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Recent shifts in the business structure of universities and a bottleneck in the supply of tenure track
positions are two issues that threaten to change the longstanding patronage system in academia.
Understanding how institutional changes within academia may affect the overall potential of sci-
ence requires a better quantitative understanding of how careers evolve over time. Since knowledge
spillovers, cumulative advantage, and collaboration are distinctive features of the academic profes-
sion, the employment relationship should be designed to account for these factors. We quantify
the impact of these factors in the production n;(t) of a given scientist ¢ by analyzing the longitu-
dinal career data of 300 scientists and compare our results with 21,156 sports careers comprising a
non-academic labor force. The increase in the typical size of scientific collaborations has led to the
increasingly difficult task of allocating funding and assigning recognition. We use measures of the
scientific collaboration radius, which can change dramatically over the course of a career, to provide
insight into the role of collaboration in production efficiency. We introduce a model of proportional
growth to provide insight into the complex relation between knowledge spillovers, competition, and
uncertainty at the individual scale. Our model shows that high competition levels can make ca-
reers vulnerable to “sudden death” termination relatively early in the career as a result of negative

production fluctuations and not necessarily due to lack of individual persistence.

An ongoing debate involving academics, university ad-
ministration, and educational policy makers concerns
the definition of professorship and the case for lifetime
tenure, as changes in the economics of university growth
have now placed tenure under the review process [1, 2].
Critics of tenure argue that tenure places too much fi-
nancial risk burden on the modern competitive research
university and diminishes the ability to adapt to shift-
ing economic, employment, and scientific markets. To
counter this, in the last thirty years universities have
shifted away from tenure at all levels of academia to-
wards meeting staff needs with part-time and non-tenure
track positions [1].

The institution of science faces several pending chal-
lenges [3]. Among them are labor supply-demand issues
[4] and a lingering policy shift away from long-term con-
tracts in science, which together could significantly alter
the longstanding patronage system in academia [5]. For
employment relations designed around short-term con-
tracts, there is an implicit expectation of sustained an-
nual production that effectively discounts the cumulative
achievements of the individual. In addition to the risk
associated with an uncertain employment horizon, short-
term contracts may reduce the incentives for a scientist
to invest in concurrent collaborations and knowledge pro-
duction since it becomes less likely that in the future
she can fully benefit from the reputation and production
spillovers that she contributed to generate. Also, as the
typical size of scientific collaborations increases [6], the
allocation of funding and the association of recognition
at the varying scales of science (individual = group S
institution) will become increasingly complex [7], with

scientific achievement becoming increasingly dominated
by reputation tournaments in omnipresent competition
arenas [8].

Here we focus on the dynamics of the career trajec-
tory [9, 10] with the goal of understanding how academic
employment policy can impact the career potential of sci-
entists and providing insight into the statistical patterns
that quantify cumulative career achievement [11-14]. We
balance this longitudinal study of labor dynamics by an-
alyzing empirical panel data for an academic labor force
and a non-academic labor force. For intellectual labour
we analyze academic careers and define the career tra-
jectory n;(t) as the number of papers published by sci-
entist ¢ in year ¢ of his/her career. For non-intellectual
labor, we analyze the careers of professional athletes and
define n;(t) using in-game opportunity and success mea-
sures. While these two professions both display a high
level of competition for employment, they differ in their
employment term structure and salary scale. In the case
of academia, the tenure system rewards high performance
levels with nearly risk-free lifelong employment. In con-
trast, professional sports is characterized by relatively
short contracts that emphasize continued performance
and exploit the high levels of athletic prowess in a player’s
peak years. We develop a stochastic model which shows
that excessive emphasis on uninterrupted production re-
sults in a significant number of “sudden death” careers
that terminate due to unavoidable negative production
shocks. Altogether, our results indicate that short-term
contracts may increase the strength of “rich-get-richer”
mechanisms in competitive professions and hinder the
upward mobility of young scientists.



I. LONGITUDINAL CAREER DATA

We analyze the longitudinal publication rate n;(t) on
the 1-year time scale for 300 physicists ¢ = 1...300 who
are distributed into 3 groups: (a) Group A corresponds
to the 100 most cited physicists with average h-index
(h) = 61 £21, (b) Group B corresponds to 100 addi-
tional highly-cited physicists with (h) = 44 4+ 15, and (c)
Group C corresponds to 100 current assistant professors
in 50 U.S. physics departments with (h) = 15+ 7. We
focus on academic careers from the physics community
to approximately control for significant cross-disciplinary
production variations. A companion study analyzes the
rank-citation distribution of each scientist with a focus on
the statistical regularities in the measures for career im-
pact [12]. As a comparative non-academic labor force, we
analyze comprehensive career data for 21,156 professional
athletes in two prestigious American sports leagues: all
Major League Baseball (MLB) careers during the 90-year
period 1920-2009 and all National Basketball Association
(NBA) careers during the 63-year period 1946-2008. We
provide further description of the data in the ST appendix.

II. METHODS

We model the career as an aggregation of outputs
which arrive at the variable rate n;(t). Since the repu-
tation of a scientist is typically a cumulative representa-
tion of his/her contributions, we consider the cumulative
production N;(t) = Zf,:l n;(t') as a proxy for career
achievement. Fig. 1 shows the cumulative production
N;(t) of six notable careers which display a scaling re-
lation N;(t) ~ A;t“. However, there are also cases of
N;(t), see Fig. S1, which do not exhibit such regular-
ity, instead displaying marked non-stationarity and non-
linearity arising from significant exogenous career shocks
that reflect the possibility of significant productivity and
reputation growth following from just a single discovery
[15]. We justify this 2-parameter model in the Supporting
Information Appendix (SI) text using scaling methods
and data collapse (see S2 and S3). Most N, (¢) analyzed
here can be modeled by this common functional form de-
scribing the rise of the career trajectory; we acknowledge
that the end of the career is a difficult phase to analyze,
since this phase can occur quite abruptly, and so our
analysis is mainly concerned with the growth phase and
not the termination phase. Careers with a; ~ 1 have rel-
atively constant n;(t), whereas careers with «; > 1 show
accelerated growth which reflects the benefits of learning
and collaboration spillovers which constitute a portion of
the cumulative advantage held by experienced and rep-
utable individuals [11]. Fig. S4 shows the distribution
P(«;) with average exponent («) > 1. For each dataset,
we calculate (a;) = 1.42 £ 0.29 [A], 1.44 £ 0.26 [B], and
1.30 +0.31 [C].

Individuals are constantly entering and exiting the pro-
fessional market, with birth and death rates depending

on complex economic and institutional factors. Due to
the high level of competition and risk, early carer perfor-
mance has long lasting consequences [11, 16]. By analyz-
ing the careers that survive the highly competitive entry
and turnover process, we search for statistical patterns
that can give insight into the relative roles of persistence
and career shocks in the growth of careers. To better
understand career uncertainty portrayed by the common
saying “publish or perish” [17], we analyze the outcome
fluctuation

’I“i(t) = ’I’Ll(t) — ni(t — At) (1)

of career i in year ¢t over the time interval At = 1 year.
Output fluctuations arise naturally from the lulls and
bursts in both the mental and physical capabilities of
humans [18, 19].

We define for each scientific career the normalized pro-
duction change

ri(t) = [ri(t) — (r)l/ou(r) (2)

which is measured in units of a fluctuation scale o;(r)
that is unique to each individual. We calculate the av-
erage (r;) and standard deviation o;(r) using the first
L; available years for each scientist i. 7.(¢) is a better
measure for comparing career uncertainty, since individ-
uals have production factors that depend on the type
of research, the size of the collaboration team, and the
position within the team. Figs. S5 and S6 show that
the distribution P(r’) is well approximated by a Gaus-
sian distribution, consistent with a proportional growth
model. In academics, the production of scientific pub-
lications depends on many factors, such as cumulative
advantage [11, 14, 20], which is an external institutional
mechanism, and the “sacred spark,” which is an internal
effect that represents an individual’s ambitious internal
drive for success [15, 21], and the transfer of knowledge
which resembles the number of social contact processes
that pervade our techno-social world [22]. An example of
emergent complexity, a recent case study on the impact
trajectories of nobel prize winners shows that “scientific
career shocks” marked by the publication of an individ-
ual’s “magnum opus” work(s) can trigger future recogni-
tion and reward, resembling the cascading dynamics of
earthquakes [23].

III. RESULTS
A. The balance of persistence and uncertainty

The ability to collaborate on large projects, both in
close working teams and also as remote agents (i.e.
Wikipedia [24]) is a one of the foremost properties of hu-
man society. In science, collaboration dynamics [25] are
a main contributor to the fluctuations in career growth.
The ability to attract future opportunities is strongly re-
lated to production spillovers and knowledge spillovers



[26-28] that are mediated by the collaboration network
[6, 7, 29-31]. One reason to collaborate is the credibil-
ity signal associated with working with a leading scien-
tists, which can increase an individual’s reputation above
the track record of accomplishment [5]. Another rea-
son, closely related to the case for long-term employment,
comes from increasing returns on investment associated
with knowledge intensive activities, since it is over time
and through the scientific network that an individual
benefits from the spillovers she generates that can fur-
ther accelerate her career trajectory. In this sense, there
is a tipping point in a scientific career that occurs when
(i) a scientist becomes an attractor (as opposed to a pur-
suer) of new collaboration-production opportunities and
(ii) the knowledge investment reaches a critical mass that
can sustain production over a long horizon. To account
for production spillover via collaboration, we calculate
for each author the number k;(t) of distinct coauthors
per year and relate this fundamental input factor to the
annual output n;(t).

Fig. 2(a) shows the relation between the average an-
nual production (n;) and the median number of coau-
thors S; = Med[k;] used here as a proxy for the collab-
oration radius S; of a given scientific career. This mea-
sure is more statistically stable than the average k;(t) be-
cause there can be extremely large outlier k;(t) values in
high-energy and astronomy collaborations. We observe
a strong input-output efficiency relation (n;) ~ S;/’ with
1 = 0.74 £ 0.04 for the dataset [A] scientists. Next we
calculate the relation between S; and the characteristic
fluctuation scale o;(r) of a scientist’s annual output. If
the sequential production values n;(t) and n;(t + 1) are
independent then we expect the scaling exponents calcu-
lated for (n;) and o;(r) to be approximately equal. This
result follows from considering r;(t) as the convolution
of an underlying production distribution P;(n) for each
scientist that is approximately stable.

In Fig. 2(b) we test the scaling relation

o2(r) =~ VSY (3)

which also provides insight into how the output fluc-
tuations (a proxy for career uncertainty) is related to
the collaboration radius. We calculate the scaling ex-
ponents /2 ~ 0.40 £ 0.03 (R = 0.77) for dataset [A],
¥/2~0.22+0.04 (R=0.51) [B], and /2 =~ 0.26 £+ 0.05
(R = 0.45) [C]. The larger ¢ value for dataset [A] scien-
tists suggests that the increasing returns to scale o > 1
for these prolific scientists may be largely due to a rela-
tively high collaboration efficiency. See the SI Appendix
text for further discussion of professional sports careers.

B. Scientific productivity and the collaboration
radius

The values of 1 for scientific and athletic careers follow
from the different combination of physical and intellec-
tual inputs that enter the production function for the

two distinct professions. Academic knowledge is typi-
cally a non-rival good, and so knowledge-intensive pro-
fessions are characterized by spillovers, both over time
and across collaborations [27, 28]. These properties are
consistent with our empirical observations that «; > 1
and v > 0. Interestingly, Azoulay et al. show evidence
for production spillovers in the 5-8% decrease in output
by scientists who were close collaborators with a “super-
star” scientists who died suddenly [26]. Also, the fact
that the premier dataset [A] scientists have on average
larger v efficiency values is consistent with increasing
returns with prestige in the scientific production func-
tion [32]. In contrast, more labour-intensive activities
are likely to experience smaller returns since physical la-
bor is non-cumulative with less spillover through time.

We shift to a micro-level view of production by relating
the number of publications n;(t) in a given year to the
number of distinct coauthors k;(¢) involved over the same
year. We use a single-factor production function

ni(t) = qi[ki(t)]" (4)

to quantify the relation between output and labor inputs
with a scaling exponent ;. We estimate g; and ~y; for each
author using ordinary least-squares regression, and de-
fine the normalized output measure Q; = n;(t)/q;k;(t)"
using the best-fit ¢; and ~; values calculated for each sci-
entist i. Fig. 2(c) shows the efficiency parameter ~ cal-
culated by aggregating all careers in each dataset, and
indicates that this aggregate y is approximately equal to
the average (vy;) calculated from the v; values in each ca-
reer dataset: v = 0.68 + 0.01 [A], v = 0.52 £ 0.01 [B],
and v = 0.51 £ 0.02 [C]. Furthermore, the ¢ &~ v since
the size-variance scaling parameter 1 is also an efficiency
measure that relates the scaling of output n to input k.

Since collaboration manifests in the complex scientific
coauthorship network [6, 25, 29-31], we ask the ques-
tion: what is the typical scientific collaboration radius
at the annual timescale? For individuals in our scien-
tific panel data, Fig. S10 shows that the number of dis-
tinct coauthors per year S; is exponentially distributed,
P(S) ~ exp[—AS]. An exponential size distribution has
been shown to emerge in complex systems where prefer-
ential attachment mechanisms govern the acquisition of
new opportunities [34]. This serves as motivation for the
preferential capture model that we propose in the follow-
ing section. Consistent with an exponential P(S), we test
and verify that the non-Gaussian unconditional distribu-
tion P(r) in Fig. 3 follows from the exponential mixing of
conditional Gaussians distributions P;(r|S) with varying
fluctuation scales o;(r) [35].

C. Preferential Capture Model for Career Growth

We develop a stochastic model as a heuristic tool to
better understand the effects of long-term versus short-
term contracts. In this competition model, opportunities
are allocated according to a general preferential capture



mechanism whereby the capture rate P;(t) depends on
the appraisal w;(t) of an individual’s record of achieve-
ment over a prescribed history. We define the appraisal
to be an exponentially weighted average over a given in-
dividual’s history of production

t—1

w;(t) = Z ni(t — At)e °At | (5)

At=1

which is characterized by the appraisal horizon 1/c. We
use the value ¢ = 0 to represent a long-term appraisal
(tenure) system and a value ¢ >> 1 to represent a short-
term appraisal system. Each agent ¢ = 1...I simultane-
ously attracts new opportunities at a rate

w;(t)”
Pi(t) = ————— .
w i wit)T

until all P opportunities for a given period ¢ are allo-
cated. We assume that each agent has the production
potential of one unit per period, and so the total number
of opportunities allocated per period P is equal to the
number of competing agents, P = I.

We use Monte Carlo (MC) simulation to analyze this
2-parameter model over the course of ¢t = 1...T sequen-
tial periods. In each production period (representing a
timescale on the order of half a human year), a fixed
number of P production units are captured by the com-
peting agents. At the end of each period, we update each
w;(t) and then proceed to simulate the next preferential
capture period ¢t + 1. Since P;(t) depends on the relative
achievements of every agent, the relative competitive ad-
vantage of one individual over another is determined by
the parameter 7. In the SI Appendix text we elaborate
in more detail the results of our simulation of synthetic
careers dynamics. We vary 7 and ¢ for a labor force of
size I = 1000 and maximum lifetime T = 100 periods as
a representative size and duration of a real labor cohort.
Our results are general, and for sufficiently large system
size, the qualitative features of the results do not depend
significantly on the choice of I or T.

The case with m = 0 corresponds to a random capture
model that has (i) no appraisal and (ii) no preferential
capture. Hence, in this null model, opportunities are cap-
tured at a Poisson rate A, = 1 per period. The results
of this model (see Fig. S13) shows that almost all ca-
reers obtain the maximum career length T with a typical
career trajectory exponent (o) ~ 1. Comparing to sim-
ulations with 7 > 0 and ¢ > 0, the null model is similar
to a “long-term” appraisal system (¢ — 0) with sublin-
ear preferential capture (m < 1). In such systems, the
long-term appraisal timescale averages out fluctuations,
and so careers are significantly less vulnerable to periods
of low production and hence more sustainable since they
are not determined primarily by early career fluctuations.

However, as 7 increases, the preferential capture mech-
anism significantly increases the role of competitive ad-
vantage in the system, and so some careers are “squeezed

(6)

out” by the larger more dominant careers. This effect is
compounded by short-term appraisal corresponding to
¢ ~ 1. In such systems with super-linear capture rates
and/or relatively large ¢, most individuals experience
“sudden death” termination relatively early in the ca-
reer. Meanwhile, a small number of “stars” survive the
initial selection process, which is governed primarily by
random chance, and dominate the system.

We found drastically different lifetime distributions
when we varied the appraisal (contract) length (see Figs.
S12 — S16). In the case of linear preferential capture
with a long-term appraisal system ¢ = 0, we find that
10% of the labor population terminates before reaching
career age 0.947 (where T is the maximum career length
or “retirement age”), and only 25% of the labor popula-
tion terminates before reaching career age 0.987. On the
contrary, in a short-term appraisal system with ¢ = 1,
we find that 10% of the labor population terminates be-
fore reaching age 0.017, and 25% of the labor population
dies before reaching age 0.027. Hence, in short contract
systems, the longevity, output, and impact of careers are
largely determined by fluctuations and not by persistence
(see Table S1). Fig. 4 shows the MC results for 7 = 1.
For ¢ > 1 we observe a drastic shift in the career longevity
distribution P(L), which becomes heavily right-skewed
with most careers terminating extremely early. This is
consistent with an analytically solvable Matthew effect
model [11] which shows that many careers are stunted
by the relative disadvantage associated with early career
inexperience. However, due to the nature of zero-sum
competition, there are a few “big winners” who survive
for the entire duration 7" and who acquire a majority of
the opportunities allocated during the evolution of the
system. Quantitatively, the distribution P(N) becomes
extremely heavy-tailed due to agents with a > 2 corre-
sponding to extreme accelerating career growth. These
agents emerge as superstars due to stochastic fluctuations
in the relatively early periods and the progressive nature
of cumulative advantage.

IV. CONCLUSION

In an attempt to render a more objective review pro-
cess for tenure and other lifetime achievement awards,
quantitative measures for scientific publication impact
are increasing in use and variety [10, 12-15, 23, 36, 37].
However, many quantifiable benchmarks such as the h-
index [12] do not take into account collaboration size
or discipline specific factors. Measures for the compar-
ison of scientific achievement should at least account
for variable collaboration, publication, and citation fac-
tors [14, 36, 37]. With the increasing team sizes, com-
plex group dynamics in science [6, 7], and an incredible
growth of science, there is an increasing need for indi-
vidual /group production measures; the output measure
Q x n;(t)/ki(t) 7 and corresponding output fluctuation
measure rqg o 1;(t)/k;(t) 7/? are candidates which ac-



count for group size. Normalized production measures
which account for coauthorship factors have been pro-
posed in [14, 36], but the measures proposed therein do
not account for the variations in team productivity. We
measure a decreasing marginal returns v < 1 with in-
creasing group size which identifies the importance of
group efficiency in scientific production. Instead of rely-
ing purely on publication measures, it is important that
the review process incorporate scientific contributions in
various domains such as teaching, public service, coordi-
nation, and administration, in addition to research out-
put. Furthermore, a theory of micro growth processes
can help improve the growth forecasts for economic or-
ganizations ranging in size from scientific collaborations
to universities and firms [35, 37-42].

Many professions are marked by competitive features
that can stunt the growth of inexperienced individuals
and can lead to early career termination [11]. Here we
highlight the need for an employment relationship that
is able to combine positive competitive pressure on the
employee with adequate safeguards to protect against

career hazards and the intrinsic production uncertainty
an individual is likely to encounter in his/her career.
Increases in the duration and improvements to the
appraisal mechanism for young investigator grants
can better protect and promote the careers of the
diligent and resilient academics towards sustainable
career growth. An institutional setting that neglects
the specific features of academic career trajectories may
inadvertently expose temporarily “cold” careers, leaving
them out to freeze.
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FIG. 1: Persistent accelerating career growth. (A) The ca-
reer trajectory N;(t) ~ ¢t of six stellar careers from varying
age cohorts. The «; value characterizes the career persis-
tence, where careers with o > 1 are accelerating. «; val-
ues calculated using OLS regression in alphabetical order
are: a = 1.25+£0.02, « = 1.72 £ 0.02, a = 1.62 £ 0.04,
a=1.23+0.02, « = 1.34£0.05, = 1.35+£0.04. (B) The av-
erage career trajectory (N'(t)) calculated from 100 individual
N;(t) in each dataset demonstrates robust accelerating career
growth within each cohort. The normalized career trajectory
N;(t) = N;(t)/{n;) is used in order to aggregate N,(t) with
varying publication rates (n;). As a result, the aggregate scal-
ing exponent @ quantifies the acceleration of the typical career
over time, independent of (n;). For the scientific careers, we
calculate @ values: 1.28 £0.01 (s.d) [A], 1.31 +0.01 [B], and
1.15+0.02 [C]. These values are all significantly greater than
unity, @ > 1, indicative of the production spillovers in science
that results in a cumulative advantage. We calculate @ us-
ing OLS regression and plot the corresponding best-fit lines
(dashed) for each dataset.
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FIG. 2: Quantitative relations between career growth, ca-
reer risk, and collaboration efficiency. The natural fluctua-
tions in production reflect the unpredictable horizon of “ca-
reer shocks” which can affect the ability of a scientists to
access new creative opportunities. (A) Relation between av-
erage annual production (n;) and median collaboration size
Si; = Med[k;] shows a decreasing marginal output per collab-
orator as demonstrated by sublinear 1) < 1. Interestingly,
dataset [A] scientists have on average a larger output-to-
input efficiency. (B) The production fluctuation scale o;(r)
is a quantitative measure for uncertainty in academic careers,
with scaling relation o;(r) ~ SZWQ. (C) Over time, there is
an increasing returns to scale for the annual production n;(t)
with a > 1, but another key to success is the management of
production within a team of k;(¢) distinct coauthors. Man-
agement, coordination, and training inefficiencies can result
in a v < 1 corresponding to a decreasing marginal return with
each additional coauthor input.
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FIG. 3: The importance of persistence in the wake of career uncertainty. The width of the distributions indicates a relatively
large range in annual production change r corresponding to career uncertainty. The symmetry of the distributions highlights
the importance of personal resiliency to tame the psychological affects of such career uncertainty. Persistence is crucial for
“bouncing back” from a year with significantly low production. Consider the career of Michael Jordan, who suffered a broken
foot during his second professional NBA season. Nevertheless, with the confidence of his employer, MJ reestablished his
investment value through persistence and resilience. The following year MJ achieved an extremely large R;(t) = 7.60 growth
value. Moreover, the statistical regularities in the annual production change distribution indicate a striking resemblance to the
growth rates distribution for large institutions. (A) Probability density function (pdf) of the annual production change r in the
number of papers published over a At = 1 year period. In the bulk of each P(r), the growth distribution is double-exponential
(Laplace), analogous with what is observed for the growth dynamics of countries, firms and universities [38, 39]. (B) To test the
stability of the distribution over career trajectory subintervals, we separate r;(¢) values into 5 non-overlapping 10-year periods
and verify the stability of the Laplace P(r). For each P(r), we also plot the corresponding Laplace distribution (solid line)
with standard deviation o and mean p =~ 0 calculated using the maximum likelihood estimator method. To improve graphical
clarity, we vertically offset each P(r) by a constant factor. Deviations in the tails likely correspond to extreme “career shocks.”
(C,D) For athlete careers in the NBA and MLB we define production change R as: (C) the change in the number of in-game
opportunities and (D) the change in the number of in-game successes. Since the detrended production change R is defined to
have standard deviation o = 1, the pdfs P(R) collapse onto a universal Laplace pdf (solid green line). For visual comparison,
we also plot a Normal distribution (dashed black curve) with o = 1 which instead decays parabolically on the log-linear axes.
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FIG. 4: Monte Carlo simulation of the linear preferential capture model (7 = 1) for varying contract length parametrized by c.
We plot the probability distributions for (i) N;, the total number of opportunities captured by the end period T', (ii) the growth
acceleration exponent «;, (iii) the single period growth fluctuation 7;(¢) including for comparison the Laplace (solid green) and
Gaussian (dashed red) best-fit distributions calculated using the respective MLE estimator, and (iv) the career longevity L;
defined as the time difference between an agent’s first and last captured opportunity. Results for ¢ — 0 systems shows that
for a “long-term appraisal” scenario careers are less vulnerable to low-production phases, and as a result, most agents sustain
production throughout the career. Conversely, results for ¢ > 1 systems show that for a “short-term appraisal” scenario the
labor system is driven by fluctuations that can cause career “sudden death” for a large fraction of the population. In this
short-term appraisal model, there are typically a small number of agents who are able to capture the majority of the labor
market opportunities with accelerating growth «; > 1 sustaining the career. Thus, a few “lucky” agents are able to survive
the initial fluctuations and end up dominating the system. In the SI text and Figs. S12-S16, we further show that systems
with increased levels of competition (7 > 1) mimic systems with short term contracts, resulting in employment “death traps”
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whereby most careers stagnate and terminate early.
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I. DATA

To test the intriguing possibility that competition leads to common growth patterns in complex systems of arbitrary
size S, we analyze the production dynamics of two professions that are dissimilar in many regards, but share the
common underlying driving force of competition for limited resources. In order to establish empirical facts that we
believe are independent of the details of a given competitive profession, we analyze a large dataset of production n;(t)
values and corresponding growth fluctuation r;(¢) = n;(t) — n;(t — 1) values. We define the appropriate measures
for n;(t) to be (a) the annual number of papers published by scientist ¢ and (b) the seasonal performance metrics of
professional athlete i. The large number of careers in these two professions readily lend themselves to quantitative
analysis because the data that quantify the career production trajectory are precisely defined and comprehensive
throughout an individual’s entire career. Furthermore, because of the generic nature of competition, we use these two
distinct professions to compare and contrast the distribution of career impact measures across a cohort of competitors.
The datasets we analyze are:

I: Academia:

We analyze the publication careers of 300 physicists which we categorize in 3 subsets each consisting of 100
individuals:
(A) Dataset A corresponds to the 100 most-cited physicists according to the citation shares metric [14]
(with average h-index (h) = 61 £ 21). These 100 careers constitute 3,951 r;(t) values.

(B) Dataset B corresponds to the 100 other “control” scientists, taken approximately randomly from the
same physics database (with average h-index (h) = 44 +15). In the selection process for dataset B, we
only consider scientists who have published between 10 and 50 articles in PRL over the 50-year period
1958-2008. These 100 careers constitute 3,534 r;(t) values.

(C) Dataset C corresponds to 100 Assistant Professors (with average h-index (h) = 15+7), where we select
two physicists from each of the top-50 U.S Physics & Astronomy Departments (according to the U.S.
News rankings). These Asst. Profs. are assumed to be early in their career and relatively accomplished
given the difficulty in obtaining such a position in any given university. These 100 careers constitute
1,050 r;(t) values.

In order to control for discipline-specific citation patterns, we select individuals in dataset A and B from set of all
scientists who have published in Physical Review Letters (PRL) over the 50-year period 1958-2008. As a measure of
output, we define n;(t) as the number of papers published in year ¢ of the career of individual i, where year t = 1
corresponds to the year of the first publication on record for author i. We downloaded the complete publication
records of the scientists in datasets A and B from ISI Web of Science (http://www.isiknowledge.com/) in Jan.

[1] Corresponding author: Alexander M. Petersen
E-mail: petersen.xander@gmail.com



2010, and we downloaded the complete publication records of the scientists in dataset C from ISI Web of Science in
Oct. 2010. We used the “Distinct Author Sets” function provided by ISI in order to increase the likelihood that only
papers published by each given author are analyzed.

IT : Magjor League Baseball (MLB):

We analyze 17,292 baseball players over the 90-year period 1920-2009 using comprehensive league data obtained
from Sean Lahman’s Baseball Archive accessed at http://baseballl.com/index.php. We separate the career
data into two distinct subsets: non-pitchers (players not on record as having pitched during a game) and pitchers.

(A) For non-pitchers, we analyze two batting metrics: an “opportunity metric” - at-bats (AB), and a
“success” metric - hits (H). Together, these 8,993 careers constitute 43,043 r;(¢) values.

(B) For pitchers, we analyze two pitching metrics: an “opportunity metric” - innings-pitched measured in
outs (IPO), and a “success” metric - strikeouts (K). Together, these 8,299 careers constitute 33,965
r;(t) values.

III : National Basketball Association (NBA):

We analyze 3,864 basketball careers, constituting 15,316 7r;(¢) values, over the 63-year period
19462008 wusing data obtained from Data Base Sports Basketball Archive accessed at
http://www.databasebasketball.com/. We analyze two player metrics:

(A) an “opportunity metric” - minutes played (Min.), and

(B) a “success” metric - points scored (Pts.)

Since sports careers typically peak for athletes around age 30, we account for a time-dependent career trajectory
which is dominant in most sports careers by “detrended” the measures for career growth fluctuations. In the case
where we do not account for a individual fluctuation scale,

Ry = [ri(t) =7(t)]/o(t) . (S1)

In this case we detrend with respect to the average production difference 7(¢) and the standard deviation of production
difference o(t) which are calculated using all careers from a given sports league, conditional on the career year ¢.

In the case where we do account for individual variations, we first define z;(t) = (r;(¢) — (r;))/0; to be normalized
with respect to the individual career scales (r;) and o; which are the average and standard deviation of the production
change of athlete career i. Then we define the detrended growth rate as

R = [2:(t) — (2(t)]/021) » (S2)

where in this case we detrend with respect to the average (z(t)) and standard deviation o, calculated by collecting
all z;(t) values for a given career year t. This detrending better accounts for the relatively strong time-dependent
growth patterns in sports.

II. NORMALIZED ANNUAL PRODUCTION MEASURES ARE GAMMA DISTRIBUTED

In this section we analyze the annual production of scientists measured as the number of papers published n;(t)
over the period of a year. Using this measure does not account for the variability in the length of production, say in
the number of pages, nor does it account for the impact of the paper, a quantity commonly approximated by a paper’s
citation number. Instead, we consider a simple definition that a scientific product is a final output of a collection of
inputs. Furthermore, in science it is assumed that the peer review process establishes a quality threshold so that only
manuscripts above a certain quality and novelty standard can be published and incorporated into the scientific body
of knowledge.

Prior theories of scientific production have also used the number of publications as a proxy for scientific output.
In particular, the Shockely model [33] proposed a simple multiplicative factor model for the production n;(t) which
predicts a log-normal distribution for P(n). An alternative null model for n;(t) is the Poisson process, which assumes
that each individual is endowed with a rate parameter w related to an individual’s production factors. This model
predicts a Poisson distribution for P(n). However, a shortfall of these models is that multiplicative parameters in



the Shockley model and the rate parameter w are difficult to measure, especially if the set of individuals span a large
range of production factors, and moreover, if the careers are non-stationary.

Fig. S8 shows the unconditional probability distribution P(n) calculated by aggregating all n;(t) values for all
scientists and all years into an aggregate dataset. Naively, the distributions are well-fit by the Log-normal distribution,
and so there is an apparent agreement with the multiplicative factor Shockley model. However, the distribution
P(n) = Zzli(i P(nl|S;) is the aggregate distribution constructed from 100 individual career trajectories n;(t), each
with varying size S;. Indeed, we demonstrate in Figs. 1 and S1 to be non-linear, with time-dependent residuals
around the moving average. Hence, it is not possible from the unconditional pdf P(n) to determine if the process
underlying scientific production corresponds to a simple multiplicative process or a Poisson process.

In order to better account for the variable size S; of each career which affects the rate at which an individual is
able to capture publication opportunities, we plot in Fig. S7 the pdf of the normalized output

_ ni(t)
fi(k)

We calculate the normalization factor f;(k) = ¢;[k;(t)]”" for each individual ¢ by estimating the parameters ¢; and ~;
for each scientist ¢ from the single-factor model

Qi

. (S3)

where n;(t) is the annual production in year ¢ and k;(¢) is the total number of distinct coauthors in year t. Hence, @;
represents the production factor above @) > 1 or below @) < 1 what would be expected from the author i given the fact
that he/she had additional inputs from k;(t) — 1 individuals that year. This model assumes that the major component
contributing to production is the collaboration degree k of the research output, and also assumes that the input of
each coauthor contributes equally to the final output. Clearly, these assumptions neglect some important idiosyncratic
details affecting scientific publication, but given the incomplete information associated with every publication, it is
a decent approximation. We estimate ¢; and ~y; by performing a linear regression of logn; and log k; using the first
L; years of each career, neglecting years with n; = 0. We use L; = 35 years for dataset [A] and [B] scientists, and
L; = 10 years for dataset [C] scientists.

In Fig. 2(c) we approximate 7 using all n(¢) within each dataset with k& < 50, and performing a regression of the
model

Inn=Ing+ylnk+e¢ (S5)

to estimate v, where € is the residual due to other unaccounted production factors. For each dataset we find that the
aggregate efficiency parameter + is approximately equal to the average (v;) calculated from the 100 ~; values in each
career dataset: v = 0.68 +0.01 [A], v = 0.52 +0.01 [B], and v = 0.51 £ 0.02 [C]. Furthermore, the 1) ~ 7 since the
size-variance scaling parameter v is also an efficiency measure that relates the scaling of output n to input k.

As a result of this analysis, we quantify the scaling exponent v < 1 of the decreasing marginal returns in the scientific
production function for projects with k& < 50. This likely stems from the inefficient management costs associated with
large group collaborations which typically manifest in a larger production timescale. In fact, for years with & > 50
coauthors, scientific output shows decreasing returns to scale. Interestingly, the star scientists in dataset [A] display
significantly larger efficiency, quantitatively showing the importance of management skills in scientific success.

The normalized production values are normalized to units of “expected production” conditional on the k; inputs
for author i. We aggregate all data from each dataset and show in Fig. S7 that the @ values are well-described by
the Gamma distribution

P(Q) = SR (56)

where m is the shape parameter and 6 is the scale parameter. Surprisingly, we find that dataset [A] and [B] have
approximately equal Gamma parameters, indicating that besides their production efficiency, top scientists are virtually
indistinguishable with average normalized output (@) = m# > 1. For each dataset we calculate the Gamma parameters
using the maximum likelihood estimator method: m = 5.45 and 6 = 0.21 [A], m = 5.60 and 6 = 0.20 [B], and
m = 7.00 and 6 = 0.15 [C]. We leave it as an open question to determine why the Gamma distribution describes so
well the production statistics. We ponder the intriguing possibility that the stochastic dynamics underlying individual
production corresponds to an increasing Lévy process with variable jump length which is known to produce a Gamma
distribution.



IIT. QUANTIFYING THE CAREER TRAJECTORY

The reputation of an individual is typically cumulative, based on the total sum of achievements, which we approx-
imate by the cumulative output N;(t) (e.i. number of papers published by year t). In Figs. 1 and S1 we plot N;(t)
for several individuals. The careers presented in Fig. 1 are more linear, indicating quantifiable career trajectory that
has the approximate form

t
Ni(t) =D mi(t') ~ At t<T (S7)
=1

where n;(t) are the number of papers in year ¢ of the scientist’s career which begins with ¢ = 1 in the year of his/her
first publication, and begins to decline around time T; which is the time horizon over which the scaling regularity holds
before termination and aging effects begin to dominate the career. In our analysis of academic career trajectories
N;(t), we only analyze N;(t) for ¢ < 40 years in order to account for such termination affects.

The smooth career trajectories which appear as a linear curve when plotted on log-log scale are characterized by an
amplitude parameter A; and a scaling exponent «;. However, as indicated by Fig. S1, there are also non-stationary
N;(t) which are dominated by “career shocks” that significantly alter the career trajectory. Such career shocks have
been demonstrated using publication impact measures (e.i. citations, and h-index sequences) [10, 15, 23], and here
we show that they even occur at the more fundamental level of individual production dynamics.

In order to analyze the characteristic properties of N;(t) for all 300 scientists analyzed, we define the normalized
trajectory N/(t) = N;(t)/(n;), where (n;(t)) is the average annual production rate of author 7, and so by construction
N/(L;) = L;. Fig. S2(A) shows the characteristic production trajectory obtained by averaging the 100 individual
N/(t) for each dataset,

) Ni(t 1 R N(t
(V) = <n(i>)> - ; <n(i>) . (S8)

The standard deviation o(N'(¢)) is shown in Fig. S2(B), which has a broad peak that is a likely signature of
career shocks that can significantly alter the career trajectory. The characteristic trajectory for each dataset are
well-approximated by the scaling relation

(N'(t)) ~ 1™ (S9)

with characteristic scaling exponents @ > 1 that are significantly greater than unity: @ = 1.28 4 0.01 for Dataset A,
@ = 1.31£0.01 for Dataset B, and @ = 1.1540.02 for Dataset C. This fact implies that there is a significant cumulate
advantage in scientific careers which allows for the career trajectory to be accelerating. In Fig. S2(C) and S2(D) we
plot the analogous (N'(¢)) curves for professional sports metrics, where for this profession, @ &~ 1 for all measures
analyzed. This is likely due to the fact that annual production in professional sports is capped by the limited number
of opportunities provided by a season, whereas in academics, the number of publications a scientist can publish is in
principle unlimited.

In Fig. S3 we plot each individual career trajectory using the rescaled time t; = t* as an additional visual test of
the scaling model given by Eq. S7 . We show that on average, all curves ¢ = 1..300 approximately collapse onto the
expected curve N;(t)/A; = t', where the residual difference ¢€;(t') = N;(t)/A; — t' are likely due to career shocks of
various magnitudes. We plot the average and standard deviation of each set of 100 N;(t)/A; curves which show that
most of the shocks ¢;(¢'), with some significant exceptions, lie within the 1o standard deviation denoted by the error
bars. In Fig. S4 we plot the probability distributions P(c«;) for each academic dataset. For each dataset, the average
value (o) is in good agreement with @, the scaling parameter calculated for the corresponding trajectory (N'(t)).



IV. EXPONENTIAL MIXING OF GAUSSIANS

The idea that entities are independent and identically distributed is an unrealistic assumption commonly made in
analyses of complex systems. The unconditional pdf P(r) is commonly analyzed in empirical studies where insufficient
data are present to define normalized r; measures for each sample constituent i. Nevertheless, when modeling the
evolution of complex based on empirical data corresponding to distinct subunits (such as individual careers, companies,
or nation regions), unconditional quantities that account for variations in underlying production factors should be
used.

In the case of scientific output, there are many production factors that combine together and determine the amount
of human efforts needed to produce a unit of production. In general, consider the value f; ; of individual ¢ corresponding
to his/her relative abilities in the production factor j = 1...J corresponding to a variety of attributes: knowledge,
genius, persistence, reputation, mental and physical health, communication skills, organization skills, and access to
technology, equipment and data, etc. In this study, we compare scientists who publish in similar journals. Still, the
scientific input required for each scientific output can vary by a large amount, largely depending on the technology
needed to perform the analysis, ranging from particle accelerators to just a pencil and paper.

In a very generalized representation, an unconditional distributions P(r), such as shown in Fig. 3(a-d) for production
change r, may follow from a mixture of conditional Gaussian distributions P(r|.S)

50 I
Py(r) :/0 P(r[S)P(S)dS ~ Y P,(r|S)P(S)dS . (S10)

i=1

The underlying conditional distributions are characterized by the average (r)s and variance o2(S) = V.S¥
P(r|S) = exp[—(r — (r)5)?/2VS¥]/V2rV S¥ . (S11)

which are each parameterized by the “unit size” S. In cases where the average change (rg) & 0, then the distribution
P(r|S) is characterized by only the fluctuation scale o(r). Fig. S5 demonstrates that the normalized production
change 7(t) = (r — (r;))/o; is distributed according to a Gaussian distribution. Hence, using normalized variables,
we have mapped the process to a universal scaling distribution P(r|S).

When the distribution P(S) is exponential,

P(S) = \e ™ (S12)

then mixture is termed an “exponential mixture of Gaussians” [35], where the units have characteristic size S = 1/
and characteristic fluctuation scale o(.S). Fig. S10 shows that the distribution of sizes S; is approximately exponential
for each dataset, supporting the case for exponential mixing. Using the cumulative distribution of S for each data set
we calculate A = 0.15 £ 0.01 [A], A =0.11 £0.01 [B], and A = 0.11 £ 0.01 [C]. While the tail behavior of P(r) can be
used to better discriminate the value of ¢, we do not have sufficient data in this analysis to perform a more rigorous
test of the tail dependencies, or in general, to investigate the distribution of significantly large r;(t) values.

The scaling relation o(r) ~ S¥/2 determines the functional form of the aggregate Py(r). Clearly, o(r) increases
for ¢ > 0 values, whereas for values ¢ < 0, o(r) decreases with size S. This latter case is empirically observed for
countries and firms [41], whereby in general, large economic entities are able to decrease growth volatility by increasing
and diversifying their portfolio of growth products. In our analysis of scientific careers we define S; = Med[k;(t)], the
median number of distinct coauthors per year, as a proxy for the ability of the career to attract new opportunities,
and hence, as a proxy for the size 5; of an academic career. For professional athletes, we define the career size as the
average number of points scored over the career S; = (p;(t)). In Fig. 2 we calculate /2 ~ 0.40 + 0.03 (regression
coefficient R = 0.77) for dataset [A], ¥/2 =~ 0.22 £ 0.04 (R = 0.51) [B], and %/2 ~ 0.26 + 0.05 (R = 0.45) [C].

The role of mental, physical, and group spillovers is quite different in professional sports. Athletes attract future
opportunities largely through their historical track record, which is heavily weighted on performance in the near past,
and less on the cumulative history. Hence, for this performance-based labor force, we use a simple definition of “team
value” to define the career size S;. This quantity is easier to define for basketball, since there are smaller differences
between players of different team position than in other sports. For NBA player i we define S; as the average number of
points scored per year, S; = (p;). Fig. S9 shows a crossover value S, which we interpret to reflect the fact that sports
players typically fall into one of two categories: starters (everyday players) and replacement (game filler) players. We
calculate /2 ~ 0.38 + 0.02 for emerging and “second string” careers with S; < S, and a decreasing size variance
relation (¢ < 0) for high-value careers with S; > S.. Similar values occur in the MLB. These two v regimes reflect
the crucial balance of risk and reward in short-term contract professions.



A variety of pdfs Py(r) can result from the exponential mixture of Gaussians
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depending on the value of ¢ which quantifies the size-variance relation. The functional form of Py (r) can vary in
both the bulk and the tails of the distribution [35]. A simple result which follows from the case ¢ = 1 is the Laplace

(double-exponential) distribution
[ A 2A
P¢:1(T) = Wexp |:_ 7|7’|:| . (814)

This distribution is a member of the family of Exponential power distributions which follow from the range of values
¥ > 0 [35]. In general, if the scaling values are in the range ¥ > 0, then the exponential mixture leads to an
Exponential power distribution

_LGX — r/o
P) = ot O VA (515)

with shape parameter ( in the range 5 € (0,2] [35]. The pure exponential P(r) with 8 = 1 corresponds to the case
1 = 1. The pure Gaussian P(r) with 8 = 2 corresponds to the case ¢ = 0.

Furthermore, if the annual production is logarithmically related to an underlying production potential, n;(t)
InU;(t), then r;(¢) o< InU;(t) — InU;(t — 1) quantifies the logarithmic change (“growth rate”) of U;(t). This forms the
analogy with growth dynamics of large institutions with size S > 1. For example, in the case of financial securities
such as the stock of a company 7, the growth rate r;(t) measure the logarithmic change in the market’s expectations of
the company’s future earnings potential captured by the market capitalization and price [42]. As a result, distributions
P(r) of career growth fluctuation r, which we plot in Figs. 3 (a-d), can be seen as a bridge between the micro level
and the macro level of economic growth fluctuation. A theory of micro growth processes can help improve the growth
forecasts for economic organizations ranging in size from scientific collaborations to universities and firms [35, 37-42].

V. NONLINEAR PREFERENTIAL CAPTURE MODEL

Here we describe a stochastic system in which a finite number of opportunities are distributed to a system of
individual competing agents ¢ = 1...I. The opportunities are distributed in batches of P opportunities per arbitrary
time interval. This model has two parameters.

(i) m determines the preferential capture mechanism (the value m# = 1 corresponds to the traditional “linear”
preferential attachment model) and

(ii) ¢ determines the performance timescale 1/¢ which is incorporated into the calculation of the capture rates of
each individual. The value ¢ = 0 corresponds to a long-term memory and ¢ > 1 corresponds to short-term memory.

We use this simple model to show that a system governed by a preferential capture can become dominated by
fluctuations when ¢ is large. The value 1/c¢ quantifies the “performance appraisal timescale”: a small ¢ corresponds
to a labor system with long contracts, or some alternative mechanism that provides employment insurance through
periods of low production, so that the ability to attract future opportunities is largely based on the cumulative record
of career achievement. Conversely, a large ¢ corresponds to a labor system with short contracts in which the ability to
attract future opportunities is largely based on the accomplishments in the near past, requiring an agent to maintain
relatively high levels of production in order to survive. In this latter case, we find that (natural) fluctuations in the
annual production can cause a significant fraction of the careers to “fizzle out” leaving behind only a few “super
careers” who attract almost all of the opportunities. In other words, short contracts can tip the level of competition
into dangerous territory whereby careers are largely determined by fluctuations and not persistence.

A. System of competing agents

1) The system consists of I = 1000 agents competing for P opportunities that are allocated in a single period.
There is no entry, hence the number I is kept constant. Also, P is also kept constant, so there is no growth in
the labor supply.



2)

3)

1)

We run the Monte Carlo (MC) simulation for 7' = 100 time periods and all agents are by construction from the
same age cohort (born at same time).

Each time period corresponds to the allocation of P = Zle ng,; opportunities, sequentially one at a time, to
randomly assigned agents ¢, where ng; = 1 is the potential production capacity of a given individual.

The assignment of a given opportunity is proportional to the time-dependent weight (capture rate) w;(t) of each
agent. Hence, the assignment of 1 opportunity to agent i at period ¢ results in the production (achievement)
n;(t) to increase by one unit: n;(t) — n;(t) + 1. In the next time period ¢ + 1, we update the weight w;(t + 1)
to include the performance n;(t) in the current period.

B. Initial Condition

The initial weight at the beginning of the simulation is w;(t = 0) = n. for each agent ¢ with n, = 1. The value
n. > 0 ensures that competitors begin with a non-zero production potential, and corresponds to a homogenous system
where all agents begin with the same production capacity. Hence, we do not analyze the more complicated model
wherein external factors (i.e. collaboration factors) can result in a heterogeneous production capacity across scientists.
By construction, each agent begins with one unit of achievement n;(t = 1) = 1.

1)
2)

4)

C. System Dynamics

In each Monte Carlo step we allocate one opportunity to a randomly chosen individual ¢ so that n;(t) — n;(t)+1
The individual ¢ is chosen with probability P;(t) proportional to [w;(¢)]™
w;(t)”

2 iz wilt)

where the value w;(t) is given by an exponentially weighted sum over the entire achievement history

(S16)

t—1

wi(t) = > nit — At)e A (S17)

At=1

The parameter ¢ > 0 is a memory parameter which determines how the record of accomplishments in the past
affect the ability to obtain new opportunities in the current period, and therefore, the future. The limit ¢ =0
rewards long-term accomplishment by equally weighting the entire history of accomplishments. Conversely, when
¢ > 1 the value of w;(t) is largely dominated by the performance n;(t — 1) in the previous period, corresponding
to increased emphasis on short-term accomplishment in the immediate past. Intermediate values 0 < ¢ < 1
weight more equally the immediate past and the entire history of accomplishment.

The exponent m determines how the relative ability to attract opportunities P;/P; = [w;(t)/w;(t)]™ depends
on the weights w;(t) and w,;(t) between two individuals ¢ and j. The linear capture case follows from 7 = 1,
uniform capture 7 = 0, super linear capture m > 1, and sub-linear capture = < 1.

At the end of each time period, the weight w;(t) is recalculated and used for the entirety of the next MC time
period corresponding to the allocation of the next I x n. achievement opportunities.

D. Model Results

We simulate this system for a realistic labor force size I = 1000 with the assumption that in any given period,
an individual has the capacity for one unit of production (n. = 1). We evolve the system for T = 100 periods
corresponding to I xn. xT Monte Carlo time steps. The timescale T represents the (production) lifetime of individuals
with finite longevity. In this model we do not include exogenous shocks (career hazards) that can result in career
death [11]. Here we analyze four quantities:

)

The distribution P(N) of the total number of opportunities N;(T") = Zthl n;(t) captured by agent ¢ over the
course of the T'— period simulation.



2) The distribution P(«) of the career trajectory scaling exponent «; defined in Eq. S7 which quantifies the
(de)acceleration of production over the course of the career.

3) The distribution P(r) of production outcome change r defined in Eq. 1 which quantifies the size of endogenous
production shocks.

4) The distribution P(L) of career length L; which measures the active production period of each career starting
from t = 0. We define activity as the largest period value L; for which n;(L;) = 0, which in other words,
corresponds to truncating all 0 production values from the end of the trajectory n;(t) and defining L; as the
length of this time series.

We display these four distributions, from left to right, for varying m and ¢ values, in each panel of Figs. S12 —
S16. Empirical distributions calculated from MC simulations are plotted as blue dots, with benchmark distributions
described below plotted as solid green curves. For each 7 and ¢ value we simulate 10 MC systems, and combine the
results into aggregate distributions which are shown. For simulations with 7 > 1 the pdf data are aggregated over
the results of 50 MC simulations. We list below some of our main observations.

For m = 1, independent of ¢, we observe exponential P(N), consistent with the prediction of the linear preferential
capture model in the case of no firm entry (b = 0) in the model of Kazuko et al. [34]. However, the distribution P(L)
and the distribution P(«) does depend strongly on c¢, reflecting the possibility of career “sudden death” for large c.

For the P(«) distributions (middle-left panels), the solid green line is a best-fit Gaussian distribution (using the
MLE method) for the set of «; values computed for careers that did not undergo “sudden death.”

For the P(r) distributions (middle-right panels), the solid green curve corresponds to a best-fit Laplace distribution
(using the MLE method) and the dashed red curve corresponds to a best-fit Guassian distribution (using the MLE
method) which we show only for benchmark comparison. Typical empirical distributions (values shown as blue dots)
range from being distributions that are Gaussian to distributions that are Laplacian in the bulk but with heavy tails.

For the P(L) distributions (right most panels), we note that the most likely career length L is typically either
L=1or L =T for all systems analyzed. However, there are likely ¢ and 7w parameter values corresponding to P(L)
that is uniform distributed over the entire range of L values, which may be an interesting class of system to analyze
in future analyses since such a system promotes diversity across the entire longevity spectrum. The system we show
for m = 1.2 and ¢ = 1 appears to be close to this scenario.

Fig. S12 shows the null model with no preferential capture (7 = 0). We confirm that the careers in this model
are driven by a stochastic accumulation process that is equivalent to a Poisson process with rate A\, = 1. In this
homogenous system, each career gains on average one opportunity each time period, so that at the end of the
simulation, the distribution P(N) is a Poisson distribution with (N) = \,T (shown as the solid blue line) which fits
the model data excellently. For these careers, the typical @ = 1, the production changes are well-approximated by
a Gaussian distribution, and most careers are sustained for the maximum possible lifetime corresponding to 1" periods.

Fig. S13 shows the system with ¢ = 0 corresponding to comprehensive career appraisal corresponding to a
long-term memory system. We analyze this system for 4 values of # = 0.8,1.0,1.2,1.4. This “long-term memory”
scenario corresponds to a long-term contract profession whereby careers are less vulnerable to periods of low
production. As a result, most careers sustain production throughout the career.

Fig. S14 shows the system with ¢ = 0.1 corresponding to an effective memory timescale of 1/¢ = 10 periods. We
analyze this system for 4 values of # = 0.8,1.0,1.2,1.4. This “medium-term memory” scenario yields a rich variety
of careers for m = 1, but for 7 = 1.2 the system becomes quickly dominated by “rich-get-richer” effects which results
in careers being vulnerable to low production fluctuations.

Fig. S15 shows the system with ¢ = 1 corresponding to an effective memory timescale of 1/¢ = 1 period. We
analyze this system for 4 values of 7 = 0.8,0.9,1.0,1.1. For all values of m analyzed, we observe a system that is
dominated by careers that are cut short by the high levels of competition induced by the relatively high value placed
on continued production.

Fig. S16 shows the extreme case of a “no memory” scenario in which w;(t) =~ n;(t — 1) whereby most careers
experience sudden death due to endogenous negative production shocks early in their career. The lucky few careers



who survive this period end up as rich-get-richer “superstars.” This behavior occurs for all systems analyzed using 4
values of m = 0.8,0.9, 1.0, 1.05.

E. Discussion of the model in relation to the Academic labor market

One serious drawback of short-term contracts are the tedious employment searches, which displace career momentum
by taking focus energy away from the laboratory, diminishing the quality of administrative performance within
the institution, and limiting the individual’s time to serve the community through external outreach [1, 2]. These
momentum displacements can directly transform into negative productivity shocks to scientific output. As a result,
there may be increased pressure for individuals in short-term contracts to produce quantity over quality, which
encourages the presentation of incomplete analysis and diminishes the incentives to perform sound science. These
changing features may precipitate in a “tragedy of the scientific commons.”

Aside from promoting circumspect research, job security in academia diminishes the incentives for scientists to
“save and store” their knowledge for future liquidation in the case of employment emergency, and thus promotes the
institution of “open science” [5]. However, a policy shift towards short-term contracts, along with the heightened value
of intellectual property, may alter the course of publicly funded “open science.” This scientific commons emerged
from the noble courts during the Renaissance as a hallmark of the scientific revolution and now faces pressure from
what has been termed “intellectual capitalism,” with the vast privatization of knowledge and innovation (“closed
science”) occurring in public universities and corporate R&D [5]. An academic system that is dominated by short
term contracts, stymied by production incentives that favor quantity over quality, and jeopardized at the level of the
“open knowledge” commons, presents a new institutional scenario revealing selection pressures that could alter the
birth and death rates of high-impact careers.

The purpose of this stochastic model is to show how careers can become very susceptible to negative production
shocks if the labor market is driven by a preferential capture mechanism with v > 1 whereby early success of an
individual can lead to future advantage. However, this model also shows that the onset of a fluctuation-dominant
(volatile) labor market can also be amplified when the labor market is governed by short-term contracts reinforced by a
short-term appraisal system. In such a system, career sustainability relies on continued recent short-term production,
which can encourage rapid publication of low-quality science. In professions where there is a high level of competition
for employment, bottlenecks form whereby most careers stagnate and fail to rise above an initial achievement barrier.
Instead, these careers stagnate, and in a profession that shows no mercy for production lulls, these careers undergo a
“sudden death” because they were “frozen out” by a labor market that did not provide insurance against endogenous
fluctuations. Such a system is an employment “death trap” whereby most careers stagnate and “flat-line” at zero
production. However, at the same time, a small fraction of the population overcomes the initial selection barrier and
are championed as the “big winners”, possibly only due to random chance.

Table demonstrates how the life expectancy decreases with increasing ¢ even for the linear preferential capture model
corresponding to 7 = 1. With increasing ¢, the model simulates systems with shorter contracts (shorter appraisal
“memory” timescales), and so larger percentages of the population die before characteristic ages T.(p), values that
decrease with increasing ¢ for a given p.
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Te(p)asa % of T, (% T)

p=01 ‘ p=0.25 ‘ =05 ‘ p:0.75‘
¢ =0 (long term) 0047 | 0987 | 1roor | 1007 |
c=0.1 0207 | o797 | 0.997 | 1oor |
c=10 0.017 | 0.027 | 0.057 | 0157 |
¢=10.0 (short term) 0.017 | 0.017 | 0.027 | 0.067 |

TABLE S1: Decrease in career life expectancy as a result of short-term contract length in the 7 = 1 linear preferential capture

model. The fraction p of the population that experienced career termination before the crossover age Tc(p):

population died before reaching the age L = T.(p).”

“p percent of the

As ¢ increases (recall the appraisal “memory” timescale is 1/¢) towards a
short-term contract scenario, a significant fraction of the population (increasing p) dies before reaching a smaller and smaller
T¢(p). The empirical value of T.(p) is given as a percentage of the maximum career length T corresponding to the stopping time
of the Monte Carlo simulation. The value T.(p) is calculated using the equality p = CDF(T < T.(p)), where CDF (T < L)
is the cumulative distribution function of career length L. To estimate CDF(T < L), we combine an ensemble of 10 MC
simulations for each ¢ value. In the model simulations we use 7" = 100 periods.
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FIG. S1: Positive career shocks likely associated with reputation boosts.

Examples of career production trajectories N;(t)

that have significant deviations from the scaling hypothesis in Eq. S7 . These significant deviations likely follow extraordinary
scientific discoveries (and the publicity and reputation that are typically rewarded) which can vault a career and result in

lasting benefits to the individual.
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FIG. S2: Regularities in the career trajectory N;(t). We analyze the normalized career trajectory Nj(t) = N;(t)/{n;) which
allows us to aggregate N;(t) with varying publication rates (n;). As a result, we can better quantify the scaling exponent
@ which quantifies the acceleration of the typical career over time. We calculate @ using OLS regression on log-log scale of

the average normalized career trajectory (N'(t)) = <]27;L—(t>>> For reference, each Nj(t) trajectory in panels A, B, and C has a

corresponding best-fit curve that is a dashed line. (A) For the scientific careers, we calculate @ values: 1.28 £+ 0.01 for Dataset
A, 1.3140.01 for Dataset B, and 1.1540.02 for Dataset C. These values are all significantly greater than unity, @ > 1, indicative
of a systematic cumulative advantage effect in science. (B) The standard deviation o N'(¢) has a broad peak, likely related to
career shocks that can significantly alter the career trajectory. (C) The average normalized career trajectory for NBA careers
has @~ 1 (D) The average normalized career trajectory for MLB careers has @ ~ 1. For visual comparison, the solid straight
black line in panels A,B and C correspond to a linear function with o = 1.
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FIG. S3: Using scaling methods to show approximate data collapse of each N;(t). Normalized trajectory N;(t) = Ni(t)/A;
plotted using the scaled time t' = t®¢ for each career over the time horizon ¢ € [1,40] years. We plot the 100 N;(t) curves
belonging to datasets [A], [B], and [C] in the corresponding panels. There is approximate data collapse of all the normalized
trajectories Nl(t) along the dashed green line corresponding to the rescaled career trajectory Nl(t) =t with o = 1 by
construction. We also plot in red the corresponding average value (]\7Z (t)) with 1o error bars for logarithmically spaced #’
intervals. Deviations from (]\7, (t)) are indicative of career shocks which can significantly alter the career trajectory.
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FIG. S4: Increasing returns to scale a > 1. Probability distribution of the individual «; values calculated for each career using
the scaling model N;(t) ~ ¢* over time horizon ¢ € [1,40] years. The average (o;) and standard deviation o(a;) for each
dataset are: 1.42 4+ 0.29 [A], 1.44 £ 0.26 [B], 1.30 £ 0.31 [C]. The distribution of «; values indicate that career trajectories are
typically accelerating (a; > 1), most likely the result of a cumulative advantage effect.
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FIG. S5: Universal patterns in underlying production fluctuations of scientists. Accounting for variable individual publication
factors, such as academic subfield or group collaboration size, we find that the normalized annual production change ;(t) =
[ri(t) — (r)i]/o; is distributed according to a Gaussian distribution, with (r') = 0 and o(r’) = 1 by construction (solid lines
show best-fit Guassian distributions using the maximum likelihood estimator method). This results indicates that the Laplace
distribution shown in Fig. 3 results from a mixture of Gaussian distributions P;(r = om“') with characteristic scale o;.
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FIG. S6: Universal patterns in underlying production fluctuations of athletes. For sports careers, we also define a measure
R’ which account for variable individual production factors, such as propensity for injury, team position, etc. The normalized
annual growth rate R; = [z:(¢) — (2(¢))]/0«) is normalized twice. The quantity z;(t) = (ri(¢t) — (r:))/os is normalized with
respect to individual factors, where (r;) and o; are the average and standard deviation of the production change of career i.
Then, we aggregate all z;(¢t) values for a given career year t in order to calculate the average (z(t)) and standard deviation
o) over all careers. The final quantity R; represents a normalized annual production change which is distributed in the
bulk according to a Gaussian distribution, with (R') &~ 0 and o(r’) & 1 by construction (solid lines show best-fit Guassian
distributions using the maximum likelihood estimator method). This results indicates that the Laplace distribution shown in
Fig. 3 results from a mixture of Gaussian distributions P;(R = o;R") with characteristic scale o;.
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FIG. ST: Universal micro-scale output distribution P(Q) which accounts for coauthorship variability. The normalized output
Q x n;/k}" is a residual output after we quantitatively account for the collaboration size k; corresponding to the number of
distinct coauthors of author i. Each pdf is well-approximated by the Gamma distribution P(Q) < Q™ ! exp[—Q/6] which
suggests that production at the micro scale is governed by a Gamma Lévy process. We calculate the Gamma distribution
parameters using the maximum likelihood estimator method (distributions shown by solid and dashed curves), and find an
insignificant difference between [A] and [B] scientists with Gamma shape parameter m and scale parameter §. However, for
dataset [C] scientists, the output distribution is more skewed towards smaller @ values, possibly reflecting the relative advantage
that senior scientists gain due to reputation, experience, and knowledge spillover factors.
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FIG. S8: Aggregate production distributions can be deceiving. Unconditional distribution of annual publication rate n(t)
appears as log-normal distributions because it is a mixture of underlying distributions that depend strongly on collaboration
factors. We define n;(t) as the number of papers published in (A) At =1 and (B) At = 2 year periods, which reduces the
finite-size effects arising from the calendar year labeling of publication dates. (A) We combine n;(t) values for all values of
t, and find excellent agreement between the empirical P(n(t)) data points and the log-normal model. We use the maximum
likelihood estimator method to calculate the log-normal parameters o = o(lnn) and p = (Inn). (B) In order to analyze the
time-dependence of P(n(t)), we separate n;(t) values from Dataset A into 5 subsets, depending on the range t years into the
career, as indicated in the figure legend. We offset each pdf by a constant factor in order to distinguish each pdf, which are
also well-approximated by log-normal distributions (shown as solid curves).



15

I 12=-0257) | i ]
) " w . @) = [ v2=0370) 1
~ P /2 =0.38(2) ~ | |
", o
o 10°F 1 4 0
= f 1 =10} E
Q [ ] Q F 4
2] r T 2] b 4
g r 1 g Foo. 5 1
2t 18 [ s 1
g | |8 | & = U /2=0.15(7)]
10 A - Ep'F B -
L L Pt e SE T Liml Ll .
10” 10" 10” 10° 10* 10” 10’ 10°
Average points scored per year, S, = <p, > Average strikeouts per year, S, = < K, >
1 T T ]
= H 1
- |
< 10°F E
2 1
a I 1
ST 1
=I |
5 | |
3]
= A
~10'F % E
Eou '\I\.TT\H.P\--'P' AT ]
10” 10' 10°

Average hits per year, S, = < H, >

FIG. S9: Quantifying the growth fluctuations of sports careers. The size variance relation for sports careers is similar to
academic careers for small S;. However, for relatively large S; the relation becomes decreasing corresponding to ¥ < 0,
analogous to what is found for firm growth [39-42]. The decreasing relation for S; > S. likely follows from the fact that in
sports, there is a hard upper limit to the number of opportunities available to a player in a given year. Hence, individuals
with large S; are likely the starters on their teams, since it is neither economical nor in the strategy of winning to keep players
above a threshold value S. out of the game, and so these players typically remain as positional starters except for episodic
leaves of absence due to injury. Hence, these players experience smaller o;(r) due to limitations to their potential for further
career growth. However, players with S; < S. are typically on the fringe of being released or provide alternative value to the
team, and so these individuals experience larger fluctuations in team play because they are easily dispensable, especially in a
profession dominated by short-contracts lasting sometimes less than a year. For each dataset, we use careers with career length
L; > 3 seasons. (A) NBA basketball players: Units of o;(R) are normalized minutes played. We define the scaling relation
0i(R) ~ (p;)¥/? between the average number of points scored per season (p;) = Zf:il pi(t)/L; and the standard deviation o;(R).
In this way, we utilize the average points per season as the proxy for the ability of a player to obtain future opportunities
which are realized as minutes played. Using S. = 720 points, we calculate ¢/2 = 0.38 4= 0.02 (regression coefficient R = 0.50
and ANOVA F-test significance level p = 0) for S; < Sc and /2 = —0.25 £ 0.07 (R = 0.15 and p = 1073) for S; > S..
(B) MLB pitchers: Units of o;(R) are normalized IPO (innings pitched in outs). Interestingly, o;(R) continues to increase
for S; > S¢, possibly due to the relatively high career risk attributed to throwing arm injury. Using S. = 65 strikeouts, we
calculate 1/2 = 0.37 £ 0.01 (R = 0.48 and p =~ 0) for S; < Sc and ¢/2 = +0.15+ 0.07 (R = 0.07 and p ~ 0.02) for S; > S..
(C) MLB batters: Units of o;(R) are normalized AB (at bats). Using S. = 68 hits, we calculate ¢/2 = 0.44 + 0.01 (R = 0.59
and p ~ 0) for S; < S. and /2 = —0.37 £ 0.03 (R = 0.21 and p ~ 0) for S; > Sc. The dashed black (blue) line in each panel
is a least squares linear regression on log-log scale for all data values with S; less (greater) than S.. The data shown with error
bars represent the average (o;(R)) and corresponding 1 standard deviation values calculated using equally spaced S; bins on
the logarithmic scale.
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FIG. S10: Exponential distributions of coauthor radius in Physics. We test the hypothesis that the distributions P(r) for
annual production change r (shown in Fig. 3) follow from an exponential mixing of Gaussians with varying fluctuation
scale 0; o< Med[k;(t)]¥/?. An important criteria for this model is that the distribution of S; = Med[k;(t)] is exponential,
P(S;) ~ exp[—AS;]. We plot the cumulative distribution function (CDF) P(x > S;) for each dataset, and confirm that the
distributions are approximately linear on log-linear axes. Using linear regression, we calculate A = 0.154+0.01 [A], A = 0.114+0.01
[B], and A = 0.11 & 0.01 [C].
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FIG. S11: Approximately exponential distribution of scoring value in the NBA. We further test the hypothesis that the
distributions P(R) for annual production change R in professional sports (shown in Fig. 3 C and D) follow from an exponential
mixing of Gaussians with varying fluctuation scale o; <pi)w/ 2. An important criteria for this model is that the distribution
of “team value” (p;) is exponential, P((p;)) ~ exp[—A(p;)]. We plot the cumulative distribution function (CDF) P(z > (p;))
for each dataset, and confirm that the distributions are approximately linear on log-linear axes. We show the CDFs calculated
using all careers with career length L; > L. years, for L. = 1,3 years.



FIG. S12: A production output null model with 7
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FIG. S13: The production output model with ¢ = 0. Results of MC simulations for a “long-term appraisal” scenario. Careers
are less vulnerable to low-production phases, and as a result, most agents sustain production throughout the career for a
relatively large range of 7 values.
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FIG. S14: The production output model with ¢ = 0.1. Results of MC simulations for a “medium-term appraisal” scenario. The
corresponding memory time scale is approximately 10 time periods, and so only for significantly large 7 = 1.4 do we observe
a labor market scenario in which there is a significant death rate and just a few “big winners” corresponding to those agents

with o > 1.
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FIG. S15: The production output model with ¢ = 1.0. Results of MC simulations for a “short-term appraisal” scenario. The
corresponding memory time scale is approximately 1 time period. Even for w < 1, the system is driven by fluctuations that can
cause career “sudden death” for a large fraction of the population. For = > 1 we observe a very quick transition to a significant
death rate and just a few “big winners” corresponding to those agents with o > 1.
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FIG. S16: The production output model with ¢ = 10.0. Results of MC simulations for a “zero-memory appraisal” scenario
wherein only the previous period matters, w;(t) = n;(t — 1). Even for linear preferential capture = = 1, the systems shows “no
mercy” for careers that are stagnant for possibly just one period. As a result, just a few “lucky” agents are able to survive
the initial fluctuations and end up dominating the system. For 7 values close to unity, @ — 1, the systems quickly becomes an
employment “death trap” whereby most careers stagnate and “flat-line.”



