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Scale-Free Networks from Varying Vertex Intrinsic Fitness
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A new mechanism leading to scale-free networks is proposed in this Letter. It is shown that, in many
cases of interest, the connectivity power-law behavior is neither related to dynamical properties nor to
preferential attachment. Assigning a quenched fitness value xi to every vertex, and drawing links
among vertices with a probability depending on the fitnesses of the two involved sites, gives rise to what
we call a good-get-richer mechanism, in which sites with larger fitness are more likely to become hubs
(i.e., to be highly connected).
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interaction networks [14,15] and of the WWW, new ver-
tices (proteins and Web pages, respectively) are added by

rules is the standard Erdős-Rényi model [17], where
f�xi; xj� is constant and equal to p for all vertex couples.
Complex networks [1–3] are attracting much interest
as one of the most promising tools to describe a large
variety of social [4], biological [5,6], and technological
systems, as the Internet [7–10] or the World Wide
Web (WWW) [11]. Networks are abstract mathematical
objects composed by vertices (sites) connected by arcs
(links). In the aforementioned examples, vertices can
represent people, proteins, species, routers, or html docu-
ments, while arcs correspond to acquaintances, physical
interactions, predation relationships, cable connections,
or hyperlinks, respectively. In recent developments,
scale-free (SF) networks have emerged in many different
contexts, as the WWW, the Internet, Email and
scientific-citation networks, protein and gene interaction
networks, etc., and have become paradigmatic [2,3]. In all
these examples, the degree k of a vertex, i.e., the number
of arcs linking it to other vertices, is power-law distribu-
ted, P�k� � k��. SF networks also present the so-called
small-world phenomenon [12], that is, by a few selected
jumps (that can be either short or long range) it is possible
to reach very different regions of the system and appa-
rently distant environments.

To understand how SF networks arise, the concepts of
growing networks and of preferential attachment have
been introduced [2]. In particular, in the best known SF
network model, i.e., the Barabási-Albert (BA) one, net-
works grow at a constant rate (modeling the fact that new
Web pages are continuously created, new proteins emerge
by mutation, and so forth), and new vertices are attached
to older ones with a probability p�k� which is a (linearly
[13]) growing function of the number of preexisting links,
k, at every site. In this way, a highly connected vertex is
more likely to receive further links from newly arriving
vertices: This is the so-called ‘‘rich get richer’’ rule.

In some other, recently proposed, models of protein
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copying (replicating) existing vertices, borrowing some
of their links, and adding some new others. It has been
shown that this mechanism leads also to an effective
preferential attachment mechanism.

Yet, although in some contexts preferential attachment
can be a very reasonable assumption, in many others it is
certainly not. In particular, in some situations, the infor-
mation about the degree of each and every single vertex is
not available to newly added sites, neither in a direct nor
in an effective way. Instead, it is reasonable that two
vertices are connected when the link creates a mutual
benefit (here we restrict ourselves to bidirectional links)
depending on some of their intrinsic properties (authori-
tativeness, friendship, social success, scientific relevance,
interaction strength, etc.). Therefore, it is reasonable to
expect that for some of these systems the P�k� scale-free
behavior (when existing) has an origin unrelated to pref-
erential attachment.

In order to explore this simple idea, we propose the
following network-building algorithm: (i) Start by creat-
ing a total (large) number N of vertices. At every vertex i
a fitness xi, which is a real number measuring its impor-
tance or rank, is assigned. Fitnesses are random numbers
taken from a given probability distribution ��x�. (ii) For
every couple of vertices, i; j, a link is drawn with a
probability f�xi; xj� (f a symmetric function of its argu-
ments) depending on the ‘‘importance’’ of both vertices,
i.e., on xi; xj. Some remarks are in order before proceed-
ing further.

(i) The concept of ‘‘vertex-importance’’ or fitness
has been already introduced successfully in the field of
complex networks, but as an additional ingredient on top
of the BA network [16]. Contrarily, here we put the
emphasis on fitness itself, by eliminating the preferential
attachment rule. (ii) A trivial realization of the above
 2002 The American Physical Society 258702-1



FIG. 1. Graph representations of four networks produced,
respectively, with (a) � � 2:5, (b) � � 3:0, (c) � � 4:0, and
(d) ��x� � e�x with a threshold rule. Graphs have been pro-
duced with the Pajek software.
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This particular choice does not produce SF networks, but
in what follows we will show that other realizations of the
general rules do so. (iii) The model, as defined, is static,
but it can straightforwardly be considered a dynamic one
by adding new vertices at every time step and linking
them to the existing ones according to the above attaching
rule. (iv) It is also easy to generalize the model to include
asymmetric or directed links. (v) A somehow similar
static model was studied by Goh et al. [18].

A general expression for P�k� can be easily derived.
Indeed, the mean degree of a vertex of fitness x is simply

k�x� � N
Z 1

0
f�x; y���y�dy � NF�x� (1)

[with xi 2 �0;1�]. Assuming F�x� to be a monotonous
function of x, and for large enough N, we have the simple
relation,

P�k� � �
�
F�1

�
k
N

��
d
dk

F�1

�
k
N

�
: (2)

For finite values of N corrections to this equation emerge
[19]. As a particular example, consider f�xi; xj� �
�xixj�=x

2
M, where xM is the largest value of x in the net-

work. Then

k�x� �
Nx

x2M

Z 1

0
y��y�dy � N

hxix

x2M
; (3)

and we have the simple relation,

P�k� �
x2M
Nhxi

�
�
x2M
Nhxi

k
�
: (4)

A particularly simple realization of the model emerges if
we consider power-law distributed fitnesses. This choice
can be naturally justified by arguing that power laws
appear rather generically in many contexts when one
ranks, for example, people according to their incomes
or cities according to their population, etc. This is the so-
called Zipf law which establishes that the rank R�x�
behaves as R�x� / x�� in a quite universal fashion [20].
The reason for the ubiquitous presence of the Zipf law
yields on the multiplicative nature of the intrinsic fluctua-
tions which generically leads to flat distributions in loga-
rithmic space and, consequently, to power laws [20].

Clearly, if ��x� � x�� (Zipf ’s behavior, with � � 1�
1=� [20]) then, using Eq. (4), also the degree distribution
P�k� is a power law and the network shows SF behavior. In
Fig. 1, we show the degree distributions from simulations
with � � 2:5, 3, 4 (corresponding to Zipf exponents � �
2=3, 1=2, 1=3); the asymptotic behavior is, in all cases,
well described by Eq. (4). This result is hardly surprising:
From SF fitnesses we generate SF networks, but still it
provides a new generic path to SF networks and takes into
account the widespread occurrence of the Zipf ’s behavior
in nature. In order to extend this result and check whether
SF networks can be generated even when ��x� is not SF
itself, we consider an exponential distribution of fitnesses,
��x� � e�x (representing a random, Poisson distribution)
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and f�xi; xj� � ��xi � xj � z�N�
, where ��x� is the usual
Heaviside step function. This represents processes where
two vertices are linked only if the sum of their fitnesses is
larger than a given threshold z�N�. Using these rules, we
obtain analytically (and confirm in computer simula-
tions) that P�k� � k�2 [21]. This leads to the nontrivial
result that even non-scale-free fitness distributions can
generate scale-free networks (see Fig. 2). Also different
implementations of the threshold rule, such as f�xi; xj� �
��xni � xnj � z�N�n
 (where n is an integer number) give
rise to the same inverse square behavior (although, in
some cases, with logarithmic corrections).

In a future publication we will explore, in a more
systematic way, the necessary and sufficient conditions
for the fitness distribution and attaching rule under which
well-behaved SF networks are generated.

Let us stress that the model, as defined, has a diverging
average connectivity in the large N limit, as can be easily
inferred from Eq. (1); i.e., it is severely accelerated [22].
Nevertheless, we can introduce in a rather natural way an
upper cutoff accounting for the fact that every site has
limited information on the rest of the world and, there-
fore, connection is attempted with a finite number, m, of
different sites. Alternatively, vertices can be linked
with the above rule and, after that, links are kept with
probability p (so that, for example, pN � m). By includ-
ing this modification, the N factor in Eq. (1) is substituted
by m, and the connectivity is finite in the thermodynamic
limit. In order to generate different accelerated net-
works (with the averaged connectivity not reaching a
stationary value but growing with N in different pos-
sible ways [22]), other selection rules can be easily
implemented.
258702-2
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FIG. 4 (color online). Integrated betweenness distribution,
P�b0 > b� / b1��b , for different fitness distributions.

10
0

10
1

10
2

10
3

10
410

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

knn

y~k
−0.85

c(k)
y~k

−1.6

10
0

10
1

10
2

10
310

−6
10

−5
10

−4
10

−3
10

−2
10

−1
10

0

data
y ~ k

−2

k

P
(k

)

k

c(
k)

,k
nn

FIG. 3 (color online). Average neighbor connectivity knn
against k, for networks generated using ��x� � e�x and a
threshold rule. Results are averaged over 100 realizations of
size 104. Inset: The degree distribution P�k�; the straight line
corresponds to k�2.
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FIG. 2 (color online). Degree distribution for networks gen-
erated using ��x� � x�� with � � 2:5, 3, 4, and f�xi; xj� �
�xixj�=x

2
M; power laws with the corresponding analytical values

are explicitly drawn in straight lines. Data obtained for net-
works with 104 vertices, averaged over 100 realizations.
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To have a more extensive picture of the nature of the
networks under consideration, we have studied the follow-
ing topological properties [3], interest in which has been
triggered by recent studies on the Internet structure
[10,23]: (i) the average distance hdi, measuring the aver-
age minimum number of arcs needed to connect two
given sites; (ii) the average neighbor connectivity knn�k�,
measuring the average degree of vertices neighbor of a
k-degree vertex; (iii) the clustering coefficient c�k� that
measures the degree of interconnectivity of nearest
neighbors of k-degree vertices. More specifically, the
clustering-coefficient ci of a vertex i, whose degree is
ki, is the ratio between the number of edges ei in the
subgraph identified by its neighbors and the maximum
possible number of edges in the subgraph. That is ci �
2ei=ki�ki � 1� [2]. c�k� is obtained by averaging ci for all
vertices with fixed degree k; (iv) the probability distribu-
tion of the betweenness, bi, defined as the total number of
minimum paths between any couple of vertices in the
network passing through vertex i [24]. This quantity gives
a measure of the amount of traffic passing through a
vertex. We studied, as in the aforementioned papers,
both the probability distribution P�b� and its first mo-
ment hbi=N.

Computer simulations of our model show that networks
with power-law distributed fitnesses, and different values
of �, show nearly constant knn�k� and c�k�, just as occurs
for the original BA model [2]. The distribution of be-
tweenness decays as a power law with an exponent �b �
2:2 for � � 2:5 and � � 3, and �b � 2:6 for � � 4. This
is in good agreement with that conjectured in Ref. [18]:
All networks with 3 � � > 2 can be classified in only
two groups according to the value of �b ( �b � 2 and
�b � 2:2, respectively), while for larger values of �,
larger nonuniversal values of �b are reported.

The exponential case behaves in a different way: For a
network of size N � 104, z � 10, and m � N, we find
hdi � 2, hci ’ 0:1, and hbi=N ’ 0:1, but a power-law be-
havior is found for the clustering magnitudes, i.e., hknni /
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k�0:85 and c�k� / k�1:6. The betweenness distribution,
instead, shows an unexpected behavior, giving a power-
law tail with an exponent �b � 1:45 (see Fig. 4). It is
worth remarking that our model having � � 2 is not
included in the previously discussed classification of be-
tweenness exponents [18] (Fig. 3).

Having explored the most basic properties of the model
and some particular realizations, let us comment now on
possible applications.

Email networks [25] are a good candidate to be repre-
sented by our model. In this case growth may occur, but
agents (Email senders) do not have any access or knowl-
edge of the degree of the receivers. Rather than prefer-
ential attachment there should be some intrinsic feature of
the receiver playing a role in the phenomenon.

To further emphasize the utility of this new mecha-
nism, let us mention the following possibility: One can
imagine situations where a Poisson network is seen as SF
just because the exploration method implicitly imple-
ments a probabilistic rule depending on the fitnesses
(this applies, for example, when links are detected by
‘‘picking’’ them one by one, but not if the network is
258702-3
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explored by crawling on it). Let us think, for example, of
the case with threshold type of attaching rule. If only
links with corresponding fitnesses over threshold are
‘‘seen’’ by the exploration method then, for example, an
Erdős-Rényi network with exponentially distributed fit-
nesses can be seen as SF (with, obviously, a connectivity
upper cutoff related to the maximum connectivity of the
underlying network; in cases in which this connectivity is
high, one can generate hubs in the ‘‘apparent’’ SF net-
work). In particular, this scenario could be of relevance to
protein networks. Let us argue why.

The way comprehensive protein networks have been
obtained until now is through a bait-prey method, named
‘‘two-hybrid’’ method: Two proteins are hybridized with
two fragments of a transcription factor (a protein that
binding to a gene promotes its transcription into the
corresponding RNA). The spliced promoter does not
bind to the gene, transcription is inhibited, and the cor-
responding RNA is absent. Yet, if the two proteins inter-
act, they bring together the two promoter fragments
allowing it to bind to the gene and transcription to start.
The presence of the corresponding RNA signals the in-
teraction between the two proteins. We can imagine that
the interaction strength between the two proteins has to be
above a given threshold, else the typical promoter binding
time will be too short for the RNA polymerase to bind to
the gene and initiate transcription. In turn, it is reasonable
to assume that the interaction strength is a function of
some properties of the two proteins (such as, for example,
their hydrophobicity, or their accessible surface area).
This possibility has still to be checked through an analy-
sis of the detailed physics behind the two-hybrid method.

In summary, we have presented an alternative model to
justify the ubiquity of SF networks in nature. It is a
natural generalization of the standard Erdős-Rényi. The
main result is that emergence of SF properties is not
necessarily linked to the ingredients of growth and
preferential attachment. Instead, static structures charac-
terized by quenched disorder (for different disorder dis-
tributions) and threshold phenomena may generate effects
very similar to those measured in the real data. In par-
ticular, we recover the power-law behavior of degree,
betweenness, and clustering-coefficient distributions. We
believe that this model is particularly suitable for situ-
ations where the degree value of nodes is not publicly
available.
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