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The configuration space network �CSN� of a dynamical system is an effective approach to represent the
ensemble of configurations sampled during a simulation and their dynamic connectivity. To elucidate the
connection between the CSN topology and the underlying free-energy landscape governing the system dynam-
ics and thermodynamics, an analytical solution is provided to explain the heavy tail of the degree distribution,
neighbor connectivity, and clustering coefficient. This derivation allows us to understand the universal CSN
topology observed in systems ranging from a simple quadratic well to the native state of the beta3s peptide and
a two-dimensional lattice heteropolymer. Moreover, CSNs are shown to fall in the general class of complex
networks described by the fitness model.
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I. INTRODUCTION

The use of complex networks and graph theory to de-
scribe complex systems ranging from the worldwide web
�WWW� to protein interaction networks is by now well es-
tablished �different books and reviews are available about
this topic �1–5��. A large class of these systems attain com-
plexity by means of their internal dynamics �6�, which is
often revealed by computer simulations. One example of
such systems is the folding of proteins, for which simulations
have been extensively used in structural biology. Nowadays
several molecular dynamics �MD� packages �CHARMM �7�,
GROMACS �8�, AMBER �9�� are available to probe in real time
the dynamics of folding and unfolding. However, because of
the large number of degrees of freedom �10� involved in the
process, the results of MD simulations form in themselves a
highly complex system. As a consequence, a detailed, unbi-
ased description of the free-energy landscape underlying the
thermodynamics and kinetics cannot easily be extracted.

To tackle this complexity, new approaches based on com-
plex networks have recently been introduced, showing that a
network description is effective for the analysis and visual-
ization of simulation results. In �11�, for instance, the topol-
ogy of the configurations of a short lattice polymer has been
mapped onto a network. Doye and Massen have also applied
graph analysis to study the organization of the potential en-
ergy minima in a Lennard-Jones cluster of atoms �12,13�. In
another work, the concept of disconnectivity graphs has been
used to analyze the free energy of a tetrapeptide and a
�-hairpin �14,15�. Finally, the free-energy landscape of a
three-stranded �-sheet �beta3s� and alanine dipeptide
sampled by MD simulations have been represented as a con-
figuration space network �CSN� �16,17�.

Given the time evolution of a dynamical system, the CSN
represents the ensemble of microstates �configurations�
sampled during a simulation, and their dynamic connectivity.
In this representation, nodes are system configurations and
links are direct transitions between the configurations
sampled during the simulation. The CSN topology shares
several features with other networks representing systems as

different as cell’s functional architecture �18�, scientific col-
laborations �19�, and the WWW �20�. In particular, it has
been shown �16� that the degree distribution of the beta3s
peptide CSN exhibits a heavy tail well approximated by a
power-law, and a disassortative behavior for the average
neighbor connectivity distribution. Moreover, the clustering
coefficient presents a decay compatible with a 1/k function
for large values of the degree, which has been interpreted as
the presence of a hierarchical organization of the nodes �21�.
Recently, the connection between the CSN topological clus-
ters and free-energy basins has been explored, and an ana-
lytical solution for the node weight distribution observed in
CSNs has been provided with the help of simple energy land-
scape models �17�. Following these lines of research, the
challenge is now to find the connection between network
topology, system dynamics, and free-energy landscape orga-
nization. In this work, we focus on the degree distribution
P�k�, the average neighbor connectivity Knn�k�, and the clus-
tering coefficient C�k� observed in CSNs. Several studies
�22–25� have shown that the analysis of the above three dis-
tributions is an important step toward the understanding of
the network organization and architecture. The results pre-
sented below provide a rationale for the origin of several
unexplained properties of CSNs.

The paper is organized as follows. Section II describes in
detail how CSNs are built. Section III shows how the degree
distribution, the average neighbor degree, and the clustering
coefficient relate to the free-energy landscape. In Sec. IV, an
analytical derivation and simulation results are presented for
the quadratic well model. Then the CSNs obtained from
beta3s peptide and lattice heteropolymer simulations are ana-
lyzed in Sec. V. Finally, the connection between CSNs and
the fitness model is discussed in Sec. VI and conclusions are
presented in Sec. VII.

II. CONFIGURATION SPACE NETWORKS

The simulation of a dynamical system, like a peptide or a
protein, results in a time series of snapshots representing the
dynamics. The CSN of this kind of process gives a synthetic

PHYSICAL REVIEW E 76, 026113 �2007�

1539-3755/2007/76�2�/026113�9� ©2007 The American Physical Society026113-1

http://dx.doi.org/10.1103/PhysRevE.76.026113


view of the configurations and transitions observed during
the simulation. System configurations are the nodes, and a
link is placed between two nodes if they appear consecu-
tively in the time series. The time step between two snap-
shots, ts �usually called the configuration saving time�, is a
free parameter: ts= itM, where it is the integration time step
for the simulation and M is the number of microscopic steps
between two snapshots. When M approaches 1, only con-
figurations spatially close to each other are connected to-
gether. Therefore a link is a temporal relation between con-
figurations, and changing M changes the set of links.

The weight of a link wij represents the number of direct
transitions from node i to node j. Similarly, the weight wi of
a node is given by the number of times configuration i has
been visited. The weight distribution of CSN has been dis-
cussed in previous work �17�.

The degree of a node is defined as the number of links
including self-loops, corresponding to the number of con-
figurations accessed in M steps during the dynamics. Be-
cause of finite-time simulations, the CSN is a directed net-
work: If the system visited node j M steps after node i, the
converse is not automatically true. Hence kin and kout are not
always equal. However, the asymmetry of the links is weak
for two reasons. First, the simulation is run long enough to
almost ensure wi→j =wj→i �which is in fact equivalent to de-
tailed balance�. Second, the total weight of the incoming
links has to be equal to the total weight of the outgoing links
by construction of the network.

In the following, the degree of a node, ki, is defined as the
out-degree ki

out. Similarly, the average neighbor degree
kNN�k� is the average out-degree of the neighbors of the
nodes with degree k. The out-degree correlation between
connected nodes is further characterized by the assortativity
coefficient q �26�. Finally, the clustering coefficient is com-
puted as the total number of three-steps cycles �triangles�
starting at node i �Ni

��, divided by the maximum number of
three-step cycles one can have in the considered graph: ci
=Ni

� /ki
outki

in.

III. ANALYTICAL APPROACH

As already mentioned, the main objective is to understand
the relation between the network topology and the free-
energy landscape. Unfortunately, even the degree of a node
cannot be easily computed from the knowledge of the energy
landscape for any M. For this reason, we restricted ourselves
to large values of M corresponding to a random sampling of
the landscape �uncorrelated exploration�. In this case an ana-
lytical approach can be carried out. Let us consider the free-
energy landscape U�x� �in kBT units�. The probability
density on the free-energy landscape is given by W�x�
=W0 exp�−U�x��. The system configurations �i.e., CSN
nodes� are defined as hypercubic cells of size aD, where D is
the dimension of the x space. Assuming that a is chosen
small enough such that exp�−U�x�� is almost constant on
each cell, the probability to visit a configuration at x1 at a
given time is P�x1�=aDW0 exp�−U�x1��, and the expected
number of times two configurations at position x1 and x2 are
visited consecutively is given by

W�x1,x2� = WNe−U�x2�−U�x1� �1�

where WN=Na2DW0
2, and N is the total number of snapshots.

The expression above predicts link weights. To compute the
degree, the quantity of interest is the probability P�x1 ,x2� to
have a link between two configurations �no matter how often
the link has been visited�. Assuming that the probability dis-
tribution of visiting s times the node at x1 is peaked around
its average value P�x1�, P�x1 ,x2� is evaluated as one minus
the probability to have no links:

P�x1,x2� = 1 − �1 − P�x2��NP�x1� � 1 − e−NP�x1�P�x2�, �2�

where the second equality holds in the limit of small P�x2�,
which is true if the number of configurations is large. NP�x1�
is the expected number of times the configuration at x1 has
been visited, and 1− P�x2� is the probability not to visit the
configuration at x2. Equation �2� is indeed an approximation.
An exact expression would require to sum up the probability
of visiting s times node x1 multiplied by the probability of
never visiting x2 right after x1, i.e., �1− P�x2��s, excluding
the cases in which x1 has been visited several times consecu-
tively. However, it is very difficult to express this in a simple
form, and approximations are required to proceed further
with analytical calculations. From Eq. �2�, two asymptotic
behaviors can be derived.

�1� If NP�x2�P�x1� is large, then P�x1 ,x2��1. This is the
saturation regime since x1 and x2 are almost certainly con-
nected.

�2� If NP�x2�P�x1� is small, the sparse regime is reached,
which describes low-probability connections. In this regime
an nth-order expansion is meaningful:

P�n��x1,x2� = �
j=1

n
1

j!
�NP�x1�P�x2�� j�− 1� j+1. �3�

The first term in Eq. �3� is equal to W�x1 ,x2� in Eq. �1�.
Taking only the first term in the sum corresponds to the case
in which links are distributed avoiding as much as possible
the presence of double links. If NP�x2�P�x1��1, it provides
a good approximation of the sum, while for NP�x2�P�x1�
�1, it slightly overestimates the real probability to have a
link between two nodes. Applying the considerations above,
an approximation of P�x1 ,x2� is given by

E�n��x1,x2� = min�1,P�n��x1,x2�� . �4�

Equation �4� defines the probability to have a link be-
tween two nodes, depending only on a parameter associated
with each node �in this case the energy −U�x��. Such systems
have been previously described in the fitness model frame-
work �27–29� �see Sec. VI�. The degree of a node at x, its
average neighbor degree, and the expected number of tri-
angles the node is part of are then given by the following
three expressions:

k�x� =
1

aD�
V

dx1E�n��x,x1� , �5�
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Knn�x� =
1

aD

1

k�x��V

dx1E�n��x,x1�k�x1� , �6�

N��x� =
1

a2D�
V
�

V

dx1dx2E�n��x,x1�E�n��x,x2�E�n��x1,x2� .

�7�

Finally, assuming that the continuous approximation is
valid and that the degree distribution of a node at x is peaked
around its average value k�x�, the degree distribution reads

P�k� � �
V

dDx �„k − k�x�… . �8�

Inverting Eq. �5� and inserting it into Eqs. �6� and �7�
gives the average neighbor connectivity Knn�k� and the clus-
tering coefficient C�k�, respectively,

Knn�k� =
1

aD

1

k
�

V

dx1E�n�
„x�k�,x1�k�x1� , �9�

C�k� =
1

k2a2D�
V
�

V

dx1dx2

�E�n�
„x�k�,x1…E

�n�
„x�k�,x2…E

�n��x1,x2� . �10�

IV. QUADRATIC WELL

In general, the free-energy landscapes of real systems are
extremely complex, so that even writing down a mathemati-
cal expression is often impossible. However, close to the
minimum of a basin �corresponding to configurations visited
several times�, such systems can often be approximately de-
scribed by means of a Taylor expansion of the potential,
whose first term is harmonic.

Therefore the quadratic well is a good benchmark to un-
derstand more complex CSNs �17�, in particular for nodes
near the minimum of an energy basin. In two dimensions, the
potential is given by

U�x,y� =
1

2
�x2 + y2� =

1

2
r2. �11�

Using radial coordinates and introducing Eq. �11� in Eq. �4�
with n=1 gives �W0=1/2��

P�1��x1,x2� = 1 ⇔
�2��2

a4N
= exp	−

1

2
�r1

2 + r2
2�


⇔ r1
2 = 2 ln	 a4N

�2��2
 − r2
2 = B − r2

2 �12�

with B=2 ln�a4N / �2��2�. Hence a necessary condition for
P�1��x1 ,x2��1 is that both r1��B and r2��B. The degree
distribution is then obtained from Eq. �8� �see the Appendix
for the complete derivation�:

P�k� � �const if r � �B ⇔ k � 2�/a2,

1/k if r � �B ⇔ k � 2�/a2.

 �13�

Note that the flat tail for k�2� /a2 is an artifact of the con-
tinuous approximation in D=2. Analytical calculations, for
instance in D=4 where they are still manageable �but some-
what tedious�, show a decreasing behavior even for
k�2� /a2.

In the same way, the average neighbor connectivity is
computed from Eq. �9� and the clustering coefficient from
Eq. �10�. Results are shown graphically on Fig. 1 �detailed
calculations are included in the Appendix�.
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FIG. 1. �Color online� Network topology for the quadratic well in D=2 dimensions and different values of the parameter M. �a� Degree
distribution. For clarity a binning has been applied for M �10. Inset: Degree distribution for uncorrelated sampling without binning. �b�
Average neighbor degree. �c� Clustering coefficient. Blue circles surrounded by black correspond to a random sampling of the energy
landscape �uncorrelated case; see text�. Red dashed line shows the analytical estimation.
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In order to compare the analytical predictions obtained
above for n=1 with the CSN topology obtained from simu-
lations, a Langevin dynamics with potential energy defined
by Eq. �11� is performed according to the equation of motion

	ẋ = −
�U

�x
+ f�t� ,

where 	 is the friction coefficient and f�t� is a white noise
with mean value �f�t��=0 and �f�t�f�t���=��t− t��. Without
loss of generality, 	 is set to 1 �this merely corresponds to a
rescaling of the time� and the integration step to it=0.001
used in the simulations. In the case of the two-dimensional
quadratic well, configurations are defined as square cells of
size a2 �a=0.2�. A total number of N=3�106 time steps has
been used in the simulations.

The degree distribution P�k� for different values of the
parameter M is shown in Fig. 1�a�. The distribution follows a
power-law of the form 1/k for values of the parameter
M 
100. In this example, every CSN realization with
M 
104 are equivalent to a random sampling of the energy
landscape with probabilities given by W0e−U�x� �black points
in the figure�. Hence, for these values of M, the distribution
follows the analytical prediction.

In Fig. 1�b�, the average neighbor connectivity Knn�k� is
plotted for different values of M. There is a change in the
behavior of Knn�k� as M increases. For low values of
M, Knn�k� is an increasing function of k, which indicates an
assortative behavior. This is no longer true for large values of
M. In this regime, Knn�k� shows a decaying tail characteristic
of disassortative regime. For M 
104, the curves cannot be
distinguished from the one obtained by uncorrelated sam-
pling. The flat region for small k arises because nodes with
low degree tend to connect to nodes with high degree which
lie at the bottom of the basin. Indeed, for large M, transitions
starting at a node far from the minimum are likely to end up
at the bottom of the basin, which is characterized by nodes
with a large degree. On the other hand, for small values of
M, only neighbor configurations are visited consecutively.

As already pointed out, the approximation n=1 has the
effect of slightly overestimating the node degree, which ex-
plains why results for the uncorrelated sampling are found to
be below the analytical approximation. The assortativity co-
efficient q �26� for different values of M shows the same
transition between assortative and disassortative regimes �see
Fig. 2�. For M �100, the network presents a strong assorta-
tivity characterized by values around q�0.8. Increasing the
value of M makes the assortativity coefficient drop to values
smaller than −0.3, indicating that the system has undergone
an assortative-to-disassortative transition. Therefore, CSNs
built from the same physical process, i.e., diffusion in a well,
exhibit a changing assortativity �30�

In the same way, the clustering coefficient C�k� exhibits
different behaviors as a function of M. For M �1000, the
value of C�k� grows, indicating that triangles easily form at
the bottom of the basin. On the other hand, as M increases,
C�k� shows a decaying tail for large values of k. For
M �104, C�k� obtained in the quadratic well follows the ana-
lytical prediction of Eq. �A4�.

The changing behavior of the CSN topology of a qua-
dratic well for different values of the configuration saving
time can be understood in a more general kinetic framework
when considering the relaxation times to a given configura-
tion of the landscape. In Fig. 3�a� the distribution of the
relaxation times to the configuration lying at the bottom of
the well for three different configurations is shown. The re-
laxation times starting from configurations close to the bot-
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FIG. 2. �Color online� Assortativity coefficient for different val-
ues of the parameter M in the three systems under study.
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tom node �small r� exhibit a downhill distribution, which is
not the case for larger values of r. However, as M increases,
all distributions overlap �up to a global multiplicative factor�
indicating that the kinetics to the bottom is the same for all
configurations �see Fig. 3�b��. This corresponds to the uncor-
related regime of Eq. �1�. In this case, the probability to have
a link between two configurations depends only on the con-
figuration weight.

V. NATIVE STATE OF A TRIPLE STRANDED �–SHEET
AND A LATTICE HETEROPOLYMER

The analytical and numerical results obtained above are
crucial for a correct interpretation of the CSN topology ob-
served in complex systems for which direct application of
Eq. �8�–�10� is unfeasible. In the following, the CSN topol-
ogy of the native basin of a triple stranded �-sheet peptide
�beta3s� sampled by MD as well as of a lattice heteropolymer
sampled by Monte Carlo simulations are investigated �see
Figs. 4 and 5�.

The MD simulation of the native state of beta3s is per-
formed at 270 K for a total of 10 ns, which is enough for the
correct sampling of the basin. The low temperature pre-
vented the system from jumping to a different basin. The MD
simulation is performed using the CHARMM PARAM19 force
field �7� and an integration time step of it=2 fs. A mean field
approximation based on the solvent-accessible surface was
used to describe the main effects of the aqueous solvent on
the solute �31�. The two parameters of the solvation model
were optimized without using beta3s. The same force field

and implicit solvent model have been used recently in MD
simulations of various systems �32–34�.

The secondary structure is worked out �35� for each snap-
shot saved along the MD trajectory. Here a configuration
�i.e., a CSN node� is defined as a single string of secondary
structure e.g., the most populated configuration for beta3s at
270 K �see inset of Fig. 4� is -EEE-STTEEEEESSEEEE-.
The total number of 5�106 snapshots sampled during the
MD simulation resulted in 249 secondary structure configu-
rations. There are eight possible letters in the secondary
structure “alphabet”: H, G, I, E, B, T, S, and -, standing for
�-helix, 310–helix, �-helix, extended, isolated �-bridge,
hydrogen-bonded turn, bend, and unstructured, respectively.
Since the N- and C-terminal residues are always assigned an
-, a 20 residue peptide can, in principle, assume 818�1016

configurations.
The two-dimensional lattice heteropolymer is simulated in

the framework of the popular hydrophobic-polar �HP� model
�36–40�. In this description, the amino acid sequence of a
protein is represented as a binary sequence of hydrophobic
and polar residues. The results presented here are obtained
with the random sequence HHPHPPHHPPHHPH �inset of
Fig. 5�. Note that similar results are observed for different
HP sequences �random and proteinlike�, as well as for differ-
ent numbers of residues, ranging from 10 to 20 �a detailed
presentation of these results is in preparation�. The time se-
ries of configurations is generated from moves of the poly-
mer according to the Metropolis rule. It is important to men-
tion that the qualitative observations do not depend on the set
of moves �local moves and the global “pivot” moves �41,42�
have been tested�. In the standard HP model, the energy of a
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FIG. 4. �Color online� Network topology for the beta3s peptide CSN at different values of the parameter M. �a� Degree distribution. To
reduce noise a logarithmic binning has been applied. The native state of beta3s is displayed in the inset. �b� Average neighbor connectivity.
�c� Clustering coefficient.
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configuration is merely minus the number of its H-H contacts
on the lattice. From a physical point of view, the cornerstone
of the simulation is the appropriate adjustment of T in order
to achieve an effective sampling of the lowest-energy con-
figurations. This has been accomplished by sampling at a
temperature significantly smaller than the coil-to-globule
transition temperature of the polymer �i.e., kBTsamp=0.3 and
kBTtrans�0.5�. The transition temperature has been identified
by a thorough study of the heat capacity CV and of two
topological quantities, namely, the gyration radius and the
end-to-end distance. A CSN node is defined as a single lattice
configuration up to a symmetry of the lattice.

In both the beta3s and heteropolymer systems, two nodes
are linked if a direct transition between them �at a given M�
has been observed along the simulation. The topology of the
two CSNs shows several common properties. The degree
distributions P�k� for beta3s and the heteropolymer are
shown in Figs. 4�a� and 5�a�, respectively. The distributions
are robust upon varying the configuration saving time �i.e.,
changing the value of M� and resemble a power-law k−	 for
M 
1 with exponent 	 between 1.5 and 2. This behavior is
qualitatively similar to what is observed for the quadratic
well, while the steeper slope may result from the higher di-
mension �i.e., higher number of degrees of freedom� of the
energy landscapes. Interestingly, the average neighbor con-
nectivity Knn�k� changes significantly for different values of
M. Knn�k� is shown in Figs. 4�b� and 5�b�. For M �100, this
quantity grows with the degree, whereas for larger values of
M, Knn�k� becomes a decreasing function of k. Moreover, the
assortativity coefficient q changes from positive values for
M =1 to negative values for M �1000, indicating an

assortative-to-disassortative transition �see Fig. 2�.
The clustering coefficient C�k� converges toward a gen-

eral decreasing behavior for large M �Figs. 4�c� and 5�c��. In
previous work, the presence of an apparent scaling in C�k�
had been interpreted as the signature of a hierarchical orga-
nization of the nodes in the native state of beta3s �16�. How-
ever, a comparison between the C�k� of beta3s for different
values of M and of the quadratic well �see Fig. 1� strongly
suggests that this decay does not indicate node hierarchy as
presented in �21�. First, the quadratic well underlying the
CSN does not present a hierarchical organization as in �21�.
Second, it should be noticed that, in the uncorrelated regime,
nodes lying at the bottom of the basin are strongly connected
together, giving rise to an almost complete subgraph. In this
regime, nodes with low degree are unlikely to be linked to-
gether but tend to connect to high-degree nodes �bottom con-
figurations�. These two effects are indeed sufficient to ex-
plain the decay observed in C�k� without invoking a node
hierarchy.

For the CSN of beta3s, there is no rigorous evidence that
an uncorrelated regime is reached for M �100. However,
analysis of the transition probabilities �i.e., link weights� can
account for this behavior. In Fig. 6 the relation between
log10�wi /w1� and log10�wi→1 /w2→1� is shown, where wi and
wi→1 indicate the weight of node i and the weight of the link
between nodes i and 1, respectively. Index 1 stands for the
most populated node of the network. These logarithms have
a physical meaning reflecting the configuration free energy
�Fi�−kBT log10�wi� and the free-energy barrier between
different configurations �Fi→j �−kBT log10�wi→j�. For
M =1, the relation between the two free energies is not linear.
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FIG. 5. �Color online� Network topology for the random lattice heteropolymer CSN at different values of the parameter M. �a� Degree
distribution. The most visited configuration of the heteropolymer is displayed in the inset. �b� Average neighbor connectivity. �c� Clustering
coefficient.
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In other words, nodes with similar weights might be sepa-
rated from node 1 by free-energy barriers of very different
size �for instance the two nodes with �Fi�1 in Fig. 6�.
Choosing higher M increases the correlation between node
and link weights. For M =105, �Fi→j grows linearly with
�Fi, indicating that link weights depend only on wi. This
behavior provides strong evidence for an uncorrelated sam-
pling.

It is essential to stress that the uncorrelated regime is a
frequent scenario when dealing with long sampling MD
simulations. These simulations explore transitions between
several energy basins, for example, when investigating the
large configurational changes characterizing the protein fold-
ing. In these cases, the configuration saving time is usually
set to large values for computational reasons, resulting in an
intrabasin uncorrelated regime. Finally, it is important to note
that these results have been obtained for CSNs originating
from a single-basin energy landscape. In the case of net-
works describing fully sampled landscapes presenting a large
number of basins the network topology might change since it
reflects the contributions from different basins.

VI. CONNECTION WITH FITNESS (HIDDEN VARIABLE)
MODELS

The scaling behavior in several networks has triggered a
vast effort in modeling complex networks �22�. Of particular
interest for CSNs is the model based on a fitness parameter
on the nodes �27–29�. In the original fitness model �27�, two
nodes are connected with probability 1 if the sum of their
fitness exceeds a given threshold. In the case of CSNs re-
flecting a single enthalpic energy basin �as in this work�, the
fitness of a node is given by −U�x�. Equation �4� with n=1
shows that nodes are connected with probability 1 if the sum
of their fitnesses is higher than a threshold given by
−ln�W0

2a2DN�. In addition, there is also a probability to con-
nect nodes of high energy, given by NP�x2�P�x1�. This for-
mulation shows that CSNs fall in the large class of networks
whose nodes are described by a fitness parameter, also re-
ferred to as a hidden variable �28�. Notably, the scaling prop-
erties of the model presented in the papers mentioned above
are in good agreement with the P�k�, Knn�k�, and C�k� ob-
served in the uncorrelated case.

VII. CONCLUSIONS

The scaling behavior observed in the CSN topology has
been investigated in the quadratic-well model, the native
state of a triple stranded �-sheet peptide, and a lattice het-
eropolymer model. Despite the important differences be-
tween these systems, some universality has been observed.
In particular, three main results have clearly emerged. First,
in the limit of very large configuration saving times �uncor-
related regime�, an analytical approximation �first order� for
the degree distribution, the average neighbor connectivity,
and the clustering coefficient can be carried out. Comparison
between the analytical predictions and the results obtained
from the simulation of the dynamics in a quadratic well
shows that, in the limit considered, the analytical solution

describes correctly the CSN topology. These results allow for
the interpretation of the topology observed in complex CSNs
which cannot be tackled analytically, like the ones describing
the native state of a �-sheet peptide or the low-energy con-
figurations of a lattice heteropolymer. Second, the variation
of the configuration saving time induces remarkable changes
in the CSN topology. For small saving times, the network
exhibits an assortative regime. On the other hand, with in-
creasing the saving time, a disassortative behavior is ob-
served.. Third, the emergence of a decaying tail in the clus-
tering coefficient, which had been suggested to bear the
signature of a hierarchical organization of the nodes in the
native state of the �-sheet peptide, is in fact a consequence
of uncorrelated sampling.
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APPENDIX

For the case of the quadratic well in D=2, the derivation
of the degree distribution �Eq. �13�� is performed by first
calculating the degree of a node at distance r. If r��B, Eq.
�5� reads:

k�r� =
2�

a2 �
0

�B−r2

r1dr1 +
2�

a2 ��B−r2




r1dr1
a4N

�2��2e−�r1
2+r2�/2

=
2�

2a2 �B − r2� +
a2N

2�
e−B/2

=
2�

2a2 �2 + B − r2� . �A1�

If r��B, Eq. �5� reads

0 1 2 3
0

2

4

6

8
M=1
M=105

ΔF i

Δ
F

i
1

FIG. 6. �Color online� Relation between the free-energy barrier
to the configuration at the bottom of the native state basin ��Fi→1�,
and the configuration free energy ��Fi� for the most visited nodes
of the beta3s network. Empty and full dots represent the M =1 and
105 cases, respectively.
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k�r� =
2�

a2 �
0




r1dr1
a4N

�2��2e−�r1
2+r2�/2 =

a2N

2�
e−r2/2. �A2�

Equation �8� is calculated using the properties of the �(f�r�)
function. For a given function f�r� with n simple zeros
f�ri

*�=0, f��ri
*��0, i=1, . . . ,n, it is possible to write

�(f�r�)=�i=1
n ��r−ri

*� / �f��ri
*��. Hence r* is given by inverting

Eqs. �A1� and �A2�
�1� If r��B⇔k�2� /a2,

r* =�2	1 +
B

2

 −

a2

�
k ⇔ P�k� �

r*

��2�/a2�r*�
� const.

�2� If r��B⇔k�2� /a2,

r* =�2 ln
a2N

2�k
⇔ P�k� �

r*

�a2N/2��r*e−�r*�2/2
�

1

k

The average neighbor connectivity is calculated using Eq.
�9�:

Knn�k� = �
2�2

a4 2
1

k
+

2�

a2 	1 +
B2

2

 −

1

2
k +

�

a2e−1−B/21

k
ea2/2�k if k �

2�

a2 ,

B
�

a2 +
4�3

a6N
if k �

2�

a2 .� �A3�

The expression for the clustering coefficient is slightly more complex since it requires us to distinguish between several cases
according to the possible values of r. Of particular interest is the case of large k �i.e., small r�. If r��B /2⇔k� �2� /a2��1
+B /4�, solving the integral of Eq. �7� gives

C�k� =
N��k�

k2 =
�2��2

a4

1

k2�1

2
B +

B2

8
− 1 − 	 a2

2�
k − 1 −

B

2

2� +

�2��2

a4

1

k2�exp	 a2

2�
k − 1 −

B

2

 +

�2

a4 exp	−
a2

�
k + 2 + B
� .

�A4�
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