
Benoı̂t Caillaud and Axel Legay (Eds.):
Foundations of Interface Technologies (FIT’10)
EPTCS 46, 2011, pp. 9–27, doi:10.4204/EPTCS.46.2

c© M.G. Buscemi & H. Melgratti
This work is licensed under the
Creative Commons Attribution License.

Contracts for Abstract Processes in Service Composition∗

Maria Grazia Buscemi
IMT Lucca Institute for Advanced Studies, Italy

m.buscemi@imtlucca.it

Hernán Melgratti
FCEyN, University of Buenos Aires, Argentina

CONICET

hmelgra@dc.uba.ar

Contracts are a well-established approach for describing and analyzing behavioral aspects of web ser-
vice compositions. The theory of contracts comes equipped with a notion of compatibility between
clients and servers that ensures that every possible interaction between compatible clients and servers
will complete successfully. It is generally agreed that real applications often require the ability of ex-
posing just partial descriptions of their behaviors, which are usually known as abstract processes. We
propose a formal characterization of abstraction as an extension of the usual symbolic bisimulation
and we recover the notion of abstraction in the context of contracts.

1 Introduction

Service Oriented Computing is a paradigm that builds upon the notion of services as interoperable ele-
ments that can be dynamically discovered through a public description of their interface, which includes
their behavior or contract. Session types [10, 7, 8] and contracts [11, 4, 5, 2] provide a framework for
checking whether a client is compliant with a service and whether a process can be “safely” replaced
with another one. Both contracts and session types statically ensure the successful completion of every
possible interaction between compatible clients and services.

In a previous work [3] we have addressed an issue related to contracts by developing a formal the-
ory of abstract processes in orchestration languages. An orchestrator describes the execution flow of a
single party in a composite service. The execution of an orchestrator takes control of service invocation,
handles service answers and data flow among the different parties in the composition. Since orchestra-
tors are descriptions at implementation level and may contain sensitive information that should be kept
private to each party, orchestration comes equipped with the notion of abstract process, which enables
the interaction of parties while hiding private information. Essentially, abstract processes are partial de-
scriptions intended to expose the protocols followed by the actual, concrete processes. Typically, abstract
processes are used for slicing the interactions of a concrete process over a fixed set of ports. As a sample
scenario, consider an organization that sells goods that are produced by another company. The process
that handles order requests can be written as follows.

C1
def
= order(desc).askProd〈desc〉.answProd(cost).reply〈cost×1.1〉

The process C1 starts by accepting an order as a message on port order. Then, the received order is for-
warded to the actual producer to obtain a quotation. Finally, the client request is answered by sending the
production cost incremented by a 10%. An abstract process of C1 should at the same time hide the sen-
sitive details of the organization and give enough information to the client for allowing interaction. For

∗Research supported by the EU FET-GC2 IST-2004-16004 Integrated Project SENSORIA

http://dx.doi.org/10.4204/EPTCS.46.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


10 Contracts for Abstract Processes

instance, the following abstract process (where τ stands for a silent, hidden action) shows the interaction
of C1 with a client.

AC1

def
= order(desc).τ.τ.reply〈cost〉

Another feature of abstract processes is to hide particular values and internal decisions made by concrete
processes. Consider, e.g., the following process for authorizing loans.

C2
def
= request(amount,salary).if (salary > amount/50) then refuse〈〉 else approved〈〉

Suppose also that the bank does not want to publicly declare its policy, under which a loan is approved
only when the requested amount is at most 50 times the solicitor’s salary. This can be achieved by
providing an abstract process where some values are opaque (noted with �), i.e., not specified. An
abstract process of C2 can be as below.

AC2

def
= request(amount,salary).if salary >� then refuse〈〉 else approved〈〉

Note that the conditional process in AC2 has to be thought of as an internal, non-deterministic choice
in which the bank may decide either to approve or to refuse the application. In other words, the client
cannot infer from AC2 the actual decision that the bank will take. In general, we require an abstraction
to provide enough information to decide whether a client and a service are compliant, i.e., whether their
interaction will allow them to complete their execution or not.

In [3] we have characterized the valid abstractions of a concrete orchestration and we have shown
that valid abstractions preserve compliance. More precisely, we have formally defined suitable abstrac-
tions of concrete processes as a relation among abstract and concrete processes, called simulation-based
abstraction relation, which is an extension of the usual symbolic bisimulation [9, 1].

A main goal of the present paper is to investigate the relation between simulation-based abstraction
and contracts. In particular, we aim at recovering the notion of abstraction in the context of the theory
of contracts developed in [5]. Contracts are types describing the external, visible behavior of a service.
Contracts come equipped with a notion of service compatibility that characterizes all the valid clients of
a service, i.e., the clients that terminate any possible interaction with the service. In this sense, contracts
can be used to statically ensure that the composition of two services is safe. Contract compatibility
induces a preorder relation (≺) among contracts that characterizes the safely replacement of services.
For instance, considering two contracts σ1 and σ2, if σ1 ≺ σ2 we know that any valid client of σ1 is
also a valid client of σ2, hence σ1 can be substituted by σ2 in any context. A contract for the service C1
corresponding to the selling company example introduced above can be written as follows.

σ1
def
= order.askProd.answProd.reply

Note that σ1 describes the interactions of C1 with both the client and the producer. Hence, we would
like to use the idea of abstraction in the context of contracts to obtain slices of the behaviour of a service
and to reason about the interactions of a service with a particular partner, i.e., we would like to use σ1 to
conclude that any client behaving as ρ1 = order.reply is compliant with the role client of the service σ1.

More in detail, given a contract σ and a role, defined in terms of a set of visible actions V , the
abstraction AV (σ) of σ can be thought as the contract that hides all the actions in σ that do not appear
in V . For instance, the abstraction of σ1 for the role client will be as follows

A{order,reply}(σ1)
def
= order.reply



M.G. Buscemi & H. Melgratti 11

Another key property of the abstraction type is to turn guarded choices into internal choices, if some
guards are hidden. For instance, consider the process P ≡ a().c〈〉+ b().d〈〉. The type of P is σ =
a.c+b.d. If we hide a, the abstraction type of σ is

A{b,c,d}(σ)
def
= c⊕b.d

The main technical contributions of this work are the following. Firstly, we define abstraction as a
function AV ( ) over contracts and show that our definition behaves well with respect to safe replacement,
i.e., AV (σ) can be substituted by AV (ρ) whenever σ can be substituted by ρ . Technically speaking, this
fact amounts to proving that σ ≺ ρ implies AV (σ) ≺ AV (ρ), when taking ≺ as the strong subcontract
preorder.

Then, we show that contract abstraction can be used on top of contracts to reason about slices of a
concrete service. That is, given a suitable type system for assigning contracts to concrete services, the
type of a particular slice of a concrete service can be defined simply as the abstraction of the original
contract. Formally, we show that any consistent type system enriched with a typing rule that assigns any
slice of a concrete service with the corresponding contract abstraction is a consistent type system. This
result allows us to use abstraction over contracts to reason about slices of a concrete service, e.g., we can
use A{order,reply}(σ1) to safely reason about the interactions of C1 with a client.

Finally, we show that contract abstraction matches simulation-based abstraction. Consider the simu-
lation-based abstraction Q of P that characterizes a particular slice of P. Assume that Q has contract σ

and consider any compliant client C of Q (namely, the type of C is compliant with σ ). Our results ensure
that C is also compliant with the slice of P described by Q.

2 Abstract processes

In this section we recall the language of abstract processes proposed in [3] along with a notion of ab-
straction relation over processes, which is a generalisation of [1]. First, we introduce the language of
abstract processes, which is a version of value-passing CCS [12] with input guarded choices and con-
ditional statements but without recursion plus the possibility of having opaque definitions. An opaque
element is meant to hide the precise value of an element: for instance, an opaque assignment to a data
variable hides the assigned value. We assume the set of data values to be finite so that the present version
of the calculus can be encoded into the fragment without value-passing. We refer the interested reader to
[12] for a more detailed treatment.

Syntax We assume an infinite denumerable set of names N that is partitioned into a set of port names
X , a set of finite data variables V , and a finite set of data constants C . We write the special name � to
denote an opaque element, and we assume � 6∈N . We let η range over N ∪�, u,v, . . . range over V ,
a,b,c, . . . range over C ∪ {�}, and x,y,z, . . . range over X . We let m,n, . . . range over V ∪ C ∪ {�}.
We write η̃ for a tuple of names. Substitutions, ranged over by σ , are partial maps from V onto V ∪
C ∪ {�}. Domain and co-domain of σ , noted dom(σ) and cod(σ), are defined as usual. By mσ we
denote σ(m) if m ∈ dom(σ), and m otherwise.

The set of abstract processes P is given by the following grammar:

P ::= 0
∣∣ P |P

∣∣ τ.P
∣∣ x〈m̃〉.P

∣∣ x1(ṽ1).P+ . . .+ xn(ṽn).P
∣∣ if m = n then P else P

As usual, 0 stands for the inert process, P |P for the parallel composition of processes, τ.P for the process
that performs a silent action and then behaves like P, x〈m̃〉.P for the process that sends the message



12 Contracts for Abstract Processes

m over the port x and then becomes P. The process x1(ṽ1).P1 + . . .+ xn(ṽn).Pn denotes an external
choice in which some process xi(ṽi).Pi is chosen when the corresponding guard xi(ṽi) is enabled. The
conditional process if m = n then P else P′ behaves either as P if m and n are syntactically equivalent,
or as P′ otherwise. Opaque names can appear either as subjects of input and output prefixes, values of
output prefixes, or parts of conditions in if then else processes, but not as a bound variables.
A conditional statement becomes an internal choice when at least one value in the condition is opaque;
similarly, a guarded choice becomes an internal choice when the subject of the input guard is the opaque
name.

We let P,Q,R . . . range over abstract processes and we simply write process to denote an abstract pro-
cess. By concrete processes we denote processes not containing opaque names. Note that in x1(ṽ1).P1 +
. . .+ xn(ṽn).Pn, the data variables vi are bound, for all i. We use the standard notions of free and bound
names of processes, noted respectively as fn(P) and bn(P), and α-conversion on bound names. We as-
sume that the sets of free and bound names are disjoint and that the bound names of a process are all
distinct from each other. As usual, a process P is closed if fn(P)∩V = /0. We also adopt the usual
convention of omitting trailing 0’s.

2.1 Symbolic semantics

For the purpose of this paper we only recall the symbolic labeled transition relation over processes, while
we report in Appendix A the non-symbolic semantics along with a proof that the two semantics are
equivalent.

We define structural congruence,≡, as the least congruence over processes that is closed with respect
to α-conversion and such that the set of process is a monoid with respect to parallel composition | (being
0 the neutral element).

We let symbolic actions λ range over the silent move, input and free output and we let conditions M
range over a language of Boolean formulas:

λ ::= τ | x(ṽ) | x〈m̃〉 M ::= true | false | m = n | m 6= n |M∧M |M∨M.

As usual, for λ 6= τ , subj(λ ) and obj(λ ) denote the subject and the object of λ respectively. The notions
of free names fn(·), bound names bn(·), and α-conversion over actions and conditions are as expected,
considering that the occurrences of the names vi’s are bound in x(ṽ) and that conditions have no bound
names. For X a process or an action, Xσ denotes the expression obtained by replacing in X each data
variable u ∈ fn(X) with uσ , possibly α-converting to avoid name capturing. By Mσ we mean the condi-
tion obtained by simultaneously replacing in M each data variable v ∈ f n(M) with vσ . A condition M is
ground if M does not contain data variables. The evaluation Ev(M) of a ground condition M into the set
{true, false} is defined by extending in the expected homomorphical way the following clauses:

Ev(true) = true Ev(a = a) = true Ev(a = b) = true if {a,b}∩� 6= /0
Ev(false) = false Ev(a = b) = false if a,b 6=� Ev(a 6= b) = true if {a,b}∩� 6= /0

A substitution σ respects M, written σ |= M, if Mσ is ground and Ev(Mσ) = true. A condition M is
consistent if there is a substitution σ such that σ |= M. A condition M logically entails a condition N,
written M⇒ N, if, for every σ , σ |= M implies σ |= N. For instance, v = a∧u 6= b∧ v = u⇒ a 6= b and
true⇒ u = a∨ u 6= a. For λ a symbolic action and σ a substitution such that every data variable in λ



M.G. Buscemi & H. Melgratti 13

(S-TAU)
τ.P

true,τ−−→ P
(S-OUT)

x〈m̃〉.P true,x〈m̃〉−−−−→ P
(S-IN)

x1(ṽ1).P1 + . . .+ xn(ṽn).Pn
true,xi(ṽi)−−−−→ Pi

(S-PAR)
P

M,λ−→ P′ bn(λ )∩ fn(Q) = /0

P | Q M,λ−→ P′ | Q
(S-IF)

P
M,λ−→ P′ m = n∧M consistent

if m = n then P else Q
m=n∧M,λ−−−−→ P′

(S-STR)
P≡ Q Q

M,λ−→ Q′ Q′ ≡ P′

P
M,λ−→ P′

(S-ELSE)
Q

M,λ−→ Q′ m 6= n∧M consistent

if m = n then P else Q
m 6=n∧M,λ−−−−→ Q′

(S-CHOICE-1)

P
M,λ−→ P′ � ∈ {m,n}

if m = n then P else Q
M,λ−→ P′

(S-CHOICE-2)

Q
M,λ−→ Q′ � ∈ {m,n}

if m = n then P else Q
M,λ−→ Q′

(S-CHOICE-3) x1(ṽ1).P1 + . . .+�(ṽi).Pi + . . .+ xn(ṽn).Pn
true,τ−−→ Pi

Table 1: Symbolic LTS for processes

belongs to dom(σ), we write λσ to denote the following action:

λσ
def
=


τ if λ = τ

x〈a1, . . . ,ak〉 if λ = x〈n1, . . . ,nk〉 and ai = niσ for i = 1, . . . ,k
x〈a1, . . . ,ak〉 if λ = x(v1, . . . ,vk) and ai = σ(vi) for i = 1, . . . ,k

By λ = λ ′ we denote the following condition:

λ = λ
′ def
=


true if λ = λ ′ = τ or λ = λ ′ = x(ṽ)
m̃ = ñ if λ = x〈m̃〉 and λ ′ = x〈ñ〉
false otherwise

For M a condition and D = {M1, . . . ,Mn} a finite set of conditions, D is a M-decomposition if M ⇒
M1∨ . . .∨Mn. For instance, {u = a,u 6= a} is a true-decomposition.

The symbolic labeled transition relation
M,λ−→ over abstract processes is the least relation satisfying

the inference rules in Table 1. Intuitively, the condition M in the label M,λ of a transition collects the
Boolean constraints on the free data variables of the source process necessary for action λ to take place.
For instance, the rules for prefixes say that each prefix can be consumed unconditionally, while rules (S-
IF) and (S-ELSE) make the equalities or inequalities of the conditional statements explicit. For instance,
the process P≡ x(v).if v = a then y〈v〉 else 0, after a first step, can make a transition under condition
that variable v is equal to a:

P
true,x(v)−−−→ if v = a then y〈v〉 else 0

v=a,y〈v〉−−−→ 0

As another example, consider the process R≡�(τ).P+x(v2).Q. By rule (S-CHOICE-3), a possible move

for R is R
true,x(v2)−−−−→ Q, where the input guard is executed. Another possibility is R

true,τ−−→ P, where R makes
an internal choice.



14 Contracts for Abstract Processes

Non-symbolic semantics. The following definition corresponds to the original semantics proposed
in [3]. (Details are in Appendix A.)

Definition 1 (Non-symbolic semantics). Let P, Q and λ be closed terms. P λ−→ Q iff P
M,λ ′−−→ P′, σ |= M,

λ = λ ′σ and Q = P′σ .

2.2 Simulation-based abstraction

Definition 2 (visible names). Given a set of visible names V and a symbolic action λ , the set of visible
received names of λ , written vn(λ )V , is defined as follows:

vn(λ )V
def
=

{
ũ if λ = x(ũ) and x ∈V

/0 otherwise

We will omit the subscript V when it is clear from the context.

Definition 3 (simulation-based abstraction). The family R = {RV
M}M of process relations is a family of

simulation-based abstraction relations, indexed over the set of conditions M, iff for all M and PRV
MQ:

1. If Q
N,λ−→ Q′ and bn(λ )∩ fn(P,Q,M) = /0 then there exists a M∧N-decomposition D s.t. ∀M′ ∈ D

there exists P
N′,λ ′−→ P′, with M′⇒ N′∧λ|V = λ ′ and P′RV∪vn(λ )

M′ Q′.

2. if P
N,λ−→ P′ and bn(λ )∩ fn(P,Q,M) = /0 then there exists a M∧N-decomposition D s.t. ∀M′ ∈ D

there exists Q
N′,λ ′−→ Q′ with M′⇒ N′|V ∧λ = λ ′|V and P′RV∪vn(λ ′)

M′ Q′.

A process P is a simulation-based abstraction of a process Q with respect to a set V ⊆N , written P ∝V Q,
if there is an abstraction relation RV

true s.t. PRV
true Q, with fn(P)⊆V .

Condition 1 above states that the abstraction P simulates the concrete process Q up to hidden names.
Note that we require λ|V = λ ′ instead of the standard definition of symbolic bisimulation that imposes
the exact matching of action labels. Condition 2 states that the (concrete) process Q can simulate its
abstraction P if we forget about the constraints involving hidden values. That is, if P proposes a move
with label 〈N,λ 〉 we allow Q to mimic the behavior for a more restrictive condition N′. (Actually, N′

may contain several additional constraints involving hidden names.) Note that this makes the abstraction
relation not symmetric. For instance, consider the two processes below:

P≡ if v =� then y〈v〉 else z〈v〉 Q≡ if v = a then y〈v〉 else z〈v〉.

It holds that P ∝V Q for V = {v,y,z}. Indeed, when considering the transition P
true,y〈v〉−−−→ 0, we can take

Q
v=a,y〈v〉−−−→ 0 since true⇒ (v = a)|V ∧y〈v〉= y〈v〉|V . Conversely, P 6∝V Q′ ≡ if a = a then y〈v〉 else y〈v〉

because P
true,z〈v〉−−−→ 0 but Q′ 6M,z〈v〉−−→. We remark that the relation ∝ is a simulation (since the abstract process

simulates the concrete one) but, in general, is not either a bisimulation or a similarity.

3 Theory of contracts

This section summarizes the basics about the theory of contracts proposed in [4, 5]. Let N be a set of
names, the set of contracts Σ is given by the following grammar.



M.G. Buscemi & H. Melgratti 15

α ::= a | a a ∈N
σ ::= 0 | α.σ | σ ⊕σ | σ +σ

The contract 0 describes a service that does not perform any action. The contract α.σ stands for a
service that is able to execute α and then continues as σ . The contract σ +ρ describes a service that lets
the client decide whether to continue as σ or as ρ , while σ⊕ρ stands for a service that internally decides
whether to continue as σ or ρ . As usual, trailing 0’s are omitted. Contracts will be considered modulo
associativity of each sum operator. We usually write summations σ1+σ2+ . . .+σn and σ1⊕σ2⊕ . . .⊕σn

respectively as Σi∈{1,...,n}σi and
⊕

i ∈ {1, . . . ,n}σi. By convention, Σi∈ /0σi = 0.
In this paper we restrict our attention to finite contracts, although the presentation in [5] deals also

with infinite contracts in the form of infinite trees that satisfy regularity and a contractivity condition.
The operational semantics of contracts is given in terms of the LTS defined below.

Definition 4 (Transition). Let σ 6α7−−→ be the least relation such that:

0 6α7−−→
α 6= β

β .σ 6α7−−→

σ 6α7−−→ ρ 6α7−−→

σ ⊕ρ 6α7−−→

σ 6α7−−→ ρ 6α7−−→

σ +ρ 6α7−−→

The transition relation of contracts, noted α7−→, is the least relation satisfying the rules

α.σ
α7−→ σ

σ
α7−→ σ ′ ρ

α7−→ ρ ′

σ +ρ
α7−→ σ ′⊕ρ ′

σ
α7−→ σ ′ ρ 6α7−−→

σ +ρ
α7−→ σ ′

σ
α7−→ σ ′ ρ

α7−→ ρ ′

σ ⊕ρ
α7−→ σ ′⊕ρ ′

σ
α7−→ σ ′ ρ 6α7−−→

σ ⊕ρ
α7−→ σ ′

and closed under mirror cases for the external and internal choices.

The operational semantics for contracts handles choices differently from the standard CCS transition
system. Traditional CCS rules for a choice commits to the execution of a branch as soon as it performs
the first action of the branch, e.g., a.b+ a.c reduces to both b and c. Differently, the contract a.b+ a.c
has only the continuation b⊕ c, i.e., the operational semantics does not provide any information about
the actual choice that has been taken, in this way the environment is aware of the fact that the system will
internally decide whether to behave as b or c. Consequently, for any action α and contract σ there is at
most one contract σ ′ such that σ

α7−→ σ ′. Let σ
α7−→ σ ′, we write σ(α) for the unique continuation of σ

after a (i.e., σ(α) = σ ′). We use init(σ) to denote the set of actions that can be immediately emitted
by σ , i.e., init(σ) = {α | ∃σ ′s.t.σ α7−→ σ ′}.
Definition 5 (Ready sets). Let P f (N ∪N ) be the set of finite parts of N ∪N , called ready sets. Let
also σ ⇓ R be the least relation between contracts σ ∈ Σ and ready sets R in P f (N ∪N ) such that

0 ⇓ /0 α.σ ⇓ {α}
σ ⇓ R ρ ⇓ S

σ +ρ ⇓ R∪S

σ ⇓ R

σ ⊕ρ ⇓ R

ρ ⇓ R

σ ⊕ρ ⇓ R

As usual we make a = a. For a given ready set R, co(R) stands for its complementary ready set, i.e.,
co(R) = {α | α ∈ R}.

3.1 Compliance and subcontract relation

Compliance formally states when the behavior of a client complies with the behavior of a service. It
is assumed that the behavior of both the client and the service are described by contracts. There is a
reserved special action e (for “end”) that can occur in client contracts and that represents the ability of
the client to successfully terminate. Compliance requires that, whenever no further interaction is possible
between the client and the service, the client be in a state where this action is available.

Definition 6 (Strong compliance). C is a strong compliance relation if (ρ,σ) ∈ C implies that



16 Contracts for Abstract Processes

1. ρ ⇓ R and σ ⇓ S implies either e ∈ R or co(R)∩S 6= /0, and

2. ρ
α7−→ ρ ′ and σ

α7−→ σ ′ implies (ρ ′,σ ′) ∈ C .
We use a to denote the largest strong compliance relation.
Once the precise notion of compliance between clients and services has been established, the notion

of strong subcontract is defined. A contract σ is a strong subcontract of another contract ρ when all
clients compliant with σ are also compliant with ρ . This notion is coinductively defined as follows.
Definition 7 (Strong subcontract). S is a strong subcontract relation if (σ ,ρ) ∈S implies that

1. ρ ⇓ R implies that there exists S⊆ R such that σ ⇓ S, and

2. ρ
α7−→ ρ ′ implies σ

α7−→ σ ′ and (σ ′,ρ ′) ∈S .
We denote with v the largest strong subcontract relation.
It has been shown in [11] that v is the must testing preorder as defined by [6].

3.2 Assigning contracts to ordinary processes

Contracts are intended as types for describing the behavior of concrete implementations. It is assumed
that the observable behavior of concrete implementations is described by a labeled transition so that
P

µ−→ P′ describes the evolution of a process P that performs an action µ and then becomes P′. The
performed action µ can be either a visible action (e.g., an input a or an output a) or an internal, invisible
action τ that the process P executes autonomously. Then, it is assumed that clients and servers interact
by synchronizing over complementary actions, as it is formally stated below.
Definition 8 (Strong process compliance). Let P||Q→ P′||Q′ be the least relation defined by the rules:

P τ−→ P′

P||Q→ P′||Q

Q τ−→ Q′

P||Q→ P||Q′
P α−→ P′ Q α−→ Q′

P||Q→ P′||Q′
The reflexive and transitive closure of→ is written⇒; P||Q→ stands for P||Q→ P′||Q′ for some P′

and Q′. We write P||Q 9 if not P||Q→. A computation of P||Q is maximal if either it is infinite or there
exists Pn||Qn such that P||Q⇒ Pn||Qn 9. The client P is strongly compliant with the service Q, written
P a Q, if for every configuration Pi||Qi of every maximal computation there exists j ≥ i such that either
Pj

α−→ Pj+1 for some α or Pj 6
τ−→ and Pj

e−→.
It is assumed that a type system is given to check that a process P implements the contract σ . This is

expressed by the judgment ` P : σ .
Definition 9. A type system is consistent if, whenever ` P : σ , we have

1. P τ−→ P′ implies ` P′ : σ ′ and σ v σ ′;

2. P α−→ P′ implies ` P′ : σ ′, σ
α−→, and σ(α)v σ ′;

3. P diverges implies σ ⇓ /0;

4. P 6 τ−→ implies σ ⇓ R and R⊆ {α | P α−→}.
For consistent type systems, the following Lemma has been proved.

Lemma 1 (Subject reduction). If ` P : ρ and ` Q : σ and ρ a σ and P||Q −→ P′||Q′, then ` P′ : ρ ′ and
` Q′ : σ ′ and ρ ′ a σ ′.

It has been shown that consistent type systems are sound with respect to compliance, i.e., two pro-
cesses are guaranteed to be compliant if their types are compliant, as formally stated by the following
result.
Theorem 1. If ` P : ρ and ` Q : σ and ρ a σ then P a Q.



M.G. Buscemi & H. Melgratti 17

4 Abstraction for contracts

We start by introducing a general definition of the notion of slicing or abstraction of concrete processes.
We consider the language of concrete processes enriched with an operator that transforms any action
over a hidden channel into an internal action. The abstraction operator is defined as follows

AV [P]

where V ⊆N is the set of visible actions.
The process AV [P] is a slice of P that behaves as P everytime P performs an action over a visible port,

while it performs an internal action when the subject of the action executed by P is a hidden channel.
Consequently, we assume that the labeled transition system for processes is extended with the following
two rules

P α−→ P′ α ∈V

AV [P]
α−→AV [P′]

P α−→ P′ α 6∈V

AV [P]
τ−→AV [P′]

In addition, we define the effect of applying abstraction AV over a contract σ that hides all actions
of σ that are not in V .

Definition 10 (Contract abstraction). The abstraction AV of a contract σ , written AV (σ), is inductively
defined as follows:

AV (0) = 0
AV (α.σ) = α.AV (σ) if α ∈V
AV (α.σ) = AV (σ) if α /∈V

AV (Σi∈Iαi.σi) = Σ j∈Jα j.AV (σ j)⊕
⊕

k∈K AV (σk)
with J = {i ∈ I|αi ∈V} and K = {i ∈ I|αi 6∈V}

AV (
⊕

i∈I αi.σi) =
⊕

i∈I AV (αi.σi)

Previous rules state that applying abstraction to a contract is not just removing the hidden actions.
In fact, the abstraction of a contract accounts for the fact that a concrete process may commit a choice
when executing a hidden action. The most interesting rule is the one for external choices. Note that
the abstraction for σ = Σi∈Iαi.σi corresponds to a contract that internally chooses whether to execute
an internal action, i.e., some αk 6∈ V , or to leave the client to select one of the available visible actions
α j ∈V .

Example 1. Consider the following variant of the service that handles loan requests described in the
Introduction. In this variant, the service asks a third-party service for a recommendation based on client
historical records. The third-party service responds back by sending either a positive or a negative
feedback. A contract describing the behavior of the concrete service can be written as follows.

σ = request.askadvice.(negative.refused+positive.approved)

The corresponding contract describing the interaction of the service with the client will be

A{request,refused,approved}(σ) = request.(refused⊕approved)

This abstraction states clearly that the loan service accepts a client request and then decides in-
ternally whether to approve or to refuse it. The internal choice in the abstraction reflects the fact that



18 Contracts for Abstract Processes

a service may commit a choice when it interacts over a hidden channel (e.g., it commits to refuse the
request when it receives a negative feedback from the third party).

The following three results state properties for contract abstraction that will be used for proving main
results of the paper. The next proposition relates the ready sets of the abstraction AV (σ) with the ready
sets of σ .

Proposition 1. AV (σ) ⇓ S if and only if σ
α17−→ σ1 . . .

αn7−→ σn, α1, ..,αn 6∈V and σn ⇓ S′ with S′∩V = S.

Proof. ⇒) The proof follows by straightforward structural induction on σ . ⇐) By induction on the
length of the derivation. Base case follows by case analysis on the structure of σ . Induction step follows
by case analysis on the structure of σ and inductive hypothesis.

The following proposition characterizes the continuation AV (σ)(α) of an abstraction.

Proposition 2. AV (σ)
α7−→ ρ if and only if α ∈V , ρ =

⊕
ρi∈Alc(σ ,α,V )AV (ρi) with

Alc(σ ,α,V ) = {σ ′ | σ β17−→ σ1 . . .
βn7−→ σn

α7−→ σ
′ and β1, . . . ,βn 6∈V} 6= /0.

Proof. ⇒) The proof follows by straightforward structural induction on σ . ⇐) By induction on the
length of the derivation. Base case follows by case analysis on the structure of σ . Induction step follows
by case analysis on the structure of σ and inductive hypothesis.

The result below shows that abstraction preserves continuations under visible actions.

Proposition 3. Let σ
α7−→ and α ∈V . Then, AV (σ)

α7−→AV (σ(α)).

Proof. The proof follows by straightforward structural induction on σ .

The following proposition ensures that abstraction preserves subcontract relation or, in other words,
states that if one contract can be safely replaced by another contract, then any possible slice of the original
contract can be safely replaced by the corresponding slice of the new contract.

Proposition 4. If σ v ρ then AV (σ)vAV (ρ).

Proof. The proof follows by showing that S = {(AV (σ),AV (ρ))|σ v ρ} is a subcontract relation. Due
to space limitation we omit details here. (We report proof in Appendix B).

The following two propositions state properties about the continuations of contract abstractions.
These two results are used in the proof of the main result of the following section (Proof details can
be found in Appendix B).

Proposition 5. If σ(α)v ρ and α 6∈V then AV (σ)vAV (ρ).

Proposition 6. If σ(α)v ρ and α ∈V then AV (σ)(α)vAV (ρ)

Finally, we show how to extend a consistent type system in order to be able to type processes that
use abstraction. This is achieved by extending any consistent type system for concrete processes with
the following typing rule

(TYPEABSTRACTION)
` P : σ

`AV [P] : AV (σ)

Next result shows that the above rule preserves consistency.



M.G. Buscemi & H. Melgratti 19

Proposition 7. A consistent type system enriched with rule (TYPEABSTRACTION) results in another
consistent type system.

Proof. Let ` P : σ . As regards consistency condition (1), assume AV [P]
τ−→AV [P′], then either P τ−→ P′

or P α−→ P′ with α 6∈V . When P τ−→ P′, consistency ensures that ` P : σ ′ and σ v σ ′. By Proposition 4,
AV (σ)vAV (σ

′). If P α−→ P′ then by consistency ` P : σ ′ and σ(α)v σ ′. By Proposition 5, AV (σ)v
AV (σ

′). As regards consistency condition (2), assume that P α−→ P′ and α 6∈V . By consistency, ` P : σ ′,
σ(α)v σ ′. By Proposition 6, AV (σ)(α)vAV (σ

′). As regards consistency condition (3), assume that
AV [P] diverges. Then either P diverges or P has an infinite derivation P α1−→ P1 . . .

αn−→ Pn
αn+1−→ . . . with

αi = τ or αi 6∈ V . If P diverges, then P ⇓ /0. Therefore, AV [P] ⇓ /0. Otherwise, assume P has an infinite
derivation P α1−→ P1 . . .

αn−→ Pn
αn+1−→ . . . with αi = τ or αi 6∈ V . By consistency, this implies that there exists

an infinite derivation for the contract σ
α17−→ σ1 . . .

αn7−→ Pn
αn+17−−→ . . . but this is not possible, since we are

considering finite contracts. Finally, as regards consistency condition (4), assume that AV [P] 6
τ7−→. Then,

P 6 τ7−→ and P 6α7−−→ for all α 6∈ V . We derive σ ⇓ R where R ⊆ {α | P α−→}. Moreover R ⊆ V since P 6α7−−→
for all α 6∈V . By proposition 1, AV [P] ⇓ R. Since, α ∈ R implies α ∈V , P α−→ implies AV [P]

α−→. Hence,
R⊆ {α | AV [P]

α−→}.

5 Contracts for abstract processes

In this section we aim at bridging the theories of processes and contracts presented in the previous
sections. We remark that although the language of abstract processes is a kind of value-passing CCS, the
remaining of this section will consider just finite domains for values, and hence we implicitly will refer
to the usual encoding of value-passing CCS into CCS (i.e., we will refer a channel and a tuple of values
just as a single action). Moreover, we say an action is a visible action if its subject is a visible name.

We define a type system that assigns contracts to processes and we prove that the proposed type
system is consistent according to Definition 9. We use judgments of the form ` P : σ . We report the
typing rules in Table 2 (Rules are analogous to the type system for WS-BPEL proposed in [5]). The main
idea behind the type system is that types can contain neither τ’s nor parallel composition, and that the type
of a guarded choice must be an internal choice if its guards are τ’s. In this sense, rule (TAU) is as expected.
On the other side, rule (PREF) allows recording in the contract any non-τ prefix. Rules (SUM) and (PAR)
are the most interesting and account for assigning to both external choice and parallel composition a
contract that is a suitable internal choice. Specifically, the type of a choice is obtained as an internal
choice between the branches with τ’s as prefixes and an external choice of visible prefixed branches. For
instance, consider the process P≡ a.P1 +b.P2 + τ.P3. It holds that ` P : (a.σ1 +b.σ2)⊕σ3 for ` P1 : σ1,
` P2 : σ2, and ` P3 : σ3. Rule (PAR) exploits an idea that reminds the expansion lemma, namely the
executions performed by a parallel composition P|Q are the sum of the executions of Pi |Q and P |Q j,
being Pi and Q j all the continuations of P and Q, respectively. Note that we do not consider the executions
resulting from synchronizations of P and Q over complementary actions, as such synchronizations within
the same orchestrator are not allowed. Akin to rule (SUM), the type of a parallel composition is the
external choice of the non-τ prefixed alternatives and the internal choice of the branches whose prefixes

are τ’s. Note that rule (PAR) requires to consider all possible computations P λi−→ Pi and Q
β j−→ Q j and,

consequently, this rule is well-defined when we have a finite number of such computations. We remark
that the language for concrete and abstract processes that we are considering ensures us that all processes
are finitely branching, hence rule (PAR) is well-defined for our target language.



20 Contracts for Abstract Processes

(NIL) ` 0 : 0

(TAU)
` P : σ

` τ.P : σ

(PREF)
` P : σ λ 6= τ

` λ .P : λ .σ

(SUM)
λi 6= τ ` Pi : σi ` Q j : ρ j

` Σi∈Iλi.Pi +Σ j∈Jτ.Q j : Σi∈Iλi.σi⊕
⊕

j∈J ρ j

(PAR)
` Pi|Q : σi for all P λi−→ Pi ` P|Q j : ρ j for all Q

β j−→ Q j

` P|Q : (Σλi 6=τλi.σi +Σβ j 6=τβ j.ρ j)⊕
⊕

λi=τ σi⊕
⊕

β j=τ ρ j

where:

{
P λi−→ Pi

Q
β j−→ Q j

(COND1)
` P : σ ` Q : ρ � ∈ {m,n}

` if m = n then P else Q : σ ⊕ρ

(COND2)
` P : σ � 6∈ {m,n} m = n

` if m = n then P else Q : σ

(COND3)
` Q : ρ � 6∈ {m,n} m 6= n

` if m = n then P else Q : ρ

Table 2: Type System for Contracts

As an example, ` (a+τ) |(b+c) : (a.σb+c+b.σa+τ +c.σa+τ)⊕σb+c. Rules (COND1), (COND2), and
(COND3) concern the type of conditional statements. More in detail, rule (COND1) applies if �∈ {m,n}.
In this case, the type of the if-then-else is the internal choice between the type of the two possible
alternatives. Conversely, rules (COND2) and (COND3) state that m and n are both visible, then the type
assigned is the type of the only possible branch.

Theorem 2. The type system ` P : σ shown in Table 2 is consistent.

Proof. The proof is by induction on the structure of P. See appendix B.

Next result states an auxiliary property that will be used when proving the main result of this section.
It states that the reductions of an abstraction of a concrete process are in one-to-one correspondence with
the visible reductions of the concrete process.

Proposition 8. Let P and Q be two closed processes such that P ∝V Q.

1. AV [Q]
α−→AV [Q′] implies P α−→ P′ and P′ ∝V Q′.

2. P α−→ P′ implies AV [Q]
α−→AV [Q′] and P′ ∝V Q′.

Proof. See Appendix B.



M.G. Buscemi & H. Melgratti 21

The following result formalizes the relation among abstractions and strong compliance. It basically
states that whenever a client P has a type that is compliant with the type of an abstract process Q which
is an abstraction of a concrete process R, then P correctly interacts with the filtered process AV [R]

Theorem 3. Let P : σ , Q : ρ and Q ∝V R. If σ a ρ then P aAV [R].

Proof. The proof follows the line of the proof of Theorem 4.5 in [5]. Akin to [5], we reserve a special
action e (for “end”) that can occur in client contracts and that represents the ability of the client to
successfully terminate. Then we require that, whenever no further interaction is possible between the
client and the service, the client be in a state where this action is available.

First, we notice that, by Proposition 8, any computation P||AV [R]→ P′||AV [R′] has a corresponding
computation P||Q→ P′||Q′ with Q′ ∝V R′ . Because of Lemma 1, we only need to consider maximal
computations, i.e., cases in which P||AV [R] 6−→ or P||AV [R] diverges (equivalently, cases in which P||Q 6−→
or P||Q diverges for Q ∝V R). Let P||Q 6−→ and assume, by contradiction, that P 6 e−→. From σ a ρ we
know that ρ ↓ R implies R 6= /0 (by Definition 6). From P||Q 6−→ , we have that whenever P α−→ we have
Q 6α−→ and hence AV [R] 6

α−→. Consequently, {α|P α−→}∩co({α|Q α−→}) = /0. From consistency condition
(4) there exist R and S such that ρ ⇓ R and σ ⇓ S and co(R)∩ S = /0 and e 6∈ R, but this is absurd from
the hypothesis that ρ a σ . Hence P e−→. Assume P||Q diverges. First, note that P cannot diverge since
consistency condition (3) requires that ρ ⇓ /0. Then, the only possibility is P 6−→ and Q diverges. By
consistency condition (3) we derive σ ⇓ /0, hence ρ ⇓ R implies e ∈ R. From consistency condition (4)
we conclude P e−→.

6 Conclusions

In this paper we have investigated the relation among the theory of contracts and the hiding of selected
actions. We have shown that we can recover the notion of abstraction as a kind of filter over processes
and we accommodate this notion into the theory of contracts for web services when considering finite
contracts. We remark that the current definition for abstraction is not suitable for handling infinite con-
tracts. In fact, it turns out that abstraction may not preserve the contractivity condition of contracts. In
order to see this, consider the contract σ = b+a.b+a.a.b+a.a.a.b+ . . .+a.a.a . . . that accounts for an
infinite execution of a’s. Contract σ can be written with the recursive expression rec x = a.x+b. Then,
by taking the current definition of abstraction, A{b}(σ) will be associated with the recursive equation
rec x = x+b, for which contractivity does not hold. We left as future work the definition of abstraction
for infinite contracts.

Acknowledgements The authors thank anonymous reviewers for their helpful comments on an earlier
version of this paper.

References
[1] M. Boreale & R. De Nicola (1996): A symbolic semantics for the Pi-calculus. Inform. and Comput. 126(1),

pp. 34–52.
[2] M. Bravetti & G. Zavattaro (2007): Towards a Unifying Theory for Choreography Conformance and Contract

Compliance. In: Software Composition, Lect. Notes in Comput. Sci. 4829, Springer Verlag, pp. 34–50.
[3] M.G. Buscemi & H. Melgratti (2009): Abstract Processes in Orchestration Languages. In: ESOP, Lect.

Notes in Comput. Sci. 5502, Springer Verlag, pp. 301–315.



22 Contracts for Abstract Processes

(TAU) τ.P
τ

� P (OUT) x〈ã〉.P
x〈ã〉
� P (IN) x1(ṽ1).P1 + . . .+ xn(ṽn).Pn

xi〈ã〉
� Pi{ã/ṽi}

(IF)
P

α

� P′

if a = a then P else Q
α

� P′
(ELSE)

Q
α

� Q′ a 6= b

if a = b then P else Q
α

� Q′

(PAR)
P

α

� P′

P | Q
α

� P′ | Q
(STR)

P≡ Q Q
α

� Q′ Q′ ≡ P′

P
α

� P′
(CHOICE-1)

P
α

� P′ � ∈ {m,n}

if m = n then P else Q
α

� P′

(CHOICE-2)

Q
α

� Q′ � ∈ {m,n}

if m = n then P else Q
α

� Q′

(CHOICE-3) x1(ṽ1).P1 + . . .+�(ṽi).Pi + . . .+ xn(ṽn).Pn
τ

� Pi

Figure 1: LTS for processes

[4] Giuseppe Castagna, Nils Gesbert & Luca Padovani (2008): A theory of contracts for web services. In: POPL,
pp. 261–272.

[5] Giuseppe Castagna, Nils Gesbert & Luca Padovani (2009): A theory of contracts for Web services. ACM
Trans. Program. Lang. Syst. 31(5). Available at http://doi.acm.org/10.1145/1538917.1538920.

[6] R. De Nicola & M. Hennessy (1984): Testing Equivalences for Processes. Theoret. Comput. Sci. 34, pp.
83–133.

[7] Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida & Sophia Drossopoulou (2006): Ses-
sion Types for Object-Oriented Languages. In: Proc. ECOOP, Lecture Notes in Computer Science 4067,
Springer, pp. 328–352.

[8] Simon J. Gay & Malcolm Hole (2005): Subtyping for session types in the pi calculus. Acta Informaticae
42(2–3), pp. 191–225.

[9] M. Hennessy & H. Lin (1995): Symbolic bisimulations. Theoret. Comput. Sci. 138, pp. 353–389.

[10] Kohei Honda (1993): Types for Dynamic Interaction. In: Proc. CONCUR, Lecture Notes in Computer
Science 715, Springer, pp. 509–523.

[11] Cosimo Laneve & Luca Padovani (2007): The Must Preorder Revisited. In: CONCUR, Lect. Notes in
Comput. Sci. 4703, pp. 212–225.

[12] R. Milner (1989): Communication and Concurrency. Prentice Hall International.

A The non-symbolic semantics of orchestrators

The original definition of the operational semantics of orchestrators as defined in [3] is shown in Figure 1
Following result states the correspondence between the original semantics non-symbolic semantics

and the one introduced in Definition 1.

Theorem 4. Let P be a closed process. P α−→ P′ iff P
α

� P′.

Proof. ⇒) By Definition 1, P α−→ P′ implies P
M,λ−→Q and α = λσ and P′ = Qσ with σ |= M. The proof

follows by straightforward rule induction on the derivaion of P
M,λ−→ Q.

http://doi.acm.org/10.1145/1538917.1538920


M.G. Buscemi & H. Melgratti 23

– (S-TAU): P = τ.Q, M = true, λ = τ . For any substitution σ , we have that σ |= M, α = λσ =

true. Also, P closed implies Q closed, hence P′ = Qσ = Q. By rule (TAU), P = τ.Q
τ

� Q.
– (S-OUT) and (S-CHOICE-3): these cases follow as for (S-TAU).
– (S-IN): P = x1(ṽ1).P1 + . . .+ xn(ṽn).Pn, M = true, λ = xi(ṽi), Q = Pi. Since P is closed,

f n(Q) ⊆ ṽi. Then, for any σ |= M, P′ = Qσ = Piσ = Piσ|ṽi and α = λσ = λσ|ṽi . By rule

(IN) P
xi(ṽi)σ|ṽi
� Piσ|ṽi = P′

– (S-PAR): P = P1|P2, P1
M,λ−→ P′1, Q = P′1|P2. Since, σ |= M, by Definition 1 P1

α−→ P′1σ . By

inductive hypothesis, P1
α−→ P′1σ . By rule (PAR) P1|P2

α

� P′1σ |P2. Since P is closed, also P2 is

closed. Hence, P2σ = P2. Therefore, P1|P2
α

� Qσ

– (S-STR), (S-CHOICE-1) and (S-CHOICE-2): these cases follow analogously to (S-PAR).
– (S-IF): Since P is closed, the only possibility for m and n is to be the same constant. Hence,

P = if a = a then P1 else Q2, P1
M,λ−→ Q. By inductive hypothesis, P1

α

� Qσ . Then, by rule
(IF), P

α

� Qσ .
– (S-ELSE): This case is analogous to (S-IF).

⇐) – (TAU): P = τ.P′, α = τ . By (TAU), P
true,τ−−→ P′. Since, P′ is closed, P′σ = P′ for any σ .

P τ−→ P′.
– (OUT): This case follows as (TAU).

– (IN): P = x1(ṽ1).P1 + . . .+ xn(ṽn).Pn, α = xi〈ã〉 and P′ = Pi{ã/ṽi}.By rule (IN), P
true,x1(ṽ1)−−−−→ Pi.

Note that {ã/ṽi} |= true. Then, by Definition 1, P α−→ Pi{ã/ṽi}.
– (IF): P = if a = a then P1 else P2, P1

α

� P′. By inductive hypothesis, P1
α−→ P′. By

definition, there exist M, Q, σ and λ s.t. σ |= M, α = λσ , P′ = Qσ , P1
M,λ−→ Q. Since M is

consistent, M∧ a = a is consistent. Then, by rule (S-IN), P =
M∧a=a,λ−−−−→ Q. From σ |= M, we

have σ |= M∧a = a. By Definition 1, P α−→ P′.
– (ELSE):Analogous to (IF).

– (PAR): P = P1|P2 with P1
α

� P′1 and P′ = P′1|P2. By inductive hypothesis, P1
α−→ P′1. By

definition 1, P1
M,λ−→ Q and there exists σ |= M s.t. α = λσ and P1 = Qσ . By rule (S-

PAR), P1|P2
M,λ−→ Q|P2 (side condition holds because P2 is closed). By definition 1, we have

P1|P2
al pha−−→ (Q|P2)σ . Since P2 is closed. P2σ = P2 and, hence, (Q|P2)σ = P′

– (STR),(CHOICE-1),(CHOICE-2) and (CHOICE-3): Follows by using inductive hypothesis.

Proposition 9. If P
M,λ−→ Q then

• fn(M)⊆ fn(P).

• fn(Q)⊆ fn(P)∪bn(λ ).

• M is consistent.

Proof. It follows by straightforward rule induction.

Proposition 10. If P ∝V
M Q and fn(P,Q)∩ fn(M) = /0 then P ∝V Q.



24 Contracts for Abstract Processes

Proof. We first fix the following notation: given a constraint M and a set of names S, we write M\S from
M by removing all terms containing a name in S. If P ∝V

M Q then there exists a family of abstraction
relations {RV

N}N such that PRV
MQ. We take the following family of relations {S V

L }L, where S V
L = RV

N
with L = N\fn(M). We now show that this is a family of abstractions relations.

Let P and Q such that PS V
L Q:

1. Assume Q
N1,λ−→ Q′ and bn(λ )∩ fn(P,Q,L) = /0. Without loss of generality we can assume that

bn(λ )∩ fn(P,Q,L∪M) = /0 (This can always be achieved by alpha-renaming bound names.). We
know that PRV

N Q with L = N\fn(M). Since RV
N is an abstraction relation, there exists a N ∧N1-

decomposition D s.t. ∀M1 ∈ D there exists P
N′1,λ

′

−−→ P′, with M1⇒ N′1, λ|V = λ ′ and P′RV∪vn(λ )
M1

Q′.

By Proposition 9, P
N′1,λ

′

−−→P′ implies fn(N′1)⊆ fn(P). Since, fn(P)∩ fn(M)= /0 then fn(N′1)∩ fn(M)=
/0 for all N′1. Consequently, M1\fn(M)⇒ N′1 and

∨
i Mi\fn(M) is a L-decomposition.

2. if P
N,λ−→ P′, the proof follows as in the previous case.

Proposition 11. If P{a/x} M,λ−→ Q then there exist N, λ ′ and Q′ s.t. M = N{a/x}, λ = λ ′{a/x} and
Q = Q′{a/x}.

Proof. The proof follows by straightforward rule induction.

Proposition 12. Let P ∝
V∪{x}
M Q. For all a s.t. {a/x} |= M, P{a/x} ∝V

M Q{a/x}.

Proof. We take the following family of relations {S V
L }L, where

S V
M = {(P{a/x},Q{a/x})|PR

V∪{x}
M Q}

We show that this is a family of abstractions relations. Assume that P{a/x}S V
M Q{a/x}:

1. Assume Q{a/x} N1,λ−→ Q′ and bn(λ )∩ fn(P,Q,N) = /0. By Proposition 11, Q
N0,λ0−−→ Q0 and N1 =

N0{a/x}, λ = λ0{a/x} and Q′ = Q0{a/x}. Since PR
V∪{x}
M Q, there is a M ∧N0-decomposition

D s.t. ∀M′ ∈ D there exists P
N′0,λ

′
0−−→ P′0 with M′ ⇒ N′0, λ|V = λ ′ and P′0R

V∪{x}∪vn(λ )
M′ Q0. By def-

inition, P0{a/x}S V∪vn(λ )\{x}
M′ Q{a/x}, From M′ ⇒ N0 we have that M′{a/x} ⇒ N0{a/x}. Since

D is a M∧N0-decomposition we have M∧N0⇒ D and hence (M∧N0){a/x} ⇒ D{a/x}. From
{a/x} |=M we have that M∧N0{a/x}⇒D{a/x}. Consequently, D{a/x} is the requested M∧N1-
decomposition.

2. if P{a/x} N,λ−→ P′{a/x}, the proof follows as in the previous case.

B Proofs of the results in Sections 4 and 5

Proof of Proposition 4. The proof follows by showing that S = {(AV (σ),AV (ρ))|σ v ρ} is a sub-
contract relation.



M.G. Buscemi & H. Melgratti 25

1. Assume AV (ρ) ⇓ R. By Proposition 1, we have that ρ
α17−→ ρ1 . . .

αn7−→ ρn and ρn ⇓ R′ with R′∩V = R.
Since σ v ρ , there exists σ

α17−→ σ1 . . .
αn7−→ σn with σi v ρi for i = 1..n. hence, there exists S′ ⊆ R′

such that σn ⇓ S′. By Proposition 1, AV (σ) ⇓ S with S = S′ ∩V . Since S′ ⊆ R′ we have that
S = S′∩V ⊆ R′∩V = R.

2. Assume ρ
α7−→ ρ ′. By Proposition 2, α ∈V and ρ ′ =

⊕
ρi∈Alc(ρ,α,V )AV (ρi) with

Alc(ρ,α,V ) = {ρ ′ | ρ β17−→ ρ1 . . .
βn7−→ ρn

α7−→ ρ
′ and β1, . . . ,βn 6∈V}.

Since σ v ρ , for any ρi in Alc(ρ,α,V ) there exists a σi s.t. σi ∈ Alc(σ ,α,V ), i.e., σ
β17−→ τ1 . . .

βn7−→
τn

α7−→ σi. By proposition 2, σ ′ =
⊕

σi∈Alc(σ ,α,V )AV (σi). It remains to show that (σ ′,ρ ′) ∈ S .
This is done by noting that σ ′ =

⊕
j AV (τ j)⊕ τ such that any τ j ∈ Alc(σ ,α,V ) and there is a

corresponding ρ j in Alc(ρ,α,V ) and τ j v ρ j. Note that it can be easily proved that σ1 v ρ1 and
σ2 v ρ2 implies σ1⊕σ2 v ρ1⊕ρ2. Consequently,

⊕
j τ j v

⊕
j ρ j. We can easily also prove that

σ1⊕σ2 v σ1 for all σ1,σ2. Hence,
⊕

j τ j⊕ τ v
⊕

j ρ j, and finally, (σ ′,ρ ′) ∈S by definition of
S

Proof of Proposition 5. The proof follows by showing that S = {(AV (σ),AV (ρ))|σ(γ)v ρ and α ∈
V} is a subcontract relation.

1. Assume AV (ρ) ⇓ R. By Proposition 1, we have that ρ
α17−→ ρ1 . . .

αn7−→ ρn and ρn ⇓ R′ with R′∩V = R.
Since σ(γ)v ρ , there exists σ(γ)

α17−→ σ1 . . .
αn7−→ σn with σi v ρi for i = 1..n. Consequently, σ

γ−→
σ(α)

α17−→ σ1 . . .
αn7−→ σn with σi v ρi. Hence, there exist S′ ⊆ R′ such that σn ⇓ S′. By proposition 1,

AV (σ) ⇓ S with S = S′∩V . Since S′ ⊆ R′ we have that S = S′∩V ⊆ R′∩V = R.

2. Assume ρ
α7−→ ρ ′. By Proposition 2, α ∈V and ρ ′ =

⊕
ρi∈Alc(ρ,α,V )AV (ρi) with

Alc(ρ,α,V ) = {ρ ′ | ρ β17−→ ρ1 . . .
βn7−→ ρn

α7−→ ρ
′ and β1, . . . ,βn 6∈V}.

Since σ(γ)v ρ , for any ρi in Alc(ρ,α,V ) there exists a σi s.t. σi ∈ Alc(σ(α),α,V ), i.e., σ(γ)
β17−→

τ1 . . .
βn7−→ τn

α7−→ σi. Note that σi ∈ Alc(σ(γ),α,V ) implies σi ∈ Alc(σ ,α,V ). By proposition 2,
σ ′=

⊕
σi∈Alc(σ ,α,V )AV (σi). It remains to show that (σ ′,ρ ′)∈S . This is done by noting that σ ′=⊕

j AV (τ j)⊕ τ such that any τ j ∈ Alc(σ ,α,V ) and there is a corresponding ρ j in Alc(ρ,α,V )
and τ j v ρ j. Note that it can be easily proved that σ1 v ρ1 and σ2 v ρ2 implies σ1⊕σ2 v ρ1⊕ρ2.
Consequently,

⊕
j τ j v

⊕
j ρ j. We can easily also prove that σ1⊕σ2 v σ1 for all σ1,σ2. Hence,⊕

j τ j⊕ τ v
⊕

j ρ j, and finally, (σ ′,ρ ′) ∈S by definition of S

Proof of Proposition 6. The proof follows by showing that S = {(AV (σ)(γ),AV (ρ))|σ(γ) v ρ and
γ ∈V} is a subcontract relation.

1. Assume AV (ρ) ⇓ R. By Proposition 1, we have that ρ
α17−→ ρ1 . . .

αn7−→ ρn and ρn ⇓ R′ with R′∩V = R.
Since σ(γ) v ρ , there exists σ(γ)

α17−→ σ1 . . .
αn7−→ σn with σi v ρi for i = 1..n. Hence, there exist

S′ ⊆ R′ such that σn ⇓ S′. By proposition 1, AV (σ(γ)) ⇓ S with S = S′ ∩V . By Proposition 3,
AV (σ)(γ) = AV (σ(γ)), hence AV (σ)(γ) ⇓ S with S = S′ ∩V . Since S′ ⊆ R′ we have that S =
S′∩V ⊆ R′∩V = R.



26 Contracts for Abstract Processes

2. Assume ρ
α7−→ ρ ′. By Proposition 2, α ∈V and ρ ′ =

⊕
ρi∈Alc(ρ,α,V )AV (ρi) with

Alc(ρ,α,V ) = {ρ ′ | ρ β17−→ ρ1 . . .
βn7−→ ρn

α7−→ ρ
′ and β1, . . . ,βn 6∈V}.

Since σ(γ)v ρ , for any ρi in Alc(ρ,α,V ) there exists a σi s.t. σi ∈ Alc(σ(γ),α,V ), i.e., σ(γ)
β17−→

τ1 . . .
βn7−→ τn

α7−→ σi. By proposition 2, σ ′ =
⊕

σi∈Alc(σ(γ),α,V )AV (σi). Moreover, AV (σ)
γ−→ σ ′, i.e.

AV (σ)(γ) = σ ′, by Proposition 3. It remains to show that (σ ′,ρ ′) ∈S . This case follows as for
Proposition 5.

Proof of Theorem 2. We prove by structural induction on P that all conditions in Definition 9 are sat-
isfied. First of all, note that the language of orchestrators we rely on does not diverge, hence consistency
condition (3) is trivially satisfied in all cases

• P = 0: Conditions (1), (2) hold trivially since P has no reductions. As far as condition(4) is
concerned, note that σ = 0 and σ ⇓ R implies R = /0⊆ A for any A.

• P = λ .P′. If λ = τ then P = τP′. The only possible type for P (derived by using rule (TAU)) is σ

with ` P′ : σ and clearly σ v σ and therefore condition (1) holds. Moreover, conditions (2) and
(4) trivially hold. Let λ 6= τ . Then, condition (1) trivially hold. As regards to condition (2), note
that ` P : σ with σ = λ .σ ′ and ` P′ : σ ′. Consequently, σ(λ ) = σ ′ and condition (2) holds. As

condition (4) is concerned, note that P ⇓ R implies R = {λ}= {λ | P λ−→}.

• P = Σi∈Iλi.Pi +Σj∈Jτ.Qj. From typing rule (SUM) we have that ` P : σ with σ = Σi∈Iλi.σi⊕⊕
j∈J ρ j. Condition (1): If P τ−→ P′ then there exists some k ∈ J such that P′ = Qk and ` P′ : ρk

with ` Qk : ρk. Note that σ = ρk⊕ τ for some τ . Consequently, σ = ρk⊕ τ v ρk = σ ′. Condition

(2): If P λ−→ P′ with λ 6= τ , then there exists some k ∈ I such that P′ = Pk and λk = λ and ` P′ : σk.
Consequently, σ(λ ) = σk⊕τ for some τ . Hence, σ(λ )v σ ′. As far as condition (4) is concerned,
note that P 6 τ−→ implies J = /0.Then σ = Σi∈Iλi.σi then σ ⇓ R implies R = {λi|i ∈ I}= {λ | P α−→}.

• P = P1|P2. Condition (1), if P τ−→ P′ then either P1
τ−→ P′1 or P2

τ−→ P′2. If P1
τ−→ P′1 then σ is an

internal choice containing a subterm σ ′ where ` P′1|P2 : σ ′. Consequently, σ ′ v σ . The case

P2
τ−→ P′2 is analogous. For condition (2), note that either P1

λ−→ P′1 or P2
λ−→ P′2 and λ 6= τ . The proof

follows as for condition (1). As regards to condition (3), note that neither P1
τ−→ nor P1

τ−→. Hence,

σ = (Σλi∈V λi.σi +Σβ j∈V β j.ρ j) where P λi−→ Pi and Q
β j−→ Q j

Therefore σ ⇓ R implies R = {λ |P λ−→}.

• P = if m = n then P1 else P2. There are two cases � ∈ {m,n} and � 6∈ {m,n}. Assume � ∈
{m,n}. By rule (COND1), σ = σ1⊕σ2 with ` P1 : σ1 and ` P2 : σ2. As far as condition (1) is
concerned, P τ−→ P′ when either P1

τ−→ P′1 or P2
τ−→ P′2. Let P1

τ−→ P′1 with ` P′1 : σ ′1 and σ1 v σ ′1 by
inductive hypothesis. Therefore, σ = σ1⊕σ2 v σ ′1. The case P2

τ−→ P′2 follows analogously. For
condition (2), the proof follows analogously to condition 1. In respect to condition (3), note that
σ ⇓ R implies that either σ1 ⇓ R or σ2 ⇓ R. By inductive hypothesis, we know that σ1 ⇓ R implies

R⊆ {λ |P1
λ−→} and σ2 ⇓ R implies R⊆ {λ |P2

λ−→}. Hence, R⊆ {λ |P1
λ−→}∪{λ |P2

λ−→}. It is easy

to see that P λ−→ if and only if P1
λ−→ or P1

λ−→. The cases for � 6∈ {m,n} follows analogously by
noting that σ is either σ1 or σ2 depending on whether m = n or m 6= n hold.



M.G. Buscemi & H. Melgratti 27

Proof of Proposition 8. We only prove the first case above; the second case is similar. From AV [Q]
α−→

AV [Q′] we have that Q
β−→ Q′ with β|V = α , being β|V defined as the expected counterpart of λ|V . By

Definition 1, there exist M,λ ,R and σ |= M such that Q
M,λ−→ R and λσ = β and Rσ = Q′. P and Q

are closed, hence bn(λ )∩ fn(P,Q,M) = /0. Since, P ∝V Q there exists a M-decomposition D such that

∀M′ ∈ D, P
N′,λ ′−→ P′′ with M′⇒ N′, λ|V = λ ′, and there exists some simulation-based abstraction relation

RV
M such that P′′RV∪vn(λ )

M′ R. Since σ |= M and D is a M-decomposition, there exists at least one Mi ∈ D

such that σ |= Mi (and hence σ |= N′). By Definition 1, P λ ′σ−→ P′′σ . There are two cases:

• λ ′ = τ or λ ′ = x〈ã〉: In both cases, λ and λ ′ are closed. Hence, λ ′ = λ ′ρ for any substitution ρ .
Since, β = λσ = λ , we have that α = β|V = λ|V = λ ′ = λ ′σ .
It remains to show that P′′σ ∝V Q′ with Q′ = Rσ . Since bn(λ ) = /0, we have P′′RV

M′R. Also
note that R and P′′ are closed because Q and P are closed. Hence, Q′ = Rσ = R, P′′ = P′′σ and
P′′σRV

M′Q
′.

• λ ′ = x(ṽ): Since λ ′ = λ|V is an input action, we have that λ is an input action and both λ ′ and
λ have the same subject x that belongs to V . Consequently, λ|V = λ . Then, λ ′ = λ|V = λ , and
consequently λ ′σ = λσ = β . Since, β is an input action whose subject is in V , β|V = β . Con-
sequently, λ ′σ = λσ = β|V = α . It remains to show that P′′σ ∝V Q′ with Q′ = Rσ . We know

that P′′RV∪vn(λ )
M′ R. Since λ is an input action ṽ∩ fn(M′) = /0, hence σ |= M′. By Proposition 12,

P′′σRV
M′Rσ . Since P′′σ and Rσ are closed, P′′σ ∝V Rσ holds by Proposition 10.


	1 Introduction
	2 Abstract processes
	2.1 Symbolic semantics
	2.2 Simulation-based abstraction

	3 Theory of contracts
	3.1 Compliance and subcontract relation
	3.2 Assigning contracts to ordinary processes

	4 Abstraction for contracts
	5 Contracts for abstract processes
	6 Conclusions
	A The non-symbolic semantics of orchestrators
	B Proofs of the results in Sections 4 and 5

