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We formulate the angular structure of lacunarity in fractals, in terms of a symmetry reduction of
the three point correlation function. This provides a rich probe of universality, and first measurements
yield new evidence in support of the equivalence between self-avoiding walks (SAW’s) and percolation
perimeters in two dimensions. We argue that the lacunarity reveals much of the renormalization group in
real space. This is supported by exact calculations for random walks and measured data for percolation
clusters and SAW’s. Relationships follow between exponents governing inward and outward propagating
perturbations, and we also find a very general test for the contribution of long-range interactions.
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In this Letter we bring together two outstanding issues in
the theory of fractals, which we believe will have bearing
on critical phenomena more generally. The first is “lacu-
narity” [1–3], which as originally introduced could entail
all the discriminations of fractal structure (beyond dimen-
sion) which are evidently visible yet hard to codify in a
simple generic way. The second is the renormalization
group (RG) [4] which has been a predominant influence
for three decades in the theory of critical scaling phenom-
ena, fractals included, yet has never to our knowledge been
regarded as a directly measurable object in its own right.
Here we present evidence and arguments that a particular
version of lacunarity measurement is effectively a mea-
surement of the (linearized) renormalization group.

The “lacunarity function” was introduced [5] as a scal-
ing reduction of the three point correlation function for a
statistical fractal,

L �R, u� �
C3��r1, �r2, �r3�

C2��r1, �r2�C2��r1, �r3�
, (1)

where C3��r1, �r2, �r3� is the conditional probability for
points �r2 and �r3 to be occupied given that �r1 is occupied,
C2��r1, �r2� is the conditional probability for point �r2
occupied given �r1 is occupied, and the lacunarity function
L depends only on the angle u between the two vectors
�r2 2 �r1 and �r3 2 �r1 and their length ratio R � r13�r12.

The lacunarity function defined above is (by construc-
tion) independent of absolute length scale and is a pure
critical-point scaling object. It is crucial that we are
discussing measurements averaged over an ensemble of
fractal objects, or at least self-averaging over the interior
of one object much larger than both r12 and r13. The
dependence of L on only a ratio of lengths follows from
the assumption of continuous scale invariance, while the
dependence on only a single internal angle follows in the
more restrictive assumption that the ensemble of fractals
in question has no favored directions. The whole analysis
presupposes definition of some suitable measure for the
fractal structure in question, but provided this is not
0031-9007�00�85(24)�5134(4)$15.00
multifractal [6,7] any simple ambiguity in the measure is
expected to cancel from the lacunarity function.

I. The angular structure of lacunarity.—We introduce
here the decomposition of the lacunarity function over an-
gular harmonics, for example, in two dimensions

L �R, u� � L0�R� 1 2
X̀

m�1

Lm�R� cosmu . (2)

Our physical interpretation of the individual components
Lm�r 0�r� is that they measure the correlation between dif-
ferent length scales r and r 0 of relative fluctuations, of a
particular angular harmonic, in the local two point corre-
lation about each mass point. They can be more precisely
calculated as ratios

Lm�r 0�r� � Mm�r 0, r� �
�Sm�r 0; �r1�Sm�r; �r1���
�S0�r 0; �r1�� �S0�r; �r1��

, (3)

where Sm�r; �r1� is the weighted count of occupied points
within a shell of radius r about mass point �r1, each point
weighted by the angular harmonic of its direction relative
to �r1 (i.e., eimu in two dimensions), and the averages are
with respect to all occupied mass points �r1 [8].

The width of the shells used to compute the averages
in (3) drops out of the result provided it is small enough,
but with finite data sets some compromise must be made
to obtain reasonable signal to noise ratio. We typically
used shells of 7% width by radius. In the case of diagonal
elements (only), that is, r � r 0 equivalent to R � 1, shot
noise makes a systematically positive contribution to the
reading for which we have corrected our data below.

Figure 1 shows contour plots of the shell mass corre-
lations Mm�r 0, r� as a function of ln�r� and ln�r 0� for a
large site percolation cluster grown at criticality. The struc-
ture along the diagonal is direct evidence for the reduc-
tion Mm�r 0, r� � Lm�R � r 0�r�, and on the basis of such
plots we have averaged data parallel to the diagonal, within
suitable looking windows, to obtain the curves for Lm�R�
shown in Fig. 2.
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FIG. 1. Contour plot of the cross correlation of local two point
function between different length scales, as per Eq. (3) with
m � 0, for a percolation cluster of 1.5 3 106 sites grown on
a triangular lattice at the percolation threshold. The axes are
labeled proportional to the logarithm of length scale. Con-
tour lines parallel to the diagonal correspond to this reducing
to a scale invariant “lacunarity function” depending only on the
length scale ratio. Scale invariance breaks down around the
edges of the plot where one length scale approaches either
the lattice spacing or the sample size.

Figure 3 shows a direct comparison between the corre-
sponding measurements for the outer perimeter set of such
a percolation cluster with those for a large self-avoiding
walk. The broad agreement (with no adjustable parame-
ters in any of the curves shown) reinforces the claim that
these two objects are in the same universality class, as very
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FIG. 2. The different angular harmonics of the lacunarity func-
tion for the two-dimensional percolation cluster of Fig. 1. The
m � 0 data correspond to the central part of the contour plot
averaged parallel to the diagonal, and the other harmonics are
defined analogously in Eq. (3).
strongly suggested by Duplantier’s calculation [9] of their
identical f�a� spectra for the exterior harmonic measure.

II. Connection to the real space renormalization
group.—The physical idea behind the renormalization
group is that under critical conditions the structure of a
system is propagated through a continuous cascade of
length scales. This is usually viewed in terms of the
propagation of certain (judiciously chosen) renormalized
parameters which remain invariant at the fixed point. The
linearization of the renormalization group about the fixed
point then corresponds to the transmission of perturbations
through the length scale cascade.

Our lacunarity function measures the correlation of
structure fluctuations between different length scales, and
it is natural to suppose that this correlation arises due to
propagation. If so, then our measurements of correlation
directly probe the linearized renormalization group. More
strictly, we need the covariances rather than the correla-
tions to probe propagation, so it is useful to distinguish
from lacunarity notation (and rescale) by writing

LRm�R� �
Lm�R� 2 dm0

Lm�1� 2 dm0
, (4)

where we propose to take the liberty of referring to LR
as the local renormalization group function.

Our proposal is that if the local two point correlation
function structure at radius r about point �r1 is perturbed
C2�r��r1 ! C2�r� �1 1 em�r; �r1�Hm�, where Hm is a (nor-
malized) angular harmonic, then the corresponding re-
sponse at larger length scale r 0 should follow

em�r 0; �r1� � LRm�r 0�r�em�r; �r1� . (5)
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FIG. 3. Angular harmonics of the lacunarity function com-
pared between the outer perimeter of a percolation cluster (as per
Fig. 1) and a self-avoiding walk (in two dimensions) of compa-
rable size. The general agreement of these measurements, which
contain no adjustable parameters, supports both types of objects
being in the same universality class. The inset shows the data
for the zeroth harmonic extended to larger length scale ratios.
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The form of this equation is dictated by the requirement
that if we apply it to the spontaneous fluctuations of the
local two point function, their cross correlation between
different length scales is consistent with Eq. (3).

Note that the local renormalization group function de-
fined above is a “shattered” response function, in that it
gives the response due to changing the two point correla-
tion at one locality. If we make a global relative pertur-
bation em�r� of the local two point correlation at length
scale r around every mass point, then the growth of corre-
sponding response defines a “global renormalization group
function” GR through

em�r 0� � GRm�r 0�r�em�r� . (6)

To relate this to the shattered response LR we note that
the number of (occupied) localities of radius r within a
larger vicinity of radius r 0 � Rr scales as RD for a simple
mass fractal of fractal dimension D. Each of these should
independently contribute of order LR to the global re-
sponse so we expect the components of GR to scale as

GRm�R� � RDLRm�R� . (7)

Only even m are of physical consequence here, as the
global two point correlation function is by construction an
even function restricted to even perturbations.

An important consequence of Eq. (7) is that global per-
turbations are relevant at large length scales if the cor-
responding local RG function falls off more slowly than
R2D for large R.

The case of simple random walks in d . 2 illustrates
and tests these ideas with exact results. The general form
of the lacunarity function L �R, u� was first given in
Ref. [5], but the angular harmonic decomposition of LR
gives the much simpler form

LR0�R� � R22d ;

LRm�R� �
1 1 R22d

2
R2m, m . 0 .

(8)

This gives GR0�R� � R42d , GR2�R� � R0, and
GR4�R� � R22 for large R, which all have physical
interpretation.

A negative m � 0 perturbation at length scale r means
depressing the incidence of other points at radius r from
any given one, corresponding in polymer language to turn-
ing on some excluded volume. That the resulting per-
turbation at larger length scales r 0 grows as �r 0�r�42d

corresponds to the well known Fixman perturbation ex-
pansion of coil swelling [10].

An m � 2 perturbation corresponds to the local struc-
ture being stretched in some directions and shrunk in
others, corresponding for a random walk to anisotropy in
the individual walk steps. The scale independence of the
resulting response follows from the equivalence of such
random walks to affine deformations of isotropic ones,
which we discuss as a much more general result below.
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An example of an m � 4 perturbation would be the in-
trinsic bias of random walks made on a square (more gen-
erally hypercubic) lattice, and the decay of the perturbation
reflects the known irrelevance of this in the large length
scale limit. Analogous interpretations apply to higher or-
ders of lattice bias, for example, m � 6 and the triangular
lattice in two dimensions.

An important issue is whether the propagation of pertur-
bation is necessarily confined to running upwards in length
scale. In systems governed by an equilibrium ensemble
we can equally expect reverse (inwards) propagation gov-
erned by the form of LR. Thus we are led naturally
to predict that for every global perturbation propagating
outwards from r to r 0 as �r 0�r�2s there is propagation in-
wards of the same symmetry of perturbation from r 0 to r
as �r 0�r�2t where t � s 1 D.

The corresponding inwards perturbations of a random
walk can be identified. The zeroth harmonic corresponds
to simple confinement (and checks out), while higher har-
monics can then be interpreted in terms of the influence
of a confining shape. The m � 2 case, ellipticity, is par-
ticularly important because this corresponds to polymer
elasticity.

Some of these interpretations can also be checked for
less trivial fractals. For the self-avoiding walk (as for the
random walk), the nontrivial part of the m � 0 lacunarity
is associated with the walk going from length scale r out
to length scale r 0 and coming back again. This is then
governed by the probability of an SAW to close a loop,
which is known to vary as N21 ~ r 02D where N is the
number of steps in the walk (to reach radius r 0). This leads
to GR0�R� � R0 for large R, corresponding (correctly)
to a change in the excluded volume causing the SAW to
dilate uniformly on larger length scales. The inset of Fig. 3
shows our measured data for L0�R� 2 1 ~ LR0�R� out
to large R and is consistent with R2D � R24�3, albeit
the data are noisy. The m � 2 case for the SAW can be
interpreted in terms of the scaling of elasticity for swollen
polymers and leads also to LR2�R� ~ R2D at large R;
this checks quite well against the main data in Fig. 3.

We believe a very general result governs the m � 2
lacunarity due to its RG connection, which explains why
in all the fractals considered in this Letter (numerically
for the percolation cluster of Fig. 1, and analytically for
random and self-avoiding walks),

GR2�R� � R0. (9)

This corresponds to the outwards global m � 2 pertur-
bation being marginally relevant, and it arises because a
m � 2 perturbation can always be accommodated by a
global strain of the metric of space. This should, of course,
fail when long-range interactions are important, sensitive
to the metric of distance, and therefore Eq. (9) serves as a
general test of whether long-range interactions play a role
in the underlying physics.
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III. Concluding remarks.—We have presented ar-
guments that the lacunarity function L , or at least its
asymptotes, can be viewed as response functions de-
termined by the renormalization group. It is harder to
firmly establish just how much of the renormalization
group is thereby revealed. Certainly L is restricted
to the linearized renormalization group, because it can
probe only fluctuation correlations about the critical-point
behavior: in RG terms this means that it can probe only
the vicinity of the corresponding fixed point. We have
restricted our attention to simple mass fractals, directly
characterized in terms of one (positive definite) scalar
field, the mass density. We speculate that L incorporates
all the linearized RG relating to how this field might be
coupled locally and bilinearly to itself, whereas it cannot
know anything about what happens when other fields are
introduced.

A rich range of issues remain to be explored. We already
mentioned that the odd angular harmonics in the lacunar-
ity function lack a simple response theory interpretation
because the two point correlation function must be even.
One way to deal with this is to recognize more explic-
itly the way the lacunarity function depends only on the
shape of the triangle of points it correlates, which leads
to a parametrization of L involving only even harmon-
ics. However, it is more interesting to consider structures
from irreversible growth where correlating present with fu-
ture growth is the natural correlation to investigate and odd
harmonics are no longer forbidden in such time resolved
correlations. We anticipate that problems like the response
of diffusion limited aggregation to anisotropy should be
analyzed in this way.

In principle our work opens the door to measuring the
renormalization group, via lacunarity, directly from real
experimental data as opposed to just from computer simu-
lations. We recognize, however, that this may not be easy.
Our simulations span some three decades of length scale
(i.e., cluster radii of order 1000 units), and even then the
match up to expected scaling laws is not always good.
The best way forward would appear to be not to target
the asymptotic exponents, but rather to compare absolute
lacunarity values between experiment, simulation, and the-
ory at moderate R. On the theory side, our exact random
walk results are extendable to Markov chains, but no other
exact results are known (other than exponents).

Finally, while all the fractals discussed in this Letter
have close relation to equilibrium critical phenomena, our
present definition of lacunarity certainly does not extend
trivially to critical phenomena in general. We believe the
correct analog of our three point correlation for a mass
fractal is a four point correlation of the corresponding criti-
cal distributions, the extra point being at infinity. The natu-
ral generalization of our lacunarity function to spin models
would thus be in terms of a four point correlation function
at the critical point, and we look forward to exploring this
in future work.
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