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DEFINITION: Process Algebras are mathematically rigorous languages with well defined se-
mantics that permit describing and verifying properties of concurrent communicating systems.
They can be seen as models of processes, regarded as agents that act and interact continuously with
other similar agents and with their common environment. The agents may be real-world objects
(even people), or they may be artifacts, embodied perhaps in computer hardware or software sys-
tems. Many different approaches (operational, denotational, algebraic) are taken for describing the
meaning of processes. However, the operational approach is the reference one. By relying on the so
called Structural Operational Semantics (SOS), labelled transition systems are built and composed
by using the different operators of the many different process algebras. Behavioral equivalences are
used to abstract from unwanted details and identify those systems that react similarly to external
experiments.

SYNONYMS: Process Calculi, Process Description Languages.

RELATED ENTRIES: Actors, Behavioral Equivalences, Bisimulation, CCS, CSP, Pi-Calculus.

1 Introduction

The goal of software verification is to assure that developed programs fully satisfy all the expected
requirements. Providing a formal semantics of programming languages is an essential step toward
program verification. This activity has received much attention in the last 40 years. At the begin-
ning the interest was mainly on sequential programs, then it turned also on concurrent program
that can lead to subtle errors in very critical activities. Indeed, most computing systems today are
concurrent and interactive.

Classically, the semantics of a sequential program has been defined as a function specifying the
induced input-output transformations. This setting becomes, however, much more complex when
concurrent programs are considered, because they exhibit nondeterministic behaviors. Nondeter-
minism arises from programs interaction and cannot be avoided. At least, not without sacrificing
expressive power. Failures do matter, and choosing the wrong branch might result in an “undesir-
able situation”. Backtracking is usually not applicable, because the control might be distributed.
Controlling nondeterminism is very important. In sequential programming, it is just a matter of
efficiency, in concurrent programming it is a matter of avoiding getting stuck in a wrong situation.

The approach based on process algebras has been very successful in providing formal seman-
tics of concurrent systems and proving their properties. The success is witnessed by the Turing
Award given to two of their pioneers and founding fathers: Tony Hoare and Robin Milner. Process
algebras are mathematical models of processes, regarded as agents that act and interact continu-
ously with other similar agents and with their common environment. Process algebras provide a
number of constructors for system descriptions and are equipped with an operational semantics
that describes systems evolution in terms of labelled transitions. Models and semantics are built



by taking a compositional approach that permits describing the “meaning” of composite systems
in terms of the meaning of their components.

Moreover, process algebras often come equipped with observational mechanisms that permit
identifying (through behavioral equivalences) those systems that cannot be taken apart by external
observations (experiments or tests). In some cases, process algebras have also algebraic charac-
terizations in terms of equational axiom systems that exactly capture the relevant identifications
induced by the beavioral operational semantics.

The basic component of a process algebra is its syntax as determined by the well-formed com-
bination of operators and more elementary terms. The syntax of a process algebra is the set of rules
that define the combinations of symbols that are considered to be correctly structured programs
in that language. There are many approaches to providing a rigorous mathematical understand-
ing of the semantics of syntactically correct process terms. The main ones are those also used for
describing the semantics of sequential systems, namely operational, denotational and algebraic
semantics.

An operational semantics models a program as a labelled transition system (LTS) that consists
of a set of states, a set of transition labels and a transition relation. The states of the transition
system are just process algebra terms while the labels of the transitions between states represent
the actions or the interactions that are possible from a given state and the state that is reached after
the action is performed by means of visible and invisible actions. The operational semantics, as
the name suggests, is relatively close to an abstract machine-based view of computation and might
be considered as a mathematical formalization of some implementation strategy.

A denotational semantics maps a language to some abstract model such that the mean-
ing/denotation (in the model) of any composite program is determinable directly from the mean-
ings/denotations of its subcomponents. Usually, denotational semantics attempt to distance them-
selves from any specific implementation strategy, describing the language at a level intended to
capture the “essential meaning” of a term.

An algebraic semantics is defined by a set of algebraic laws which implicitly capture the
intended semantics of the constructs of the language under consideration. Instead of being derived
theorems (as they would be in a denotational semantics or operational semantics), the laws are
the basic axioms of an equational system, and process equivalence is defined in terms of what
equalities can be proved using them. In some ways it is reasonable to regard an algebraic semantics
as the most abstract kind of description of the semantics of a language.

There has been a huge amount of research work on process algebras carried out during the
last 30 years that started with the introduction of CCS [31, 32], CSP [11] and ACP [6]. In spite of
the many conceptual similarities, these process algebras have been developed starting from quite
different viewpoints and have given rise to different approaches (for an overview see, e.g. [2]).

CCS takes the operational viewpoint as its cornerstone and abstracts from unwanted details
introduced by the operational description by taking advantage of behavioral equivalences that al-
low one to identify those systems that are indistinguishable according to some observation criteria.
The meaning of a CCS term is a labeled transition system factored by a notion of observational
equivalence. CSP originated as the theoretical version of a practical language for concurrency and
is still based on an operational intuition which, however, is interpreted w.r.t. a more abstract theory
of decorated traces that model how systems react to external stimuli. The meaning of a CSP term
is the set of possible runs enriched with information about the interactions that could be refused at
intermediate steps of each run. ACP started from a completely different viewpoint and provided
a purely algebraic view of concurrent systems: processes are the solutions of systems of equa-
tions (axioms) over the signature of the considered algebra. Operational semantics and behavioral
equivalences are seen as possible models over which the algebra can be defined and the axioms can
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be applied. The meaning of a term is given via a predefined set of equations and is the collection
of terms that are provably equal to it.

At first, the different algebras have been developed independently. Slowly, however, their close
relationships have been understood and appreciated, and now a general theory can be provided
and the different formalisms (CCS, CSP, ACP, etc. .) can be seen just as instances of the general
approach. In this general approach, the main ingredients of a specific process algebra are:

1. A minimal set of carefully chosen operators capturing the relevant aspect of systems behavior
and the way systems are composed in building process terms;

2. A transition system associated with each term via structural operational semantics to describe
the evolution of all processes that can be built from the operators;

3. An equivalence notion that allow one to abstract from irrelevant details of systems descriptions.

Verification of concurrent system within the process algebraic approach is carried out either by
resorting to behavioral equivalences for proving conformance of processes to specifications or by
checking that processes enjoy properties described by some temporal logic formulae [28, 14]. In
the former case, two descriptions of a given system, one very detailed and close to the actual
concurrent implementation, the other more abstract (describing the sequences or trees of relevant
actions the system has to perform) are provided and tested for equivalence. In the latter case,
concurrent systems are specified as process terms while properties are specified as temporal logic
formulae and model checking is used to determine whether the transition systems associated with
terms enjoy the property specified by the formulae.

In the next section, many of the different operators used in process algebras will be described.
By relying on the so called structural operational semantic (SOS) approach [37], it will be shown
how labelled transition systems can be built and composed by using the different operators. After-
ward, many behavioral equivalences will be introduced together with a discussion on the induced
identifications and distinctions. Next, the three most popular process algebras will be described;
for each of them a different approach (operational, denotational, algebraic) will be used. It will,
however, be argued that in all cases the operational semantics plays a central rôle.

2 Process Operators and Operational Semantics

To define a process calculus, one starts with a set of uninterpreted action names (that might repre-
sent communication channels, synchronization actions, etc.) and with a set of basic processes that
together with the actions are the building blocks for forming newer processes from existing ones.
The operators are used for describing sequential, nondeterministic or parallel compositions of pro-
cesses, for abstracting from internal details of process behaviors and, finally, for defining infinite
behaviors starting from finite presentations. The operational semantics of the different operators
is inductively specified through SOS rules: for each operator there is a set of rules describing the
behavior of a system in terms of the behaviors of its components. As a result, each process term is
seen as a component that can interact with other components or with the external environment.

In the rest of this section, most of the operators that have been used in some of the best known
process algebras will be presented with the aim of showing the wealth of choices that one has when
deciding how to describe a concurrent system or even when defining one’s “personal” process
algebra. A new calculus can, indeed, be obtained by a careful selection of the operators while
taking into account their interrelationships with respect to the chosen abstract view of process and
thus of the behavioral equivalence one has in mind.

A set of operators is the basis for building process terms. A labelled transition system (LTS) is
associated to each term by relying on structural induction by providing specific rules in for each
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operator. Formally speaking, an LTS is a set of nodes (corresponding to process terms) and (for
each action a in some set) a relation

a
−−→ between nodes, corresponding to processes transitions.

Often LTSs have a distinguished node n0 from which computations start; when defining the se-
mantics of a process term the state corresponding to that term is considered as the initial state. To
associate an LTS to a process term inference systems are used, where the collection of transitions
is specified by means of a set of syntax-driven inference rules.

Inference Systems An inference system is a set of inference rule of the form:

p1, · · · , pn

q

where p1, · · · , pn are the premises and q is the conclusion. Each rule is interpreted as an implica-
tion: if all premises are true then also the conclusion is true. Sometimes, rules are decorated with
predicates and/or negative premises that specify when the rule is actually appliable.

A rule with an empty set of premises is called axiom and written as:

q

Transition Rules In the case of an operational semantics the premises and the conclusions will be
triples of the form (P, α,Q), often rendered as P

α
−→ Q, and thus the rules for each operator op of

the process algebras will be of the following form, where {i1, · · · , im} ⊆ {1, · · · , n} and E′i = Ei

when i < {i1, · · · , im}:

Ei1
α1
−→ E′i1 · · · Eim

αm
−−→ E′im

op(E1, · · · , En)
α
−→ C[E′1, · · · , E

′
n]

In the rule above the target term C[ ] indicates the new context in which the new subterms will
be operating after the reduction and α represents the action performed by the composite system
when some of the components perform actions α1, . . . , αm. Sometimes, these rules are enriched
with side conditions that determine their applicability. By imposing syntactic constraints on the
form of the allowed rules, rule formats are obtained that can be used to establish results that hold
for all process calculi whose transition rules respect the specific rule format.

A small number of SOS inference rules is sufficient to associate an LTS to each term of any
process algebra. The set of rules is fixed once and for all. Given any process, the rules are used
to derive its transitions. The transition relation of the LTS is the least one satisfying the inference
rules. It is worth remarking that structural induction allows one to define the LTS of complex
systems in terms of the behavior of their components.

Basic Actions An elementary action of a system represents the atomic (non-interruptible) abstract
step of a computation that is performed by a system to move from one state to the next. Actions
represent various activities of concurrent systems, like sending or receiving a message, updating
a memory cell, synchronizing with other processes, . . . . In process algebras two main types of
atomic actions are considered, namely visible or external actions and invisible or internal actions.
In the sequel, visible actions will be denoted by Latin letters a, b, c, . . ., invisible actions will be
denoted by the Greek letter τ. Generic actions will be denoted by µ or other, possibly indexed,
Greek letters. In the following, A will be used to denote the set of visible actions while Aτ will
denote the collection of generic actions.
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Basic processes Process algebras generally also include a null process (variously denoted as nil,
0, stop) which has no transition. It is inactive and its sole purpose is to act as the inductive anchor
on top of which more interesting processes can be generated. The semantics of this process is
characterized by the fact that there is no rule to define its transition: it has no transition.

Other basic processes are also used: stop denotes a deadlocked state,
√

denotes, instead, suc-
cessful termination.

√
√

−→ stop

Sometimes, uninterpreted actions µ are considered basic processes themselves:

µ
µ
−→
√

Sequential composition Operators for sequential composition are used to temporally order pro-
cesses execution and interaction. There are two main operators for this purpose. The first one
is action prefixing, µ.-, that denotes a process that executes action µ and then behaves like the
following process.

µ.E
µ
−−→ E

The alternative form of sequential composition is obtained by explicitly requiring process se-
quencing , - ; -, that requires that the first operand process be fully executed before the second
one.

E
µ
−→ E′

E; F
µ
−→ E′; F

(µ ,
√

)
E
√

−→ E′ F
µ
−→ F′

E; F
µ
−→ F′

Nondeterministic composition The operators for nondeterministic choice are used to express alter-
natives among possible behaviors. This choice can be left to the environment (external choice) or
performed by the process (internal choice) or can be mainly external but leaving the possibility to
the process to perform an internal move to prevent some of the choices by the environment (mixed
choice).

The rules for mixed choice are the ones below. They offer both visible and invisible actions to
the environment; however, only the former kind of actions can be actually controlled.

E
µ
−→ E′

E + F
µ
−→ E′

F
µ
−→ F′

E + F
µ
−→ F′

The rules for internal choice are very simple, they are just two axioms stating that a process
E ⊕ F can silently evolve into one of its subcomponents.

E ⊕ F
τ
−→ E E ⊕ F

τ
−→ F

The rules for external choice are more articulate. This operator behaves exactly like the mixed
choice in case one of the components executes a visible action, however, it does not discard any
alternative upon execution of an invisible action.

5



E
α
−→ E′

E � F
α
−→ E′

(α , τ) F
α
−→ F′

E � F
α
−→ F′

(α , τ)

E
τ
−→ E′

E � F
τ
−→ E′ � F

F
τ
−→ F′

E � F
τ
−→ E � F′

Parallel composition Parallel composition of two processes, say E and F, is the key primitive
distinguishing process algebras from sequential models of computation. Parallel composition al-
lows computation in E and F to proceed simultaneously and independently. But it also allows
interaction, that is synchronization and flow of information between E and F on a shared channel.
Channels may be synchronous or asynchronous. In the case of synchronous channels, the agent
sending a message waits until another agent has received the message. Asynchronous channels do
not force the sender to wait. Here, only synchronous channels will be considered.

The simplest operator for parallel composition is interleaving , - ||| -, that aims at modeling
the fact that two parallel processes can progress by alternating at any rate the execution of their
actions.

E
µ
−→ E′

E|||F
µ
−→ E′|||F

F
µ
−→ F′

E|||F
µ
−→ E|||F′

Another parallel operator is binary parallel composition, - | -, that not only models the in-
terleaved execution of the actions of two parallel processes but also the possibility that the two
partners synchronize whenever they are willing to perform complementary visible actions (be-
low represented as a and a). In this case, the visible outcome is a τ-action that cannot be seen by
other processes that are acting in parallel with the two communication partners. This is the parallel
composition used in CCS.

E
µ
−→ E′

E|F
µ
−→ E′|F

F
µ
−→ F′

E|F
µ
−→ E|F′

E
α
−→ E′ F

α
−→ F′

E|F
τ
−→ E′|F′

(α , τ)

Instead of binary synchronization some process algebras, like CSP, make use of operators that
permit multiparty synchronization, - |[L]| -. Some actions, those in L, are deemed to be synchro-
nization actions and can be performed by a process only if all its parallel components can execute
those actions at the same time.

E
µ
−→ E′

E |[L]| F
µ
−→ E′ |[L]| F

(µ < L)
F

µ
−→ F′

E |[L]| F
µ
−→ E |[L]| F′

(µ < L)

E
a
−→ E′ F

a
−→ F′

E |[L]| F
a
−→ E′ |[L]| F′

(a ∈ L)

It is worth noting that the result of a synchronization, in this case, yields a visible action and that
by setting the synchronization alphabet to ∅ the multiparty synchronization operator |∅| can be
used to obtain pure interleaving, |||.

A more general composition is the merge operator, − ‖ − that is used in ACP. It permits
executing two process terms in parallel (thus freely interleaving their actions), but also allows for
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communication between its process arguments according to a communication function γ : A ×
A −→ A, that, for each pair of atomic actions a and b, produces the outcome of their communication
γ(a, b), a partial function that states which actions can be synchronized and the outcome of such a
synchronization.

E
µ
−→ E′

E ‖ F
µ
−→ E′ ‖ F

F
µ
−→ F′

E ‖ F
µ
−→ E ‖ F′

E
a
−→ E′ F

b
−→ F′

E ‖ F
γ(a,b)
−−−−→ E′ ‖ F′

ACP has also another operator called left merge, - T -, that is similar to ‖ but requires that the
first process to perform an (independent) action be the left operand.

E
µ
−→ E′

ETF
µ
−→ E′ ‖ F

The ACP communication merge, - |c -, requires instead that the first action be a synchronization
action.

E
a
−→ E′ F

b
−→ F′

E|cF
γ(a,b)
−−−−→ E′ ‖ F′

Disruption An operator that is between parallel and nondeterministic composition is the so called
disabling operator, − [> −, that permits interrupting the evolution of a process. Intuitively, E [> F
behaves like E, but can be interrupted at any time by F, once E terminates F is discarded.

E
µ
−→ E′

E [> F
µ
−→ E′ [> F

(µ ,
√

) E
√

−→ E′

E [> F
τ
−→ E′

F
µ
−→ F′

E [> F
µ
−→ F′

Value Passing The above parallel combinators can be generalized to model not only synchroniza-
tion but also exchange of values. As an example, below, the generalization of binary communica-
tion is presented.

There are complementary rules for sending and receiving values. The first axiom models a
process willing to input a value and to base its future evolutions on it. The second axiom models a
process that evaluates an expression (via the valuation function val(e)) and outputs the result.

(v is a value)
a(x).E

a(v)
−−→ E{v/x} a e.E

a val(e)
−−−−−→ E

The next rule, instead, models synchronization between processes. If two processes, one will-
ing to output and the other willing to input, are running in parallel, a synchronization can take
place and the perceived action will just be a τ-action.

E
a v
−−→ E′ F

a(v)
−−→ F′

E|F
τ
−→ E′|F′

E
a(v)
−−→ E′ F

a v
−−→ F′

E|F
τ
−→ E′|F′

In case the exchanged values are channels, this approach can be used to provide also models for
mobile systems.
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Abstraction Processes do not limit the number of connections that can be made at a given inter-
action point. But interaction points allow interference. For the synthesis of compact, minimal and
compositional systems, the ability to restrict interference is crucial.

The hiding operator, −/L, hides (i.e., transforms into τ-actions) all actions in L to forbid syn-
chronization on them. However, itallows the system to perform the transitions labelled by hidden
actions.

E
µ
−→ E′

E/L
µ
−→ E′/L

(µ < L)
E

µ
−→ E′

E/L
τ
−→ E′/L

(µ ∈ L)

The restriction operator,−\L is a unary operator that restricts the set of visible actions a process
can perform. Thus, process E\L can perform only actions not in L. Obviously, invisible actions
cannot be restricted.

E
µ
−→ E′

E \L
µ
−→ E′ \L

(µ , µ < L)

The operator [ f ], where f is a relabelling function from A to A, can be used to rename some
of the actions a process can perform to make it compatible with new environments.

E
a
−→ E′

E[ f ]
f (a)
−−−→ E′[ f ]

Modelling infinite behaviours The operations presented so far describe only finite interaction and
are consequently insufficient for providing full computational power, in the sense of being able
to model all computable functions. In order to reach full power, one certainly needs operators
for modeling non-terminating behavior. Many operators have been introduced that allow finite
descriptions of infinite behavior. However, it is important to to remark that most of them do not fit
the formats used so far and cannot be defined by structural induction.

One of the most used is the construct rec x. -, well-known from the sequential world. If E is a
process that contains the variable x, then rec x. E represents the process that behaves like E once
all occurrences of x in E are replaced by rec x. E. In the rule below, that models the operational
behaviour of a recursively defined process, the term E[F/x] denotes exactly the above mentioned
substitutions.

E[rec x. E/x]
µ
−→ E′

rec x. E
µ
−→ E′

The notation rec x.E for recursion sometimes makes the process expressions more difficult to
parse and less pleasant to read. A suitable alternative is to allow for the (recursive) definition of
some fixed set of constants, that can then be used as some sort of procedure calls inside processes.
Assuming the existence of an environment (a set of process definitions)

Γ = {X1 , E1, X2 , E2, . . . , Xn , En}

the operational semantics rule for a process variable becomes:

X , E ∈ Γ E
µ
−→ E′

X
µ
−→ E′
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Another operator used to describe infinite behaviors is the so called bang operator, ! −, or
replication. Intuitively, !E represents an unlimited number of instances of E running in parallel.
Thus, its semantics is rendered by the following inference rule:

E|! E
µ
−→ E′

!E
µ
−→ E′

3 Three Process Algebras: CCS, CSP and ACP

A process algebra consists of a set of terms, an operational semantics associating LTS to terms
and an equivalence relation equating terms exhibiting “similar” behavior. The operators for most
process algebras are those described above. The equivalences can be traces, testing, bisimulation
equivalences or variants thereof, possibly ignoring invisible actions.

Below, three of the most popular process algebras are presented. First the syntax, i.e., the
selected operators, will be introduced, then their semantics will be provided by following the three
different approaches outlined before: operational (for CCS), denotational (for CSP) and algebraic
(for ACP). For CSP and ACP, the relationships between the proposed semantics and the operational
one, to be used as a yardstick, will be mentioned. To denote the LTS associated to a generic CSP
or ACP process p via the operational semantics, the notation LTS(p) will be used.

Reference will be made to specific behavioral equivalences over LTSs that consider as equiva-
lent those systems that rely on different standing about which states of an LTS have to be consid-
ered equivalent. Three main criteria have been used to decide when two systems can be considered
equivalent:
1. the two systems perform the same sequences of actions,
2. the two systems perform the same sequences of actions and after each sequence are ready to

accept the same sets of actions,
3. the two systems perform the same sequences of actions and after each sequence exhibit, recur-

sively, the same behavior.

These three different criteria lead to three groups of equivalences that are known as traces
equivalences, decorated-traces equivalences (testing and failure equivalence), and bisimulation-
based equivalences (strong bisimulation, weak bisimulation, branching bisimulation).

CCS: Calculus of Communicating Systems

The Calculus of Communicating Systems (CCS) is a process algebra introduced by Robin Milner
around 1980. Its actions model indivisible communications between exactly two participants and
the set of operators includes primitives for describing parallel composition, choice between actions
and scope restriction. The basic semantics is operational and permits associating an LTS to each
CCS term.

The set A of basic actions used in CCS consists of a set Λ, of labels and of a set Λ of comple-
mentary labels. Aτ denotes A ∪ {τ}. The syntax of CCS, used to generate all terms of the algebra,
is the following:

P ::= nil | x | µ.P | P\L | P[ f ] | P1 + P2 | P1|P2 | rec x. P

where µ ∈ Actτ; L ⊆ Λ; f : Actτ → Actτ; f (ᾱ) = f (α) and f (τ) = τ. The above operators are taken
from those presented in Section 2:

– the atomic process (nil),
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– action prefixing (µ.P),
– mixed choice (+),
– binary parallel composition (|),
– restriction (P\L),
– relabelling (P[ f ]) and
– recursive definitions (rec x. E).

The operational semantics of the above operators is exactly the same as the one of those oper-
ators with the same name described before and it is thus not repeated here. CCS has been studied
with bisimulation and testing semantics that are used to abstract from unnecessary details of the
LTS associated to a term. Also denotational and axiomatic semantics for the calculus have been ex-
tensively studied. A denotational semantics in terms of so called acceptance trees has been proved
to be in full agreement with the operational semantics abstracted according to testing equivalences.
Different algebraic semantics have been provided that are based on sound and complete axiomati-
zations of bisimilarity, testing equivalence, weak bisimilarity and branching bisimilarity.

CSP: A Theory of Communicating Sequential Processes

The first denotational semantics proposed for CSP associates to each term just the set of the se-
quences of actions the term could induce. However, while suitable to model the sequences of in-
teractions a process could have with its environment, this semantics is unable to model situations
that could lead to deadlock. A new approach, basically denotational but with a strong operational
intuition, was proposed next. In this approach, the semantics is given by associating a so called
refusal set to each process. A refusal set is a set of failure pairs 〈s, F〉 where s is a finite sequence
of visible actions in which the process might have been engaged and F is a set of action the process
is able to reject on the next step. The semantics of the various operators is defined by describing
the transformation they induce on the domain of refusal sets.

The meaning of processes is then obtained by postulating that two processes are equivalent
if and only if they cannot be distinguished when their behaviors are observed and their reactions
to a finite number of alternative possible synchronization is considered. Indeed, the association of
processes to refusal sets is not one-to-one; the same refusal set can be associated to more than one
process. A congruence is then obtained that equates processes with the same denotation.

The set of actions is a a finite set of labels, denoted by Λ ∪ {τ} . There is no notion of com-
plementary action. The syntax of CSP is reported below and for the sake of simplicity only finite
terms (no recursion) are considered:

E ::= Stop | skip | a→ E | E1 u E2 | E1 � E2 | E1 |[L]| E2 | E/a

– two basic processes: successful termination (skip), null process (Stop),
– action prefixing here denoted by a→ E,
– internal choice (⊕ ) here denoted by u and external choice ( � ),
– parallel composition with synchronization on a fixed alphabet (|[L]|, L ⊆ Λ),
– hiding (/a, an instance of the more general operator /L with L ⊆ Λ).

Parallel combinators representing pure interleaving and parallelism with synchronization on the
full alphabet can be obtained by setting the synchronization alphabet to ∅ or to Λ, respectively.

The denotational semantics of CSP compositionally associates a set of failure pairs to each
CSP term generated by the above syntax. A function, F [[−]], maps each CSP process (say P) to
set of pairs (s, F) where s is one of the sequences of actions P may perform and F represents the
set of actions that P can refuse after performing s. As anticipated, there is a strong correspondence
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between the denotational semantics of CSP and the operational semantics that one could define by
relying on the one presented in the previous section for the specific operators.

– F [[P]] = F [[Q]] if and only if LTS(P) 'test LTS(Q).

ACP: An Algebra of Communicating Processes

The methodological concern of ACP was to present “first a system of axioms for communicating
processes . . . and next study its models” ([6], p. 112). The equations are just a means to realize
the real desideratum of abstract algebra, which is to abstract from the nature of the objects under
consideration. In the same way as the mathematical theory of rings is about arithmetic without
relying on a mathematical definition of number, ACP deals with process theory without relying on
a mathematical definition of process.

In ACP a process algebra is any mathematical structure, consisting of a set of objects and a set
of operators, like, e.g., sequential, nondeterministic or parallel composition, that enjoys a specific
set of properties as specified by given axioms.

The set of actions Λτ consists of a finite set of labels Λ ∪ {τ} . There is no notion of comple-
mentary action. The syntax of ACP is reported below and for the sake of simplicity only finite
terms (no recursion) are considered:

P ::=
√
| δ | a | P1 + P2 | P1·P2 | P1‖P2 | P1TP2 | P1|cP2 | ∂H(p)

– three basic processes: successful termination (
√

), null process, here denoted by δ, and atomic
action (a),

– mixed choice,
– sequential composition (;), here denoted by ·,
– hiding (\H with H ⊆ Λ), here denoted by ∂H(−),
– three parallel combinators: merge (‖), left merge (T) and communication merge (|c).

The system of axioms of ACP is presented as a set of formal equations, and some of the opera-
tors, e.g., left merge (T) have been introduced exactly for providing finite equational presentations.
Below, the axioms relative to the terms generated by the above syntax are presented. Within the
axioms, x and y denote generic ACP processes, and v and w denote generic actions.

(A1) x + y = y + x (A2) (x + y) + z = x + (y + z)
(A3) x + x = x (A4) (x + y)·z = x·z + y·z
(A5) (x·y)·z = x·(y·z) (A6) x + δ = x
(A7) δ·x = δ
The set of axioms considered above induces an equality relation, denoted by =. A model for

an axiomatization is a pair 〈M, φ〉, whereM is a set and φ is a function (the unique isomorphism)
that associates elements ofM to ACP terms. This leads to the following definitions:

1. A set of equations is sound for 〈M, φ〉 if s = t implies φ(s) = φ(t);
2. A set of equations is complete for 〈M, φ〉 if φ(s) = φ(t) implies s = t.

Any model of the axioms seen above is an ACP process algebra. The simplest model for ACP
has as elements the equivalence classes induced by =, i.e. all ACP terms obtained starting from
atomic actions, sequentialization and nondeterministic composition and mapping each term t to its
equivalence class [[t]] as determined by =. This model is correct and complete and is known as the
initial model for the axiomatization.
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Different, more complex, models can be obtained by first using the SOS rules to give the
operational semantics of the operators, building an LTS in correspondence of each ACP term
and then using bisimulation to identify some of them. This construction leads to establishing a
strong correspondence between the axiomatic and the operational semantics of ACP. Indeed, if we
consider the language with the null process, sequential composition and mixed choice we have:

– Equality = as induced by (A1)-(A7) is sound relative to bisimilarity ∼, i.e., if p = q then
LTS(p) ∼ LTS(q);

– Equality = as induced by (A1)-(A7) is complete relative to bisimilarity ∼, i.e., if LTS(p) ∼
LTS(q) then p = q.

Similar results can be obtained when new axioms are added and weak bisimilarity or branching
bisimilarity are used to factorize the LTS’s.

4 Future Directions

The theory of process algebra is by now well developed, the reader is referred to [7] to learn about
its developments since its inception in the late 1970’s to the early 2000. Currently, in parallel with
the exploitation of the developed theories in classic areas such as protocol verification and in new
ones such as biological systems, there is much work going on concerning:

– extensions to model mobile, network aware systems;
– theories for assessing quantitative properties;
– techniques for controlling state explosion.

In parallel with this, much attention is dedicated to the development of software tools to support
specification and verification of very large systems and to the development of techniques that
permit controlling the state explosion phenomenon that arise as soon as one considers the possible
configurations resulting from the interleaved execution of (even a small number of) processes.

Mobility and network awareness Much of the ongoing work is relative to the definition of theories
and formalisms to naturally deal with richer classes of systems, like, e.g. mobile systems and
network aware applications. The π-calculus [33] the successor of CCS, developed by Milner and
co-workers with the aim of describing concurrent systems whose configuration may change during
the computation has attracted much attention. It has laid the basis for research on process networks
whose processes are mobile and the configuration of communication links is dynamic. It has also
lead to the development of other calculi to support network aware programming: Ambient [13],
Distributed π [25], Join [19], Spi [1], Klaim [9], . . . . There is still no unifying theory and the
name process calculi is preferred to process algebras because the algebraic theories are not yet
well assessed. Richer theories than LTS (Bi-graph [34], Tiles [20], . . . ) have been developed and
are still under development to deal with the new dimensions considered with the new formalisms.

Quantitative Extensions Formalisms are being enriched to consider not only qualitative proper-
ties, like correctness, liveness or safety, but also properties related to performance and quality of
service. There has been much research to extend process algebra to deal with a quantitative no-
tion of time and probabilities and integrated theories have been considered. Actions are enriched
with information about their duration and formalisms extended in this way are used to compare
systems relatively to their speed. For a comprehensive description of this approach, the reader is
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referred to [4]. Extensions have been considered also to deal with systems that in their behavior
depend on continuously changing variables other than time (hybrid systems). In this case, systems
descriptions involve differential algebraic equations, and connections with dynamic control theory
are very important. Finally, again with the aim of capturing quantitative properties of systems and
of combining functional verification with performance analysis, there have been extensions to en-
rich actions with rates representing the frequency of specific events and the new theories are being
(successfully) used to reason about system performance and system quality.

Tools To deal with non-toy examples and apply the theory of process algebras to the specification
and verification of real systems, tool support is essential. In the development of tools, LTSs play
a central rôle. Process algebra terms are used to obtain LTSs by exploiting operational semantics
and these structures are then minimized, tested for equivalence, model checked against formulae
of temporal logics, . . . . One of the most known tools for process algebras is CADP (Construction
and Analysis of Distributed Processes) [21]: together with minimizers and equivalence and model
checkers it offers many others functionalities ranging from step-by-step simulation to massively
parallel model checking. CADP has been employed in an impressive number of industrial projects.
CWB (Concurrency Workbench) [35] and CWB-NC (Concurrency Workbench New Century) [15]
are other tools that are centered on CCS, bisimulation equivalence and model checking. FDR
(Failures/Divergence Refinement) [40] is a commercial tool for CSP that has played a major role
in driving the evolution of CSP from a blackboard notation to a concrete language. It allows the
checking of a wide range of correctness conditions, including deadlock and livelock freedom as
well as general safety and liveness properties. TAPAs (Tool for the Analysis of Process Algebras)
[12] is a recently developed software to support teaching of the theory of process algebras; it main-
tains a consistent double representation as term and as graph of each system. Moreover, it offers
tools for the verification of many behavioural equivalences, possibly with counterexamples, min-
imization, step-by-step execution and model checking. TwoTowers, is instead a versatile tool for
the functional verification, security analysis, and performance evaluation of computer, communi-
cation and software systems modeled with the stochastic process algebra EMPA [4]. µCRL [23] is
a toolset that offers an appropriate treatment of data and relies also on theorem proving. Moreover,
it make use of interesting techniques for visualizing large LTSs.

5 Relationships to Other Models of Concurrency

In a private communication, in 2009, Robin Milner, one of the founding fathers of process algebras,
wrote:

The concept of process has become increasingly important in computer science in the last
three decades and more. Yet we still don’t agree on what a process is. We probably agree
that it should be an equivalence class of interactive agents, perhaps concurrent, perhaps
non-deterministic.

This quote summarizes the debate on possible models of concurrency that has taken place during
the last thirty years and has been centered on three main issues:

– interleaving vs true concurrency;
– linear-time vs branching-time;
– synchrony vs asynchrony.
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Interleaving vs true concurrency The starting point of the theory of process algebras has been
automata theory and regular expressions and the work on the algebraic theory of regular expres-
sions as terms representing finite state automata [16] has significantly influenced its developments.
Given this starting point, the underlying models of all process algebras represent possible concur-
rent executions of different programs in terms of the nondeterministic interleaving of their sequen-
tial behaviors. The fact that a system is composed by independently computing agents is ignored
and behaviors are modeled in terms of purely sequential patterns of actions. It has been demon-
strated that many interesting and important properties of distributed systems may be expressed and
proved by relying on interleaving models. However, there are situations in which it is important to
keep the information that a system is composed of the independently computing components. This
possibility is offered by the so-called non-interleaving or true-concurrency models, with Petri nets
[39] as the prime example. These models describe not only temporal ordering of actions but also
their causal dependences. Non-interleaving semantics of process algebras have also been provided,
see e.g. [36].

Linear-time vs branching-time Another issue, again ignored in the initial formalization of regu-
lar expressions, is how the concept of nondeterminism in computations is captured. Two possible
views regarding the nature of nondeterministic choice induce two types of models giving rise to
the linear-time and branching-time dichotomy. A linear-time model expresses the full nondeter-
ministic behavior of a system in terms of the set of possible runs; time is treated as if each moment
there is a unique possible future. Major examples of structures used to model sets of runs are Hoare
traces (captured also by traces equivalence) for interleaving models [26], and Mazurkiewicz traces
[30] and Pratt’s pomsets [38] for non-interleaving models. The branching-time model is the main
one considered in process algebras and considers the set of runs structured as a computation tree.
Each moment in time may split into various possible futures and semantic models are computation
trees. For non interleaving models, event structures [44] are one of the best known models taking
into account both nondeterminism and true concurrency.

Synchrony vs asynchrony There are two basic approaches to describing interaction between a
sender and a receiver of a message (signal), namely synchronous and asynchronous interaction. In
the former case, before proceeding, the sender has to make sure that a receiver is ready. In the latter
case, the sender leaves track of its action but proceeds without any further waiting. The receiver
has to wait in both cases. Process algebras are mainly synchronous, but asynchronous variants
have been recently proposed and are receiving increasing attention. However, many other success-
ful asynchronous models have been developed. Among these, it is important to mention Esterel
[8], a full fledged programming language that allows the simple expression of parallelism and
preemption and is very well suited for control-dominated model designs; Actors [3], a formalism
that does not necessarily records messages in buffers and puts no requirement on the ordering of
message delivery; Linda [22], a model of coordination and communication among several parallel
processes operating upon objects stored in and retrieved from shared, virtual, associative memory;
and, to conclude, Klaim [17], a distributed variant of Linda with a strong process algebraic flavor.

6 Bibliographic Notes and Further Reading

A number of books describing the different process algebras can be consulted to obtain deeper
knowledge of the topics sketched here. Unfortunately most of them are concentrating only on one
of the formalisms rather than on illustrating the unifying theories.
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CCS The seminal book on CCS is [31], in which sets of operators equipped with an operational
semantics and the notion of observational equivalence have been presented for the first time. The,
by now, classical text book on CCS and bisimulation is [32]. A very nice, more recent, book on
CCS and the associated Hennessy Milner Modal Logic is [29]; it also presents timed variants of
process algebras and introduces models and tools for verifying properties also of this new class of
systems.

CSP The seminal book on CSP is [27], where all the basic theory of failure sets is presented
together with many operators for processes composition and basic examples. In [41], the theory
introduced in [27] is developed in full detail and a discussion on the different possibilities to deal
with anomalous infinite behaviors is considered together with a number of well thought examples.
Moreover the relationships between operational and denotational semantics are fully investigated.
Another excellent text book on CSP is [43] that also considers timed extensions of the calculus.

ACP The first published book on ACP is [5], where the foundations of algebraic theories are pre-
sented and the correspondence between families of axioms, and strong and branching bisimulation
are thoroughly studied. This is a book intended mainly for researchers and advanced students, a
gentle introduction to ACP can be found in [18].

Other Approaches Apart from these books, dealing with the three process algebras presented in
these notes, it is also worth mentioning a few more books. LOTOS, a process algebra that was
developed and standardized within ISO for specifying and verifying communication protocols, is
the central calculus of a recently published book [10] that discusses also the possibility of using
different equivalences and finer semantics for the calculus. A very simple and elegant introduction
to algebraic, denotational and operational semantics of processes, that studies in detail the impact
of the testing approach on a calculus obtained from a careful selection of operators from CCS and
CSP, can be found in [24]. The text [42] is the book on the π-calculus. For studying this calculus,
the reader is, however, encouraged to consider first reading [33].
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