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In a critically self-organized model of punctuated equilibrium, boundaries determine pec
scaling of the size distribution of evolutionary avalanches. This is derived by an inhomogen
generalization of standard branching processes, extending previous mean field description
yielding n ­ 1y2 together with t0 ­ 7y4, as distribution exponent of avalanches starting fro
species at the ends of a food chain. For the nearest neighbor chain one obtains nume
t0 ­ 1.25 6 0.01, and t

0
first ­ 1.35 6 0.01 for the first return times of activity, again distinct from

bulk exponents. [S0031-9007(96)00474-7]

PACS numbers: 87.10.+e, 02.50.–r, 05.40.+j, 64.60.Lx
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Branching processes (BP) occur in many fields
physics and biology, ranging from nuclear reactors
polymers and population dynamics [1]. Within the co
text of self-organized criticality (SOC), introduced b
Bak, Tang, and Wiesenfeld [2], BP, or correlated versi
of them, are expected to underlie the physics of m
models, describing sandpiles [2–4], earthquakes [5], r
networks [6], or species mutations [7]. By evolving lo
enough, these models self-organize in stationary crit
states with long-range correlations in space and ti
and with avalanches of activity occurring at all scal
Avalanches are often believed to be described in term
critical BP in the mean field (MF) limit. In the prese
Letter we introduce and solve an inhomogeneous ge
alization of the standard BP. This allows us to det
mine peculiar scaling properties of BP at boundaries.
unifying perspective, such properties provide a substan
extension of previous MF descriptions of SOC models

Bak and Sneppen (BS) [7,8] introduced a SOC mo
describing an ecology of interacting species evolv
by mutation and selection. This model provides
illustration of the mechanisms determining intermitten
(punctuated equilibrium [9]) and scaling [10] in the evo
tionary activity. Below we show that such intermitten
and scaling have a richer structure than appreciated so
Indeed, at the level of universal properties, it is poss
to draw a clear cut distinction between evolutiona
activities occurring in the “bulk” and at the “boundary” o
an ecology. Bulk and boundary refer to different locatio
of a given species within the network of interactions w
other species conditioning its evolution.

In a coarse grained, simplified description, BS assoc
to theith species of an ecology a single fitness parame
xi s0 , xi , 1d. xi represents the ability of speciesi to
survive: the higherxi , the higher the barrier to overcom
in order to switch a mutation in the species. A gene
0031-9007y96y76(26)y4983(4)$10.00
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mutation changes the barrier of the species and mod
also the barriers of the other species interacting dire
with it. This interaction should represent the fact that t
species, e.g., take part in the same food chain. Site
a lattice can be used to represent the species: in this
neighbor (n.n.) species can be assumed as directly re
biologically, and thus interacting.

The dynamical evolution rules are as follows. Start
from an initial fitness landscape, thei with lowestx, imin,
is selected to undergo a mutation and its fitnessximin is
modified into a new one, chosen at random. Becaus
the interaction, also some neighbors ofimin get modified
x’s, as an effect of the previous mutation. For a line
chain with n.n. interactions this implies thatximin21 and
ximin11 are replaced by new randomly chosenx’s. In a
standard MF description, on the other hand, the notion
position is completely lost and one can, e.g., choose
replace the fitnesses of a certain number,K 2 1, of other
species selected at random, besidesimin. This random
neighbor (r.n.) model is the only one for which a M
treatment of avalanches could be set up so far [8,
However, the lack of any meaning for distance in t
MF is a quite strong limitation, to the extent that the ve
notion of SOC can be legitimately questioned [12].

Avalanches corresponds to sequences of mutation
which the minimal x species is always found amon
those resulting from genetic changes in previous sta
starting from a given ancestor mutation withximin ­ l.
In the system the minimalx value does not exceedl
for the whole duration of the avalanche. The probabi
P that an avalanche involvess mutations is expected t
vary asymptotically asPssd ~ s2t in the SOC state, in
which for all avalanchesl attains the valuexc, the sharp
threshold of the stationaryx distribution [8].

So far, in models like the n.n. chain,t and similar ex-
ponents have always been discussed as bulk quan
© 1996 The American Physical Society 4983
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[12,13], i.e., considering statistics of avalanches start
everywhere within large, periodic systems. Compar
to those in the bulk, a species at one end of an o
chain (e.g., main predator, or basic level of microsco
life) has less species directly or indirectly connected
it. The paths through which dynamical correlations c
propagate starting from an initial mutation on the boun
ary are also reduced. So, e.g., in semi-infinite geome
boundary avalanches could be characterized by pecu
exponents, different from the bulk ones. Demonstrat
boundary scaling in models like the BS one is a ch
lenge, especially at the analytical level. Indeed, in t
context of SOC with extremal dynamics, exact results
essentially limited to the above mentioned MF treatme
[11,14]. Consideration of boundary effects or other inh
mogeneities clearly requires a meaningful notion of d
tance. We achieve this within a novel MF description
the BS model with n.n. interactions, generalizing the st
dard BP studied in probability theory [1].

The main scaling result for the random neighbor M
model ist ­ 3y2 [8,11]. This t is consistent with MF
BS avalanche dynamics being equivalent to a BP.
avalanche can be identified with a tree, where nodes
resent species mutating within the avalanche. From e
node, as many branches depart as there are specie
dergoing genetic change directly due to a mutation tak
place at that node. The same species can act as a
more than once within an avalanche. The complex str
ture of correlations of the BS model is simplified in M
by assuming that, at each node, well defined, independ
probabilities exist for all branchings compatible with th
dynamical rules. Avalanches are generation trees, wh
distribution in number of generating individuals,s, is given
by P. The existing MF approach clearly cannot address
ponents for diverging lengths, as defined, e.g., in a Lan
approach to standard criticality. We introduce a charac
istic length within MF through boundaries breaking tran
lation invariance and leading to a position dependence
the BP description. Standard BP theory deals with the d
crete transform̃Pszd ­

P`
s­1 Pssdzs , on which the scaling

of P(s) produces singular behavior of the form

P̃szd ­ 1 2 cs1 2 zdt21 1 l.s.t. (1)

for z ! 12. In Eq. (1) c is a suitable positive constan
and the last term on the right-hand side indicates re
lar or less singular terms. Without making reference
relative locations of the species along the chain, the s
dard BP assumes that well defined probabilities,pi si ­
4984
ng
d

en
ic
to
n
-

ry,
liar
g
l-
e
re
nt
-

s-
f
n-

F

n
p-
ch
un-
g
ode
c-

ent
e
se

x-
au
r-
-
of
is-

u-
to
n-

0, 1, 2, . . . , Kd, apply to the events in which a given speci
undergoing mutation triggers subsequent genetic chan
in the same avalanche, ini species, possibly including it
self. Independence of branchings leads to the validity
Watson’s functional equation [1]

P̃szd ­ zGsssP̃szdddd , (2)

with Gs yd ­ p0 1 p1y 1 p2y2 1 · · · 1 pKyK . Equa-
tion (2) imposes a constraint on thepi ’s consistent with a
singularity of the form (1). Such constraint readsG0s1d ­
1 and automatically fixesc ­

p
2yG00s1d and t ­ 3y2

as the only compatible exponent [15]. This result
t is largely universal with respect to different choic
of the parameterspi and relies only on the analytic
ity of G. A natural choice ispi ­ s K

i dxi
cs1 2 xcdK2i.

In the r.n. modelxc ­ 1yK [8], implying satisfaction of
G0s1d ­ 1. Replacingxc by l , xc would amount to
consider off-critical avalanchesfG0s1d , 1g, with xc 2

l playing the role of a temperaturelike field. Let u
consider now a semi-infinite sequence of species o
chain. To each species is associated an integer co
natej ­ 0, 1, 2, . . . . In a n.n. model the presence of th
boundary requires us to allow for aj dependence of the
avalanche size distribution; thus,Pjssd or P̃jszd will de-
scribe avalanches starting at sitej along the chain. This
situation can still be analyzed within what we call he
inhomogeneous BP. Since, as a consequence of a
tation at j $ 1, at most three species can be furth
involved in the avalanche (K ­ 3 for the n.n. case), prob
abilities p0, p1, p2, and p3 will describe the possible
outcomes of such a mutation. For convenience, and c
sistently with the above expressions of thepi ’s in terms
of xc, one can further assume that with probabilityp0 no
further mutation takes place in the avalanche; with pr
abilitiesp1y3 andp2y3 the avalanche propagates, resp
tively, in any one and any two of the species in the
h j 2 1, j, j 1 1j; finally, p3 is the probability that the
avalanche involves all three species. In the MF spirit i
also sensible to assumej independence for thepi ’s as long
as j $ 1. Of course, there should be different probab
ities p0

i for j ­ 0, where the boundary imposesp0
3 ­ 0.

A possible choice made below is to assignp0
0 ­ p0 1

1
3 p1, p0

1 ­
2
3 p1 1

2
3 p2, and p0

2 ­
1
3 p2 1 p3 at j ­ 0,

again implying equivalence ofj ­ 0 andj ­ 1 with re-
spect to single branch outcomes.

With the above positions, Eq. (2) is replaced by a f
hierarchy of equations:
P̃0szd ­ z

µ
p0

0 1
p0

1

2
fP̃0szd 1 P̃1szdg 1 p0

2fP̃0szdP̃1szdg
∂

, P̃jszd ­ z

µ
p0 1

p1

3
fP̃j21szd 1 P̃jszd 1 P̃j11szdg

1
p2

3
fP̃j21szdP̃j11szd 1 P̃jszdP̃j11szd 1 P̃j21szdP̃jszdg 1 p3fP̃j21szdP̃jszdP̃j11szdg

∂
, j $ 1 . (3)
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P̃jszd should converge to the bulk solution of Eq. (2
for j approaching infinity. Thus, it is advantageous
adopt the following ansatz:

P̃jszd ­ P̃szd 1 Dszde2qszdj 1 l.s.t., (4)

where q is an inverse length and̃P is the solution of
Eq. (2). As shown below, the assumedj independence
of D and q is consistent, as corrections to it wou
involve only subleading singular terms forz ! 12. By
substituting Eq. (4) into Eqs. (3) one can deduce sing
behaviors ofP̃0 and q. For z ! 12, we expectDszd ,
s1 2 zda and qszd , s1 2 zdb , with a and b suitable
exponents. After substitution in Eqs. (3) forj $ 1 one
gets

1 ­
z
3

f1 1 2 coshqszdg

3

µ
G0sssP̃szdddd 1

Dszd
2

G00sssP̃szdddd
∂

1 l.s.t. (5)

Taking into account that̃P has the form (1) witht ­
3y2, the leading singular terms in Eq. (5) give

qszd2

3G00s1d
1

1
2

Dszd ­ as1 2 zd1y2 1 l.s.t. , (6)

wherea ­ c of Eq. (1). The same kind of substitution
the first of Eqs. (3) leads to

Dszd ­ as1 2 zd1y2 2 bDszdqszd 1 l.s.t., (7)

with b ­ 1. Equations (6) and (7) determine botha and
b above. In particular,̃P0szd takes the form

P̃0szd ­ P̃szd 1 Dszd 1 l.s.t.

­ 1 2
p

3a bs1 2 zd3y4 1 l.s.t. (8)

In general b ­ sp0
1y2 1 p0

2dyf2sp0
1y2 1 p0

2d 2 1g and
the results (6) and (8) make sense for

P
ip0

i , 1. This
condition is satisfied by our choice ofp0

i ’s, which further
acquire the formp0

i ­ s K21
i dxi

cs1 2 xcdK212i , if the pi ’s
are expressed in terms ofxc as discussed above. Thus, t
thresholdxc for the distribution ofx values at the border
in the stationary state should be the same as in the b
According to Eqs. (1) and (8)

P0ssd , s27y4. (9)

Thus, in our MF description the BS SOC state is char
terized by a boundary scaling with an exponentt0 ­ 7y4
different from the bulk one. Boundary avalanches
course suffer more rapid extinction and their distribut
decreases faster for larges. It is interesting to note that
by exploiting analogies with magnetic systems,t0 ­ 7y4
has been predicted recently within a MF approach to b
,

ar

lk.
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der avalanches in Abelian sandpile models (ASM) w
Dirichlet boundary conditions [16]. This lends furthe
support to the idea that in ASM a BP description u
derlies the statistics of avalanches in the MF limit, f
which alsot ­ 3y2 is expected [17]. By a numerical ap
proach one can also identifyt0 . 7y4 for MF avalanches
of the earthquake model of Refs. [5,18], confirming
underlying BP also in this case. A further consequence
Eqs. (6) and (7) is the singularity

qszd , s1 2 zd1y4. (10)

Thus, the penetration length of the border disturban
q21, diverges forz ! 12. In MF treatments of inho-
mogeneous equilibrium models, quantities likeq21 show
the same divergence with temperature as classical co
lation lengths. By interpretingz as a standard fugacit
for a polymer, one deduces from Eq. (10) a correlat
length exponentn ­ 1y4. This is indeed the classicaln

of branched polymers [19]. Of course the definition
n for a SOC system requires one to identify physica
meaningful parameters describing the approach or
departure from criticality. For BS avalanches such a
rameter is the temperaturelike deviationxc 2 l. By in-
troducingl-dependentpi ’s andp0

i ’s in our equations, the
result (10) can be converted intoqsl, z ­ 1d , sxc 2

ld1y2, which impliesn ­ 1y2. Remarkably enough, thi
is the classicaln exponent expected for ASM [17]. Thi
and the above mentioned coincidence oft0 strongly sup-
port the idea that BP fully underlie also the MF descr
tion of ASM avalanches.

In order to identify boundary scaling beyond MF, w
performed systematic simulations with open, n.n.
chains of different lengthssN # 103d. First we verified
that the distribution of boundaryx’s in the stationary
state is essentially unaltered with respect to that
the periodic, bulk case, and displays the same sh
threshold atxc ­ 0.665 6 0.015 [7]. This coincidence is
fully consistent with our choices of thep0

i ’s in the MF
approach. By selectively sampling avalanches star
near the boundaries or in the interior of the chains,
extrapolatet0 ­ 1.25 6 0.01 (see Fig. 1). This value is
clearly different from the bulk onet . 1.08 [12].

So, also in the n.n. model boundary avalanches ha
probability of decaying more rapidly at larges, than in
bulk. A further characterization of boundary scaling
given by the distribution of first return times of activit
(x taking the minimum value) at the same bounda
site. These times are distributed ast2t

0
first , with t

0
first ­

1.35 6 0.01, different from the bulk valuetfirst ­ 1.58
[13]. By recording the times of all subsequent returns
activity one can also obtain a distribution~t2t

0
all , with

t
0
all ­ 0.65 6 0.01, again distinct fromtall ­ 0.42 in

bulk [13]. Such boundary exponents are consistent wi
scaling relationt

0
first 1 t

0
all ­ 2, already satisfied in the

bulk [13]. Since the validity of such a relation shou
4985
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FIG. 1. Qssd ­
Rsmax

s Pss0d ds0 is the integrated distribution;
the fitting form is As12t0

1 C with t0 ­ 1.25 6 0.01 sN ­
1000d.

not depend on the position considered along the chain,
above consistency is further indication of the good qua
of our determinations. Data concerning these expone
are shown in Fig. 2.

We conclude that at the boundaries activity has a d
ferent pattern of intermittency. First returns are shift
towards longer time scales. On the other hand, once
boundary has been reached, activity remains more ea
trapped there, giving rise to concentrated sequences o
turns. In applications of the BS model, the choice of
more or less regular network of interactions remains
some extent arbitrary, and should not matter for univer
properties, unless the long-range limit of a r.n. model
y

tt.

nd

hys.

to
.
E

FIG. 2. First and all return times probabilities at boundar
sites. Statistics refer to 109 mutations in the whole chain.
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assumed. However, the distinction elucidated above
tween bulk and boundary species appears to have im
tant consequences, affecting the universal scaling feat
of evolution. Thus, boundary scaling offers addition
deeper insight into the properties of biological models a
widens the context of their possible comparison with p
leontological data. Summarizing, we showed here t
within the framework of punctuated equilibrium there e
ists a well defined boundary scaling in addition to the b
one. At the MF level this scaling can be analyzed exac
within a generalization of BP theory, which considerab
extends previous classical descriptions of the BS mo
and directly focuses on its relation with other models.
particular also ASM with Dirichlet boundary condition
fall fully in the MF universality class of our BP. Also in
the n.n. case our results show the existence of new s
ings which make the notion of species at the ends o
chain meaningful in a universal sense.
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