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Fitness model for the Italian interbank money market
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We use the theory of complex networks in order to quantitatively characterize the formation of communities
in a particular financial market. The system is composed by different banks exchanging on a daily basis loans
and debts of liquidity. Through topological analysis and by means of a model of network growth we can
determine the formation of different group of banks characterized by different business strategy. The model
based on Pareto’s law makes no use of growth or preferential attachment and it reproduces correctly all the
various statistical properties of the system. We believe that this network modeling of the market could be an
efficient way to evaluate the impact of different policies in the market of liquidity.
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Coevolution and interaction between different agents is
known to be one of the ingredients of the so-called complex
systems. Several examples can be found in social [1,2], bio-
logical [3—6], economical [7], and technological systems [8].
Any of these systems is composed by a set of agents com-
peting and sometimes receiving reciprocal advantage inter-
acting each other. In the above situation both coalition and
competition are at the basis of the process of co-evolution
and self-organization of the system. While this class of prob-
lems has been traditionally studied in game theory, more
recently it has been introduced an approach based on graph
theory [9,10] By using networks [11,12], we can characterize
quantitatively the interaction between agents by means of a
series of topological quantities. The case of study presented
here is composed by banks operating in the Italian market
[13]. Banks try to maximize their returns given some con-
straints from the European Central Bank. This complex in-
teraction results in a differentiation of the strategies that is
well described by means of graph cliques. More specifically
banks of the same size tend to form a cluster and to adopt a
similar business strategy.

A network is a mathematical object composed by vertices
and edges joining them. Different measures can be made,
from the degree distribution (the degree is the number of
edges per vertex) to the diameter (i.e., the maximum of the
distances between every couple of vertices). It is interesting
to note that different real world networks (ranging from so-
cial to biological ones), display a scale-free distribution of
degrees and a “small-world” character, that is to say the di-
ameter is usually very small [14]. More complicated mea-
sures determine also the presence of communities in a net-
work. In this case, some methods have been proposed
[15-17] but no general approach is available. The set of
banks with their internal loans and debts has a structure than
can be naturally described by means of a network. In this
case the vertices are the different banks. For every pair of
banks i and j we draw an oriented edge from i to j, if bank j
borrows liquidity from bank i. The number of incoming and
outgoing edges of a vertex is called, respectively, the in
degree k;, and the out degree k., of the vertex (their sum
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gives the total degree k). The loans are originated by the fact
that every bank needs liquidity in order to satisfy demands of
customers. To buffer liquidity shocks the European Central
Bank requires that on average 2% of all deposits and debts
owned by banks are stored in national central banks. Given
this constraint, banks can exchange excess reserves on the
interbank market with the objective to satisfy the reserve
requirement and in order to minimize the reserve implicit
costs [18-20]. The data set analyzed is the electronic broker
market for interbank deposits (e-MID) (reference dataset)
[21]. This data set is composed by 586 007 overnight trans-
actions (i.e., payments of loans must be done in 24 hours)
concluded from January 1, 1999 to December 31, 2002. The
network is composed by a set of N banks (the average num-
ber of (N) banks daily active is 140) connected by an average
number of links (L)=200 (in case of multiple transactions
among banks i and j, we count just one link). As in many
other complex networks we find here a fat tail distribution.
By fitting these data with a power law we obtain for the total
degree a frequency distribution F(k) k™23 and a similar be-
havior for the in/out degree with exponents F(k;,) o k;l” and
F(koy) % k"5, Regardless the precise form of the fit, the fat
tail indicates that banks have a highly heterogeneous behav-
ior, since the number of their partners varies very widely. We
also measure the assortativity and the clustering coefficient
of the network. The first one is defined as the average value
K,,(k) of the neighbors of a vertex whose degree is k. We
find K,,,(k) k™. This means that banks with few partners
interact with banks with many partners. Conversely (on av-
erage) banks with many partners interact with banks with
few or one. The clustering coefficient instead accounts for
the number of triangles a vertex of degree k belongs to. Also
this quantity has a power law behavior of the kind
c(k) k08, All these measurements refer to daily networks
resulting from composing all transactions of every day. In
fact, the system is characterized by a typical time scale of the
system, the month. This time scale arises from the above-
mentioned requirement from European Central Bank. The
2% to be deposited in national central banks are computed
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FIG. 1. (Color online) A plot of the interbank network. The
group of the vertices (banks) goes from light (group of small banks)
to dark (large banks) (the color codes for the various groups are the
following: 1=yellow, 2=red, 3=blue, 4=black). Note that the dark-
est vertices (bank of group 4) form the core of the system.

every month (on the 23rd day). The day in which this hap-
pens (also indicated as end of month or EOM) witnesses a
frantic activity of the banks. Interestingly, regardless of the
change in volumes all the above topological measurements
remain similar when computed in different days of the
month.

We try to understand if there are some banks with similar
behavior and if they have some properties in common. We
have been able to identify specific features for banks of dif-
ferent capital size. In fact for each bank we know only its
category (small, medium, large, very large) based on the
capital of the banks (as recorded by Bank of Italy). Never-
theless we observe that this classification is strongly corre-
lated with the total amount of daily volume of transactions:
we use this latter quantity as it is strictly related to capital
size. Using this quantity we can divide banks into four
groups (same number of classes of the Bank of Italy classi-
fication): Group 1 with volume in the range 0-23 million
Euro per day, group 2 in the range 23-70 million Euro per
day, group 3 in the range 70—165 million Euro per day, group
4 over 165 million Euro per day. In this way we find an
overlap of more than 90% between the two classifications.

Using this information we realized a picture of the system
as an oriented network whose size and color of the vertices
represent the different groups that play the role of communi-
ties when described by means of a network. As evident from
Fig. 1 we find that the core of the structure is composed by
banks of the last groups (very large). The edges in Fig. 1
represent the net amount of money exchanged in a whole
day. As mentioned above the measurements in different days
give similar results. A more quantitative measure of the dif-
ferent behavior of banks from different groups is given in
Table I, where for every pair of groups we reported the mean
percentage of the total number of transactions between banks
of those groups. This result is confirmed by the first two plots
of Fig. 2, where we represented in-degree frequency distri-
bution (number of borrowing edges) and the out-degree
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TABLE I. The number of daily interactions between the banks
of different groups. Data have been averaged during 1 month.

Group 1 2 3 4
1 0 4 8
2 6 8 17
3 4 5 27
4 8 17 27 22

frequency distribution (number of lending edges) in the net-
work (experimental distributions are obtained on an en-
semble of daily networks). It is possible to compute the
group of the banks whose degree is k. We represented this
information by coloring accordingly the plot. We have sepa-
rated informations about degree and volumes of different
banks. Interestingly we note that the degree and the volume
are correlated [22], since v(k) ~k"! (see Fig. 3).

With respect to the scale of colors in Fig. 1, we also added
some intermediate colors to account for the values between
one group and another. The tail of the two distributions is
black, i.e., it is mainly composed by banks of group 4. We
again find that banks of groups 1 and 2 are the leaves of the
network, staying at periphery of the structure and not inter-
acting with each other. This particularity together with the
experimental evidence that they are more lenders on average
means that banks of these groups are the lenders for the
whole system.

The role of the different groups is shown in Fig. 4. An-
other measure of the clustering of banks in different groups
is given by the volume-volume correlation v,,(v), that is the
average value v, of the neighbors of a vertex whose volume
is v, In fact we find that v,,(v) is the superposition of a
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FIG. 2. (Color online) A plot of the out-degree and in-degree (in
the inset) distributions, respectively. As already noticed, the contri-
bution to the tail of frequency distribution emerges from the banks
of group 4. Using the division in four groups, we determine the
average group of each bin of F(k). Every bin is then represented
with a particular color and/or texture according to the value of the
group obtained. For noninteger value of this average we introduced
intermediate colors.
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FIG. 3. Left-hand side: Probability distribution P(k) for the de-
gree k. With empty circles we have the experimental results to be
compared with simulation of our model (filled circles). Right-hand
side: Above comparison between experiment (empty circles) and
results obtained with simulation of our model (filled circles) for the
assortativity (K,,(k)) and below for the clustering coefficient c(k).

power-law function v,,(v)~v™"® with a function peaked

around volume values of banks of group 1.

In order to reproduce the topological properties we define
a model whose only assumption is that a vertex is solely
determined by its size (as measured by its capital or equiva-
lently by its group). Therefore, the idea is that the vertices
representing the banks are defined by means of an intrinsic
character corresponding to the size of the bank [23,24]. Since
this information is not available we use the total daily vol-
ume of transactions as a good measure of the size of banks
(we stated above that this is a good approximation). We call
this quantity fitness of the bank; this is the main quantity
driving the network formation in our model.

Following Pareto’s law (confirmed in this data analysis)
we assume that the distribution of sizes v in the model is a
power law P(v) ocp~2, where the value of the exponent cor-
respond to that of the data (see Fig. 5).

(D

FIG. 4. The division on classes of vertices permits to represent
in a very easy way the organizational principles of the network.
Following results of Table I we draw a link among two groups
when the number of links between banks belonging to them is big-
ger than the average value. Using the net volumes as weight of
links, we can represent the directed interactions among classes of
nodes: class 4 appear to be clearly a borrower and class 1 is a
lender.
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FIG. 5. Distribution of the total daily volume of transaction per
bank. This quantity is used as fitness in our model.

We assign to the N nodes (N is the size of the system) a
value drawn from the previous distribution. Vertices origin
and destination for one edge are chosen with a probability p;;
proportional to the sum of respective sizes v; and v;. In for-
mulas

40U
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where

Vuﬁzvj- (3)
J

We obtain in this way p;;= ﬁ‘t This choice of probability
reproduces the fact that big banks are privileged in transac-
tions among themselves while two little banks are very un-
likely to interact. We produce an ensemble of 100 statistical
realizations of the model and then we calculate average sta-
tistical distributions. In Fig. 2 we compare experimental and
simulated P(k), c(k), and k,,(k): here the distributions are
also averaged on all EOM days of 2002. The simulation of
the model reproduces remarkably well the considered topo-
logical properties of the interbank market P(k), c(k), and
k,n(k). The real and simulated networks disclose disassorta-
tive behavior: this phenomenon has already been observed in
other systems and it has been called rich club phenomenon,
referring to the fact that in many real networks hubs are often
connected each other[2]. Fitness models on the other hand
are known to produce disassortative networks, even if with
different fitness distributions [24].

It is interesting to note that this model does not consider
preferential attachment rules. With the term “preferential at-
tachment” it is indicated a specific procedure in which a
vertex receives more edges according to the value of its de-
gree. Note that this procedure must be very precise because
if the probability of growth is proportional to the degree
raised to a power different from 1, the scale invariance is
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destroyed. Therefore, preferential attachment has a precise
definition different from “rough proportionality.” When con-
sidering instead a fitness algorithm, it is true that the largest
the fitness the largest the degree, but the microscopic proce-
dure is different. A large degree is a consequence of an in-
trinsic quality, not the cause of the improvement of site con-
nectivity. This is an important point since in this way the
search for the origin of scale invariance in networks can be
explained by means of the ubiquitous presence of Pareto’s
law in economics and finance.

To quantify the agreement between experimental
and simulated networks we also define an overlap parameter
m specifying how good is the behavior of the model in
reproducing the observed clustering.

To quantify the agreement between experimental and
simulated networks, we proceed in the following way. We
define a matrix E, that is a weighted matrix 4 X 4, where the
weights represent the number of connections between
groups. In order to measure the overlap between the matrices
obtained by data and by computer model, we define a dis-
tance based on the differences between the elements of the
matrices,

d= 2 | Eexpt num ( 4)
gk=g

The sum of all elements, =, k>gEe"pt and Eg k=g ;fl,:“, is
equal to E, in both cases. Therefore the maximum possible
difference is 2E,,. This happens when all the links are
between two groups in one case and in other two groups in
the other. We use this maximum value to normalize the
above expression and we than define the overlap parameter
m, m=1-d/2E,,.

A natural way to define groups in the model is to obtain
a similar number ¢ of banks for each class, i.e.,
€=Npanks/ Nelasses- 1t 18 useful nevertheless to pass to continu-
ous form. Using the previously introduced P(v) giving the
probability distribution of the size v of one bank. Banks of
the same group g are in the range [v,,v,+Av,],

vg+Avg
J P(v')dv' =c. (5)
Vg
In our case, since the average number of banks is 140, we
obtain ¢=35. Then Av=cv?/(N-cv). We now compute the
number E,; of links going from one group of banks g, to
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another one g, for every possible pair of banks,
Egp= 2 a;;0g, - g()]olgc - ()], (6)
ij

where g(i) represent the group of bank i and a;; is the ele-
ment of the adjacency matrix. In the continuous approxima-
tion, defining E,/,» the number of edges from vertices of
fitness v’ to vertices of fitness v”, E, ; is given by

ve+Av,  rupHAy
Eg’,k: Eurvndvldv,,
Ug Uk

=(N/2)ffP(v’)P(v")p(v’,v”)dv’dv", (7)

where N is the number of vertices, p(v’,v”) is the linking
probability, P(v) is the fitness distribution and the formula is
obtained integrating the expression for the average degree
[24] (the integration domains are the ranges of volumes of
groups g and k, respectively). To evaluate the relevance of
division in classes, we must compare the value of E, ; with
the corresponding quantity Eg“,ll for a network where there is
not a division in classes (null hypothesis). The analytical
expression for the null case is Ezf‘,ll—Emt/ 10 where 10 is the
number of possible couplings between the four groups. The
comparison between the two networks evidences that in the
real case emerges the division in groups: in Table. I for each
possible combination of groups is reported the value
E, i/ Eo. In the null case, each element of the same matrix
should be equal to 10. In our case the overlap m is very good
(98%).

In conclusion we present here a network representation of
a financial market that in a natural way allows to measure the
presence of clustering. By means of a suitable chosen model
of network formation we can also understand the mechanism
driving the formation of such clusters. The agreement be-
tween the model and experimental results is remarkably
good; this seems to suggest that the network formation is not
due to the growth mechanism of preferential attachment.
Since the effects of European Central Bank policies are un-
der debate [19], graph theory can help to understand the
system behavior under change of external conditions.
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