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We study the properties of the Barabási model of queuing �A.-L. Barabási, Nature �London� 435, 207
�2005�; J. G. Oliveira and A.-L. Barabási, Nature �London� 437, 1251 �2005�� in the hypothesis that the
number of tasks grows with time steadily. Our analytical approach is based on two ingredients. First we map
exactly this model into an invasion percolation dynamics on a Cayley tree. Second we use the theory of biased
random walks. In this way we obtain the following results: the stationary-state dynamics is a sequence of
causally and geometrically connected bursts of execution activities with scale-invariant size distribution. We
recover the correct waiting-time distribution PW�����−3/2 at the stationary state �as observed in different
realistic data�. Finally we describe quantitatively the dynamics out of the stationary state quantifying the
power-law slow approach to stationarity both in single dynamical realization and in average. These results can
be generalized to the case of a stochastic increase in the queue length in time with limited fluctuations. As a
limit case we recover the situation in which the queue length fluctuates around a constant average value.
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I. INTRODUCTION

Queuing theory �1–3� and the study of task processing are
theoretical problems that find application in a wide range of
situations from human dynamics �4� to computer resource
distribution �5�. Many of the traditional models introduced to
explain that real queuing behaviors are based on the hypoth-
esis of small or zero correlations for the execution of differ-
ent tasks. This leads to exponential waiting-time distributions
�WTDs� PW����exp�−� /�0� for the execution of a generic
task in the queue. This is the case of Poissonian processes,
where the tasks are randomly chosen and executed with a
constant rate. However, it has been recently noticed that for
many human activities we have a large heterogeneity in wait-
ing times. Long periods of quiescence between periods of
high activity have been observed in real data �6�. In particu-
lar, this is the case of web browsing, electronic mail commu-
nications, and ordinary mail correspondence �7� for which a
power-law decaying WTD has been observed. Much atten-
tion has therefore been paid during the last years to priority-
driven queuing models, i.e., models where each task is char-
acterized by a random priority index. This index allows to
reproduce these behaviors and these models generate power-
law WTD PW�����−� for the execution of the tasks at the
stationary state.

Among these there is the Cobham �8� model of queuing
where tasks enter the queue at rate �, following an exponen-
tial arrival time distribution. The service time of each task
follows an exponential distribution where tasks are executed
at rate �. Each task is assigned a discrete priority parameter
x=1,2 , . . . ,r. If p=1 the highest priority item is always cho-
sen for execution. In this hypothesis, Cobham derived the
average waiting time for an item with priority x. Many varia-
tions in the model have been introduced but most of the work
focused on the case when there are two priorities in the sys-
tem �r=2� and within each priority class items are executed
on a first-come-first-serve fashion. This model is motivated
by processes taking place in computer and industrial envi-

ronments, where tasks are typically assigned only into two
priority classes, high or low.

To consider a more general case we study in this paper a
particular version of the Barabási queuing model �BQM� in-
troduced in �6,9�. This model allows one to explain the
stationary-state WTD observed. In our version of the BQM
at each time step the task with highest random priority is
always executed and replaced in the queue by a constant
number m�2 of new tasks with random priorities, i.e., the
queue length grows linearly with time. This process can be
mapped exactly onto an invasion percolation �IP� dynamics
�10� on a Cayley tree �11� with a series of advantages. First,
this allows one to characterize the task list dynamics through
the WTD at the stationary state. Second, we can show that its
general evolution is composed by a sequence of geometri-
cally and causally connected burst of activities �task ava-
lanches� with scale-invariant size distribution. Third, we can
study the dynamics out of stationarity and show that the
approach to it is very slow.

The hypothesis of a linearly growing queue length in time
can look quite unrealistic, as many queuing services are
thought to operate in situation of nearly constant queue
length. However, the dynamics of receiving and answering to
electronic mails and ordinary mail correspondence often con-
stitute an example of strong deviation from the case of fixed
queue length in time. This is evident in one particular case of
study �the Darwin correspondence data set� shown in Fig. 1.
In this case the number of letters sent by Charles Darwin �as
a likely response to the fame of the scientist and the number
of request received� oscillates strongly in time and increases
steadily on average.

We then finally show that the main features of the model
are retrieved when a randomly time-varying m is considered
with �m��1 and finite �m2�. The lower limit of m=1 corre-
sponds to the realistic case of a fluctuating queue length with
constant average and finite fluctuations.
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II. MODEL

In the general BQM �6� one starts with an initial list �i.e.,
queue� of n0�2 tasks. At every time step t one of these tasks
is executed and replaced by m�t� other new tasks. When
m�t�=1, the queue length is constant in time. The execution
rule at each time step is given by fixing a random priority
index xi� �0,1� for each task in the queue and then execut-
ing with a probability p�1 the task with the highest priority.
With the complementary probability �1− p� we instead ex-
ecute a randomly chosen task. The related problem for gen-
eral 0� p�1 and m=1 has been analyzed and solved in
�13,14�. In particular for p smaller but close to 1 it has been
shown in �13� that the system after a characteristic transient
time T�p� reaches a stationary state characterized by a WTD
of the form

PW��� =
A�p�

�
e−�/�0�p�,

such that �0�p�→� and A�p�→0 for p→1 which makes the
above expression meaningless in the value p=1. The station-
ary state for p=1 is trivial in the sense that at each time step
the fresh new task just added to the queue is always ex-
ecuted. This is due to the fact that asymptotically the uncho-
sen task staying in the queue has a priority x=0 with prob-
ability 1, and consequently loses the competition with any
new other task added to the queue. However in �14� it has
been shown that T�p� diverges for p=1 and that the trivial
stationary state is reached only very slowly with a power-law
approach in time. By mapping exactly the task list problem
onto invasion percolation in d=1 and by using a probabilistic
method called run time statistics �RTS� �15–17�, the com-
plete WTD PW�� , t0� out of stationarity �which depends on
both the entrance time t0 of a task and on its waiting time ��
has been found exactly. At fixed t0 it decreases as �−2 for �
� t0 and is about t0

−2 for t0��.
In the last period much attention has been devoted to the

pure extremal case �i.e., with p=1� with a variable queue
length for which the behavior of PW��� differs strongly from
the previous case. In �18� the case in which at each time step

there is a probability ��1 to execute the highest priority
task has been studied, and at the same time a new task is
added to the list with another probability 	�1. For �=	
=1 the above case of conserved queue length is recovered. If
at least one between � and 	 is strictly smaller than 1, the
queue length instead varies stochastically in time and it is
itself a stochastic variable performing a simple random walk
with ���	� or without ��=	� drift. Depending on �
	 or
��	 �with=sign only for 	�1�, the WTD PW��� at the
stationary state changes the asymptotic behavior. In the first
case we have PW�����−5/2e−�/�0, while in the second one we
have PW�����−3/2 with no upper cutoff for all the executed
tasks with the following difference: for �=	 all tasks in the
queue are asymptotically executed while for ��	 only tasks
with xi� �1−� /	� are asymptotically executed as the mean
list length grows linearly in time.

Our version of the model is strictly related to this last case
as at each time step the task with highest priority is executed
with probability �=1 and replaced in the queue by a con-
stant number m�2 of new tasks with random priorities.
Therefore the queue length grows in time linearly. At every
time step �m−1� new tasks enter the queue. The motivation
of this study relies on the fact that this model, which shares
all the essential features with the previous one with ��	,
can be exactly mapped into the IP dynamics on a Cayley tree
�or Bethe lattice�.

III. INVASION PERCOLATION ON A CAYLEY TREE

The use of IP in d=1 to describe queuing dynamics has
already been presented �14� for the case of a strictly con-
served queue length ��=	=1 in �18��. We extend here this
approach to the more general case of queue length varying in
time. Invasion percolation on a Cayley tree �11� is defined as
follows �see Fig. 2�: let us take a Cayley tree with branching
ratio m �or equivalently a Bethe lattice with coordination
number m+1�. Initially only the top vertex site of the tree is
occupied. A random number �fitness� x� �0,1�, extracted
from a uniform probability density function �PDF� p�x�=1,
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FIG. 1. �Color online� Plot of the number of letter sent per
month by Charles Darwin. Data from the Darwin correspondence
project at �12�.
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FIG. 2. Schematic of the first four steps of IP dynamics on a
Cayley tree �with branching ratio m=2� into which the studied
queuing model can be exactly mapped. The black sites indicates the
growing set of occupied sites Ct �executed tasks� and the dashed
ones the sites in the growth interface �Ct. At each time step the site
�task� with maximal fitness �priority� is occupied �executed� and
replaced by m new sites.
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is assigned once and forever to each empty site indepen-
dently of the others.1

At each time step the site of the growth interface �Ct with
the highest fitness is occupied �i.e., grows�. The interface �Ct
is defined at each time t as the set of empty sites connected
by a first nearest-neighbor rule to the connected growing
cluster Ct of occupied sites up to that time �see Fig. 2�. Since
for each occupied site other new m sites enter the growth
interface, the number of sites, respectively, in Ct and in �Ct
grows in time, respectively, as t and ��Ct�=m+ �m−1�t.

The exact mapping between IP and our queuing model is
done by identifying sites with tasks, fitness with priority in-
dex, growth interface �Ct in IP with the task list �i.e., the
queue�, and finally the growing IP cluster Ct with the set of
executed tasks up to time t. For our purposes we focus on the
following features of the asymptotic stationary state of IP
dynamics.

�1� Let us call ��x , t�dx the distribution of fitnesses �pri-
orities� of the sites �tasks� in �tC �queue� at time t, i.e., the
number of interface sites with fitness in �x ,x+dx� �also
called normalized interface histogram�. The asymptotic dis-
tribution �s�x�=��x , t→�� has the self-averaging step-
function shape

�s�x� = pc
−1�pc − x� , �1�

where pc= �m−1� /m is the ordinary percolation threshold2 of
the Cayley tree. This implies that �i� apart from a vanishing
fraction of sites, all the interface sites have fitness x� pc; �ii�
since the number of sites in the stationary state is infinite,
only those few sites with x� pc can grow at each time step.
Indeed, at each time for the just occupied site �executed task�
m�2, new sites �new tasks� enter the interface �queue�. This
implies that a fraction �m−1� /m of the sites entered the in-
terface at any time will never be executed. Since the inter-
face site with maximal fitness is always executed and the
“fresh” interface sites have random fitness, asymptotically
only and all the sites with x� �m−1� /m are executed while
the others stay forever in the interface.

�2� The cluster of occupied sites substantially coincides
with the incipient percolating cluster of ordinary percolation
�i.e., at occupation probability p= pc�.

�3� The stationary dynamics self-organizes into a se-
quence of spatially and causally connected critical ava-
lanches of growths as defined in �19� with a scale-invariant
size distribution �for a real case see Fig. 3�. Due to the
asymptotic shape �1� of the fitness distribution of the IP in-
terface �task queue� �Ct, at very large time, when the number

of sites �tasks� in �Ct diverges, it is impossible that a site with
fitness x� pc grows. This happens because at each time step
there is at least a site with x� pc �see Fig. 4�. Let us suppose
that at a given time step in the stationary state a task with
fitness x� pc grows. Due to the IP dynamical rules and Eq.
�1�, if at the next time step a site with fitness y
x is occu-
pied, this is a causally and geometrically connected event to
the previous one. Indeed this site can only be entered, the
growth interface, because of the growth of the site with fit-
ness x which was the maximal value on the interface at the
previous time step. Therefore one can define a causally and
geometrically connected x avalanche of growth events initi-
ated by the occupation of a site �avalanche initiator� with
fitness x� pc as the sequence of growths of sites with fitness
y
x following the one of the initiator.

When a site with fitness y�x �but clearly y� pc� grows
for the first time from the beginning of the x avalanche, the x
avalanche stops. It is simple to realize �19� that this defini-

1In the original physical interpretation IP �10� describes the qua-
sistatic displacement in a porous medium of a fluid by another fluid
having larger surface tension. In this picture sites or bonds of the
lattice represent the throats of the porous medium and the site fit-
ness gives the random capillarity of the throat.

2Note that in the usual version of ordinary percolation pc=1 /m.
This different threshold is due to the fact that in our formulation of
IP, we occupy at each step the site with the maximal fitness instead
of the minimal one as usually done for IP. Clearly one dynamics is
mapped into the other by simply substituting each x with �1−x�.
This explains the different value of the percolation threshold.

FIG. 3. �Color online� A plot of the avalanches of the executed
task over a Cayley tree �rearranged�. The arrow indicates the start-
ing task and different gray levels refer to different avalanches. The
plot has been done thanks to the PAJEK software.
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FIG. 4. Time sequence of the priority indexes of the selected
tasks in one realization of the model with m=2 and time duration
105. In the main plot a zoom of the sequence in a restricted window
�t� �89900,91500� and x� �pc−0.1, pc+0.1�= �0.4,0.6�� is shown.
We see that asymptotically only tasks with x� pc are executed and
that task executions organize in hierarchical macroevents �ava-
lanches�. In particular we pointed out two examples of, respectively,
a generic x avalanche and of a critical avalanche whose initiators
has x= pc. In the inset the sequence of tasks priorities with all pos-
sible x values �x� �0,1�� and larger time window t
� �85000,95000� is shown.
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tion of the x avalanche gives rise to a complex hierarchical
structure of nested avalanches.3 In this hierarchy only pc ava-
lanches or critical avalanches are completely geometrically
disconnected �see Fig. 5�. As shown below explicitly, the size
distribution of the x avalanches is

P�s;x� � s−� exp�− �x − pc��s� , �2�

where �=3 /2 and �=2. Therefore for x= pc the distribution
is a pure power law P�s��s−3/2 �see Fig. 6�.

We now deduce Eq. �1� and the exponents � and � of the
avalanche distribution in Eq. �2� in the stationary state. Let
n�x , t� be the number of sites �tasks� with fitness �priority�
larger than x in the interface �queue� after the tth dynamical
step. Since after the growth of one site m new sites enter the
interface, we have the following Markovian evolution for
n�x , t�
0:

n�x,t + 1� = n�x,t� + j − 1

with probability 	m

j

xm−j�1 − x� j , �3�

with j=0,1 , . . . ,m. That is, n�x , t� follows an ordinary ran-
dom walk with independent steps which can take integer
values from −1 to m−1. The average increment at each time
step is �n�x�= �m�1−x�−1�=m�pc−x� which is negative for
x
 pc, exactly zero for x= pc �martingale property�, and
positive for x� pc. In other words for x= pc the random walk
performed by n�x , t� has no drift, while for x� pc and x

 pc the drift is, respectively, positive and negative. This
simple observation explains the origin of Eq. �1�; the number
of sites �tasks� with fitness larger than x� pc in average
grows linearly in time as �n�x�� t with fluctuations of order
t1/2. More precisely at sufficiently large t we can apply the
central limit theorem to say that n�x , t� for x� pc is Gaussian
distributed with mean value

�n�x,t�� = �n0�x�� + m�pc − x�t ,

where n0�x� is the initial number of interface sites4 with fit-
ness larger than x� pc, and variance

�n2�x,t�� − �n�x,t��2 = ��n0
2�x�� + �2t ,

with �2=m�m−1��1−x�2−m�pc−x�−m2�pc−x�2. Since the
total number of interface sites grows as m+ �m−1�t, we have
that at large t the fraction of interface sites whose fitness is
larger than x� pc �i.e., the integrated fitness distribution
��x , t�=�x

1dy��y , t��n�x , t� / ��m−1�t� of the tasks in the
queue� is also a Gaussian variable with mean given by

���x,t�� =
�n0�x��

m + �m − 1�t
+

m�pc − x�t
m + �m − 1�t

�4�

and variance

��2�x,t�� − ���x,t��2 =
��n0

2�x��
�m − 1�2t2 +

�2

�m − 1�2t
. �5�

On the other hand since �n�x��0 for x� pc, interface sites
with fitness x� pc give only a vanishing fraction to the fit-
ness distribution at large times. All this leads exactly to Eq.
�1� in the infinite time limit showing the self-averaging of
this relation.

For what concerns the avalanche size distribution, we are
interested in the stationary state. As aforementioned, due to
Eq. �1�, in this case only sites with x� pc can grow. Let us
now interpret t as the number of time steps elapsed from the
growth of the initiator of the x avalanche in the stationary
state. Until the time step t
0 at which n�x , t�=0 for the first
time, n�x , t� can also be seen as the number of sites causally
connected to the initiator in the sense explained above. Con-
sequently, the duration s of the x avalanche is none other
than the number of time steps after which ns�pc�=0 for the
first time after the growth of the initiator. Let us set x= pc. As
seen above in this case the random walk performed by nt�pc�3Note that Eq. �1� permits that, when a site with x
 pc grows in

the stationary state, at the next time step a site with y�x geometri-
cally connected to it grows. This is however not possible if x= pc

since, as shown above, no site with x� pc can grow in the stationary
state.

4If, for instance, as in Fig. 2, the initial interface is constituted by
m sites with random fitness, we have �n0�x��=m�1−x� and
��n0

2�x��=m�m−1��1−x�2.
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FIG. 5. Illustration of a causally and geometrically connected
critical avalanche at the stationary state whose initiator has x= pc.
Such an avalanche is characterized by the causal connection con-
sisting in the fact that all the growth belonging to it form a time
sequence and have x
 pc. Its size distribution is P�s��s−3/2. This
characterizes the stationary state of both IP on the tree and the task
queue dynamics.
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has no drift, i.e., is unbiased. From the theory of random
walks we know that in the unbiased case �20� the distribution
of s has the scale-invariant form P�s�� P�s ; pc��s−3/2. This
means that in Eq. �2� �=3 /2. When instead x
 pc we have
�n�x�=m�pc−x��0, and therefore the drift of the walk is
constant toward the absorbing state n�x , t�=0. Therefore the
average size of such an x avalanche is s0��x− pc�−1. From
Eq. �2� with �=3 /2, this implies that �=2.

A percolation argument can also be used to find out the
same exponents. Let us take an avalanche whose initiator has
fitness x� pc. The avalanche lasts exactly for a time interval
equal to the number of sites with fitness larger than x con-
nected to it in the positive time direction. Therefore the ava-
lanche size is distributed as the finite clusters in ordinary
percolation on the same tree for the occupation probability
p=x �21�, i.e., Eq. �2� with the given exponents.

Random walk and diffusion theory arguments also permit
to evaluate the stationary-state WTD PW��� for the tasks with
x� pc. We follow here a similar discussion to �18�. We can
write the WTD as

Pw��� = 
n=0

� �
pc

1

dxQ̃�n,x�G�n,x,�� , �6�

where Q̃�n ,x� is the probability that at a generic time step at
the stationary state, we have exactly n tasks in the queue
�i.e., sites on the IP interface� with priority larger than x
� pc. The quantity G�n ,x ,�� is instead the conditional prob-
ability that always at the stationary state, a certain task with
priority x� pc added to the list at a time step when other n
tasks with priority larger than x are present is executed after
� time steps.

Starting from Eq. �3�, we can write the master equation
for the probability Q�n ,x , t� that at time step t of the dynam-
ics, there are exactly n tasks in the list with priority larger
than x. With the aim of simplicity, let us write it for m=2 for
which pc=1 /2. From Eq. �3� we can write for n�3

Q�n,x,t + 1� = Q�n + 1,x,t�x2 + Q�n,x,t�2x�1 − x�

+ Q�n − 1,x,t��1 − x�2, �7�

while for n�2 we have

Q�2,x,t + 1� = Q�3,x,t�x2 + Q�2,x,t�2x�1 − x�

+ Q�1,x,t��1 − x�2 + Q�0,x,t��1 − x�2,

Q�1,x,t + 1� = Q�2,x,t�x2 + Q�1,x,t�2x�1 − x�

+ Q�0,x,t�2x�1 − x� ,

Q�0,x,t + 1� = Q�1,x,t�x2 + Q�0,x,t�x2. �8�

Q̃�n ,x� is given by the stationary solution of the above equa-

tions. In order to find both Q̃�n ,x� and G�n ,x ,�� we can now
proceed in a similar way to �18�. It is simple to show that the
well-normalized stationary solution for x� pc=1 /2 of Eqs.
�7� and �8� is

Q̃�n,x� =
2�x − pc�

x2 � �1 − x�2

x2 �n−1

for n � 2,

Q̃�1,x� = 2
1 − x2

x2 �x − pc�, Q̃�0,x� = 2�x − pc� . �9�

Note that for x→pc
− any Q̃�n ,x�→0 with the ratio

Q̃�n ,x� / Q̃�l ,x�→1 for any n , l�2, i.e., the distribution of
the number nt→��pc� becomes practically uniform.

The quantity G�n ,x ,�� can be found by Eq. �7� in com-
plete analogy with �18,22�, leading both to the same correct
scaling behavior PW�����−3/2. We refer here to �18� as it is
of simpler formulation than �22�. First of all we note that Eq.
�7�, in both the continuous time and n=y approximation,
becomes the diffusion equation

�tQ�y,x,t� = c�x��y
2Q�y,x,t� + d�x��yQ�y,x,t� , �10�

with c�x�=x2 and d�x�=x2− �1−x�2. Since we are considering
x� pc=1 /2 we have d�x��0, i.e., there is a drift to the small
y �i.e., n� direction, as already pointed out by analyzing Eq.
�3�. The quantity G�n ,x ,�� can be seen as the probability that
at the stationary state, fixed x and given y=n at time t=0,
one has y=0 for the first at time t=�. This implies that
�18,20�

G�n,x,t� = − �t��
0

�

dyQ�y,x,t�� ,

where here Q�y ,x , t� is the solution of Eq. �10� with initial
condition Q�y ,x ,0�=��y−n�. All this gives

G�n,x,t� =
n

�4�c�x�t
exp�−

�n − d�x�t�2

4c�x�t � . �11�

We now use this result and Eq. �9� in Eq. �6� to find PW���.
It is simple �18� to show that for large � we have PW���
��−3/2 �see Fig. 7�.

In other words each task with x� pc has to wait a finite
portion of the avalanche duration before being executed.
Note that this scaling result, explicitly found for m=2, is
completely independent of the integer branching factor m

1. Using a different constant value of m
2 only changes

10
0

10
2

10
4

τ

10
-8

10
-6

10
-4

10
-2

10
0

P
W

(τ)

10
0

10
2

10
4

10
-8

10
-6

10
-4

10
-2

10
0

P
W

(τ) - numerical

P
W

(τ)~τ-3/2
- theoretical

FIG. 7. Plot of the waiting-time distribution at the stationary
state for m=2. It is obtained by averaging 103 realizations of the
dynamics up to t=5�104.
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the explicit expressions of G�n ,x , t� and Q̃�n ,x� but not Eqs.
�10� and �11� with c�x��0 and d�x� changing sign at x= pc
= �m−1� /m. This is sufficient to recover the scaling relation
PW�����−3/2. From Eq. �3� it is natural to expect to have the
same result in the case in which at each time step m is an
independent random variable with mean �m��1 and finite
and positive variance. In particular the case of �m�=1 refers
to the situation of a constant queue length in average with
finite but nonzero fluctuations. Indeed also in this case the
number of tasks in the queue with priority larger than x per-
forms an ordinary random walk. The reason why both cases
of constant m�2 and random m with �m��1 and finite vari-
ance belong to the same universality class is the following.
In both cases the number of tasks in the queue with priority
larger than x� pc �where pc= �m−1� /m in the deterministic
case and5 pc= ��m�−1� / �m�� performs the same type of ordi-
nary random walk which is negatively biased for x
 pc and
unbiased for x= pc. On the other hand tasks with x� pc are
never executed in the stationary state �this is well pictorially
shown by the mapping to invasion percolation on a tree�.
Therefore they are all governed by the same laws of first
passage of ordinary random walks which leads to the scaling
PW�����−3/2. This explains also why our model shares the
same statistical features with that in �18�. Note anyway that
this is not true in the deterministic case of constant m=1 in
which the number of tasks in the queue is constantly equal to
two and no random walk is performed by it or any subset of
it. Indeed in this case a different scaling is found �13,14�. In
the case where m is a random variable with �m2�= +� we
finally expect anomalous exponents for both P�s� and PW���
as the random walks expressed by Eq. �3� become Levy
flights as shown in �23�.

We now address the question of the velocity of the ap-
proach to stationarity in this model. Also this problem can be
solved by the use of theoretical tools from random-walk
theory and IP on a tree. First of all we have to distinguish the
relaxation to stationarity in a single realization of the queue
dynamics �which, as shown below, is dominated by random
fluctuations� from the relaxation of characteristic quantities
averaged over all dynamical realizations �which show a slow
and smooth transition from the initial value to the stationary
one�. We start from the first one by summarizing the main
results in literature about IP and comparing it with the
equivalent results from random-walk theory. After that we
study the relaxation of averaged quantities such as the fitness
distribution in the queue averaged over all realizations, pro-
posing a simple mean-field approach leading to right results
and showing how slow the relaxation to the right stationary
state is.

In �24� it is rigorously shown that �i� the IP cluster on a
Cayley tree has in the infinite time limit a unique backbone.
In terms of the task dynamics this means that there is a
unique infinite chain of executed tasks which are causally
connected in the IP sense above. �ii� The minimal priority of
the executed tasks staying on the backbone beyond the kth
generation of the Cayley tree �see Fig. 2� is pc�1−Z /k� for

large k where Z is an exponentially distributed random vari-
able with unitary mean. In �11� it is instead rigorously shown
that adapting the notation to our queuing problem, the prob-
ability that at time t of a single dynamical realization a task
with priority smaller than �pc−�� is executed, vanishes ex-
ponentially fast at large t for �
0 but as t−1/2 for �→0+.
This suggests that deviations from the stationary dynamics
disappear as t−1/2. This is consistent with Eq. �3�. Indeed, as
aforementioned, for x� pc we see from Eqs. �4� and �5� that
relative fluctuations of ��x , t� with respect to its mean value
decrease6 at large t as t−1/2.

Let us now consider the same quantity averaged over all
possible realizations of the dynamics. We have shown that
the approach to the stationarity is now described by the
behavior of ���x , t��. For x� pc this is given by Eq. �4�
which shows that deviations in this region from the station-
ary state �which is described by Eq. �1�� disappear as fast
as t−1, i.e., faster than in a single realization even though still
very slowly. For x
 pc, as aforementioned, the average value
and the variance of n�x , t� do not increase with t at large
time, and therefore ���x , t��→0 as t−1 again. This shows that
even washing out the stochastic fluctuations by an average
over dynamical realizations, we have a transition to the
stationary state from the initial one that is as slow as t−1.

IV. CONCLUSIONS

In conclusion we presented in this paper an analytical
approach to the Barabási model of human dynamics with
time-increasing queue length. We proposed a combined ap-
proach to the problem based on IP and random-walk theory.
These methods allowed us to describe quantitatively two in-
tuitive features of the queues. The first one is that some tasks
seem to remain indefinitely in the queue before being pro-
cessed. Second we recovered naturally the fact that in the
real world execution of a task has often the effect of gener-
ating an avalanche of new tasks and that executed tasks wait
in the queue a broadly distributed time before their execu-
tion. This approach has also allowed to study the approach of
the dynamics to the stationary state and to show how slow it
is. All these properties of the dynamics are characterized by
temporal power laws typical of extremal dynamics in
quenched disorder �15–17�. We considered the case in which
for each executed task m�2 new tasks are added to the
queue. However, �as shown above by the random-walk meth-
ods used to describe the dynamics and in particular by Eq.
�3�� all the main results related to both the stationary state
and the approach to it hold also when m is a stochastic vari-
able �m�1� with finite variance. Indeed in this case the na-
ture of the random walk is kept and the time scalings of the
first passage probabilities and of the average value and vari-
ance of n�x , t� are maintained. In particular this includes the
case of fluctuating m with mean value m̄=1 which refers to
the case of a fluctuating queue length with constant mean

5In particular for the random m case with �m�=1 and finite vari-
ance, pc=0.

6Since for x
 pc the constant drift �n�x��0, n�x , t�, has at any t
mean and variance that are independent of t. Therefore fluctuation
of ��x , t� in this region decreases as 1 / t.
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value �coinciding with the case �=	�1 in �18��. This is
usually considered as the situation in technological services.
However there are important cases, such as electronic mail-

ing and ordinary mail correspondence, in which the descrip-
tion as a queue with length growing in time is more appro-
priate as shown from available data sets �12�.
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