, we discovered that the two
behaviors are indeed not explicitly disallowed in [16] and originated by the two
transitions (see Fig. 8 in Appendix A) outgoing from the state Assembly_Seed
(willing to be grabbed). The first transition leads to state Wait, triggered by the
expiration of a timeout, while the second one leads to state Aggregate (willing to
grab), triggered by the event “see red led” (another s-bot willing to be grabbed).
Considering the first behavior, an s-bot can change from state Assembly_Seed
to state Wait without another s-bot actually attaching to it. The s-bot then
evolves to state Connected_phototaxis believing to be assembled with other
s-bots. Considering instead the second behaviour, once an s-bot ¢ grabs an s-bot
J, © becomes itself “willing to be grabbed” (turning on its red leds) to allow other
s-bots to connect to the assembly. Now, it is clear that if j is grabbed while being
in state Assembly_Seed, then its transition towards state Aggregate is allowed,
leading to the second bizarre behaviour. Interestingly enough, we hence notice
that the two bizarre behaviors strongly depend on the duration of the timeout: a
short one favors the first behaviour, while a long one favors the second one.

Are these behaviors actually possible in real s-bots or are they forbidden by
real life constraints (e.g. due to the physical structure of the s-bots or to some
real-time aspects)? We have still no answer to this question which is subject of
current work (in the context of the ASCENS project [3]). Anyway in this phase
we observed that the self-assembly strategies described in [16] might be adequate
for s-bots but not in general for self-assembly settings where other constraints
might apply.
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5.2 Statistical model checking

A qualitative analysis can provide us proofs that the adaptation strategies can
result in some cases to a full success (all s-bots reach the goal) or to a full failure
(no s-bots reach the goal). However, in the kind of scenario under study the
possibility of full success or failure is typically assumed. The really interesting
question is how probable are they, respectively?

An analysis based on statistical model checking (see e.g. [19, 20, 2]) is more
appropriate in these cases. Such techniques do not yield the absolute confidence of
qualitative model checking but allow to analyze (up to some statistical errors and
at different levels of confidence) larger scenarios and to deal with the stochastic
nature of probabilistic systems.

We consider the following properties: (Py) What is the probability that no
s-bot reaches the goal?; (Py) What is the probability that at least one s-bot reaches
it?; and (Pa) What is the expected number of s-bots reaching the goal?.

We have used PVesta [2], a parallel statistical model checker and analysis tool,
to perform some comparative analysis. PVesta performs a statistical evaluation
(Monte Carlo based) of properties expressed in the transient fragments of PCTL
and CSL, and of quantitative temporal expressions (QuaTEx)[1], allowing to
query about expected values of real-typed expressions of a probabilistic model.

A QuaTEx expression is statistically evaluated with respect to two param-
eters: o and §. Specifically, expected values are computed from n independent
simulations, with n large enough to grant that the size of the (1 — «)100% confi-
dence interval for the expected value is bounded by 4. Intuitively, if a QuaTEx
expression is estimated as T, then, with probability (1 — «), the actual expected
value belongs to the interval [(1 — 0)Z, (1 + 9)T].

We performed a comparative analysis (wrt. to the above properties) between
s-bots equipped differently. We use 4-bots, an abstraction of real s-bots with only
4 LEDs and sensors and capable to move and grip in only 4 directions (up, down,
left, right); and 8-bots, which are like 4-bots enriched with LEDs, sensors and
movement and gripping capabilities in 4 additional directions (the diagonals).
All s-bots execute the same strategy, namely basic self-assembly response. The
aim was not to derive exact statistical measures but to gain some intuition of
the success and performance impact of the different s-bot models. The arena was
configured as follows (cf. Fig. 7): an 11 x 7 grid containing 3 s-bots, the goal (a
source of light) and a hole dividing the s-bots from the goal. We remind that an
s-bot alone is not able to cross the hole, and hence needs to cooperate (assemble)
with other s-bots to cross it.

In general, the 8-bots exhibit a better success rate. Indeed, the only morphol-
ogy that offers a full success for three 4-bots is a line orthogonal to the hole. In
all the other possible morphologies, at least one 4-bot falls in the hole or remains
isolated in the left part of the arena.

More precisely, the analysis of Py on the 4-bots provides values around 0.5
(i.e. about half of the cases ends up without any 4-bot reaching the goal). For
8-bots this value is approximately half as much.
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Regarding the success of at least one s-bot (P;), the 8-bots exhibit again a
much better rate (around 0.8) than the 4-bots (around 0.5).

Finally, the expected number of successful 4-bots
(P,) is about less than one, while for the 8-bots case
it is around one and a half.

The obtained results are very reasonable. As we ar- | & &3
gue above, the less topological constraints are imposed
on the s-bots the more flexible their behavior is.

In additional experiments we are trying to accu-
rately estimate the above mentioned (and other) prop- Fig. 7. An initial state.
erties, extending our comparative analysis to consider other s-bot features and
strategies, and validate our results with the ones reported in [16].

6 Conclusion

The contributions of our paper are: (i) a description (§ 4) of how to realize in
Maude our recently proposed approach to adaptive systems [5] in a simple and
natural way; and (ii) a description (§ 5) of how to exploit some Maude tools for
the analysis of our models, and PVesta [2] in particular.

Our work is inspired by early approaches to coordination and adaptation
based on distributed object reflection [14,21] and research efforts to apply formal
analysis onto such kind of systems (e.g. [13]), with a particular focus on adaptive
systems (e.g. [22,3]). Among those, the PAGODA project [22] is the closest in
spirit and shape. Our work is original in its clear and neat representation and
role of control data in the architecture, and in the fact this is, as far as we know,
the first analysis of self-assembly strategies based on statistical model checking.

The case study of self-assembly strategies for robot swarms [16] has con-
tributed to assess our approach. Overall, the experimentation we have conducted
demonstrates that: (i) Maude is well-suited for prototyping self-assembly systems
in early development phases; (ii) simulation can be useful to discover and resolve
small ambiguities and bugs in self-assembly strategies; and (iii) statistical model
checking can provide rough estimation of success rate, that can be used to com-
pare different strategies and also to validate/confute/refine analogous measures
provided by other tools or in real world experiments.

We plan to further develop our work by considering other case studies, more
realistic abstractions and more modular implementations. However, the real
challenging question to be tackled is can we exploit the proposed architecture
to tmplement smarter adaptation strategies or to facilitate their analysis?. We
envision several interesting paths in this regard. First, we are investigating
how logical reflection can be exploited at each layer of the architecture, for
instance to equip components with dynamic planning capabilities based on
symbolic reachability techniques (e.g. narrowing [8]). Second, we are developing
a compositional reasoning technique that exploits the hierarchical structure of
the layered architecture.
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All in all, we believe that our work is a promising step towards the non-trivial

challenge of building predictive adaptive systems.
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Fig. 8. Excerpt of the basic self-assembly response strategy (borrowed from [16]).
A Basic self-assembly response strategy

We provide here a detailed description of the self-assembly strategy [16].

In § 1 we hinted at various self-assembly strategies for groups of autonomous
robots. Then in § 5 we discussed and analysed the “self-assembly response
strategy”, whose finite state machine is depicted in Fig. 8. Each state contains
its name and the color of the leds turned on in that state, while transitions are
labelled with their firing condition. Actually Fig. 8 represents an instantiation of
the strategy for the hill crossing task, hence the condition “too steep” should be
replaced by “see hole”.

This controller is executed independently in each individual s-bot (a concrete
one in [16], or a software abstractions in this work).

In the starting state (Independent_Phototaxis) each s-bot turns on its blue
LEDs, and navigates towards the target light source, avoiding eventual obstacles
(e.g. walls or other robots).

If an s-bot detects a hole (through its infrared ground sensors), or sees a
green or red s-bot, then it switches to state Anti_Phototaxis, i.e. it illuminates
its green LEDs and retreats away from the hole.

After the expiration of a timeout, the s-bot passes in state Aggregate: it
randomly moves searching for (preferably) a red or a green s-bot. In case it sees a
red s-bot, it switches to state Self_Assemble, assembles (grabs) to the red s-bot,
turns on its red LEDs and switches to state Wait. In the case in which it instead
sees a green s-bot, with probability “Prob(Become seed)” it switches to state
Assembly_Seed, turns on its red LEDs, and becomes the seed of a new ensemble.

Once in state Assembly_Seed, the s-bot waits until a timeout expires and
switches in state Wait, unless it sees another red s-bot, in which case it reverts
to state Aggregate.

If a s-bot in state Aggregate sees a red s-bot, then it switches in state
Self Assemble and tries to grab it. Once assembled, the s-bot passes in state
Wait and turns on its red LEDs. Once no green s-bots are visible, assembled
“waiting” s-bots switch to state Connected Phototaxis and navigate to the light
source.
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B Source code

We provide here some significant fragments of our implementation.

B.1 Adaptive components

We first show how s-bots are represented as Maude terms of sort Object:

< c(0) : AC2 |
K: state(Aggregate) gripper(notGrabbing) on(right, none) go(right)
E: emitt(up,Green) emitt(down,Green) towards(right,light)
R: mod_is_sorts_._____ endm(...)
M : < c(0) : AC1 |
K:
E:
R: mod_is_sorts_._____
M : < c(0) : ACO |
K: ...
E: canMoveTo(up,left,...)
R: mod_is_sorts_.

As depicted in Fig. 3, each s-bot has four (main) attributes: K (the Knowledge),
R (the Rules), E (the Effects) and M (the Managed component). In particular,
this last one is itself a term of sort Object (and hence a component), allowing to
implement the three layered architecture depicted in Fig. 4 and 5. The attribute
M of the outermost component (an object with class AC2) contains an object with
class AC1, which in turn has an object with class ACO in its attributes.

The knowledge, currently represented as a plain set of facts, models the
awareness that a component has of the environment. Effects are similar to the
knowledge, as they are represented as a plain set of predicates. What differentiates
these two attributes is their role respect to the outer layers: if the knowledge
can be seen as a sort of input mechanism with the outer component (or the
environment for the outermost component), which can filter and elaborate the
informations coming from the environment, the Effects can be seen as a sort of
output mechanism. For this reason, the effects collect informations about the
status of the component (e.g. the color of the LEDs), and about the actions it
wants to do, like moving or gripping in a certain direction.

Finally, the rules contain a term of sort Module, specifying the behaviour
of (the code executed by) the component. The rules are exposed to the outer
component, which can hence easily “adapt” the behaviour of the managed
component by modifying them.
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B.2 Rules

In order to give an idea about how the flow of execution and information depicted
in Fig. 4 are actually implemented, we now exemplify a rule for each of the three
layers.

Layer 0 The inner components are characterized by the class identifier ACO. As
explained in §4.1, this layer models the core functionalities of a robot. Hence rules
are used to model basic movements, color emissions and gripper’s action. The
following is a rule through which the component computes the set of directions
towards which it can move, that is directions corresponding to neighbour cells
without obstacles (walls or other s-bots):

rl < oid : ACO | K: k, E: e , Al >
=> < oid : ACO | K: k, E: e canMoveTo(possibleMoves(K)) , Al > .

Layer 1 Objects with class AC1 are components of layer 1. As explained in §4.1,
this level corresponds to the single states of the state machine depicted in Fig. 8
of Appendix A. The following is a rule allowing to move towards the light’s
direction only, implementing part of the logic of state Independent _Phototaxis:

crl < oidl : AC1 | K: k1, E: el ,
M: < 0id0 : ACO | K: k0 , E: e0, R: mO, A0 >, A1 >
=> < oidl : AC1 | K: k1, E: el go(dir),
M: < 0id0 : ACO | K: kOb, E: e0, R: mO, AOb >, Al >
if (< 0id0 : ACO | K: kOb, E: e0 canMoveTo(freeDirs), AOb >)
:= reach(< 0id0 : ACO | K: updateK-1ToO(K1,K0), E: e0, A0 >, m0)
/\ possibleDirs := intersection(dirs , oppposite(dirsToLight(K1)))
/\ possibleDirs =/= empty
/\ dir := uniformlyChooseDir(possibleDirs, | possibleDirs |)

Layer 2 As explained in §4.1, this is the level of the adaptation manager, which
decides how to react to changes in the environment by activating the corresponding
basic controller. Considering the self-assembly strategy presented in [16], and
whose state machine is depicted in Fig. 8 of Appendix A, if components of layer
1 correspond to the single states of the state machine, this layer’s components
correspond instead to the state machine itself, and in particular take care of
the transitions between its states. In doing so they monitor the environment
and their managed components M, and eventually executes an adaptation phase
changing the rules of M.

The following is a rule of this level. The presence of a message with content
generateNextEffect allows components of layer AC2 to perform a step of evolu-
tion. Following the MAPE-K architecture, it uses the operation adaptationPhase
to monitor and analyze the current state of the managed component. The op-
eration reduces in the managed component resulting after the eventual phase
of adaptation. The managed component is then executed, and its effects are
propagated to the ones of level 2.
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crl { gt | SL } (0id2 <- generateNextEffect)
{ < cellld : Cell | content: < 0id2 : AC2 | K: k2, E: e2,
M: < oidl : AC1 | K: k1, E: el, R: ml1, A1l >, A2 >, AttrsCell >
remainingGrid }
=>
insert({ gt | SL },
[gt + time(effect), ORCHESTRATOR <- execute(oid2,effect)])
{ < cellld : Cell | content: < 0id2 : AC2 | K: k2A, E: e2A,
M: < oidl : AC1 | K: kib, E: elA, R: M1A, Alb >, A2A >
AttrsCell >
remainingGrid }
if --- compute adaptation phase
< 0id2 : AC2 | K: k2A, E: e2A,
M: < oidl : AC1 | K: k1A, E: elA, R: miA, A1A >, A2A > :=
adaptationPhase(< 0id2 : AC2 | K: k2, E: e2,
M: < oidl : AC1 | K: ki1, E: E1, R: ml1, A1l >, A2 >)
--- execute the adapted managed component
/\ < oidl : AC1 | K: k1b, E: (E1A effect), Alb > := reach(
< 0idl : AC1 | K: updateK-2Tol(k2A,k1A), E: elA, A1A >, mlh)

We do not show it here, but the effects of the components of level AC2 are
handled by another entity, the Orchestrator having the responsibility of making
interact the s-bots with the grid.

B.3 QuaTEx

We conclude this appendix with an example of quantified temporal expressions,
and in particular the one to estimate the expected number of s-bots reaching the
goal.

First of all we defined the state predicate completed : Configuration ->
Float, reducing to 1.0 for terminal (absorbing) states, and to 0.0 otherwise. A
terminal stae is a state with no more robots, a state with all the robots in goal,
or the state obtained after a given maximum number of steps. We also defined
the state predicate countRobotInGoal : Configuration -> Float counting
the number of s-bots that currently reached the goal.

Then we defined the equations necessary to PVesta to access such predicates

eq val(0,C) = completed(C)
eq val(1,C) = countRobotInGoal(C)

Finally, the QuaTEx expression to estimate the expected number of robots
reaching the goal is easily expressed as

count_s-bots_in_goal() =
if { s.rval(0) == 1.0 }
then { s.rval(1l) }
else # count_s-bots_in_goal()
fi;
eval E[ count_s-bots_in_goal() 1 ;
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Such expression tells to PVesta to run the simulation until a terminal state is
reached, and then to return the number of robots in goal in the obtained terminal
state.



