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Branching Processes and Evolution at the Ends of a Food Chain
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In a critically self-organized model of punctuated equilibrium, boundaries determine peculiar
scaling of the size distribution of evolutionary avalanches. This is derived by an inhomogeneous
generalization of standard branching processes, extending previous mean field descriptions and
yielding » = 1/2 together with 7/ = 7/4, as distribution exponent of avalanches starting from
species at the ends of a food chain. For the nearest neighbor chain one obtains numerically
7/ =125 + 0.01, and 7fi, = 1.35 = 0.01 for the first return times of activity, again distinct from
bulk exponents. [S0031-9007(96)00474-7]

PACS numbers: 87.10.+e, 02.50.—r, 05.40.+j, 64.60.Lx

Branching processes (BP) occur in many fields ofmutation changes the barrier of the species and modifies
physics and biology, ranging from nuclear reactors taalso the barriers of the other species interacting directly
polymers and population dynamics [1]. Within the con-with it. This interaction should represent the fact that two
text of self-organized criticality (SOC), introduced by species, e.g., take part in the same food chain. Sites of
Bak, Tang, and Wiesenfeld [2], BP, or correlated versions lattice can be used to represent the species: in this case
of them, are expected to underlie the physics of manyeighbor (n.n.) species can be assumed as directly related
models, describing sandpiles [2—4], earthquakes [5], rivebiologically, and thus interacting.
networks [6], or species mutations [7]. By evolving long The dynamical evolution rules are as follows. Starting
enough, these models self-organize in stationary criticairom an initial fitness landscape, thevith lowestX, iyin,
states with long-range correlations in space and times selected to undergo a mutation and its fitness is
and with avalanches of activity occurring at all scalesmodified into a new one, chosen at random. Because of
Avalanches are often believed to be described in terms dhe interaction, also some neighborsigf, get modified
critical BP in the mean field (MF) limit. In the present x's, as an effect of the previous mutation. For a linear
Letter we introduce and solve an inhomogeneous genechain with n.n. interactions this implies that -, and
alization of the standard BP. This allows us to deter-;  +; are replaced by new randomly choses. In a
mine peculiar scaling properties of BP at boundaries. In atandard MF description, on the other hand, the notion of
unifying perspective, such properties provide a substantigiosition is completely lost and one can, e.g., choose to
extension of previous MF descriptions of SOC models. replace the fithesses of a certain numier;- 1, of other

Bak and Sneppen (BS) [7,8] introduced a SOC modetpecies selected at random, besidgg. This random
describing an ecology of interacting species evolvingneighbor (r.n.) model is the only one for which a MF
by mutation and selection. This model provides antreatment of avalanches could be set up so far [8,11].
illustration of the mechanisms determining intermittencyHowever, the lack of any meaning for distance in this
(punctuated equilibrium [9]) and scaling [10] in the evolu- MF is a quite strong limitation, to the extent that the very
tionary activity. Below we show that such intermittency notion of SOC can be legitimately questioned [12].
and scaling have a richer structure than appreciated so far. Avalanches corresponds to sequences of mutations in
Indeed, at the level of universal properties, it is possiblavhich the minimal x species is always found among
to draw a clear cut distinction between evolutionarythose resulting from genetic changes in previous stages,
activities occurring in the “bulk” and at the “boundary” of starting from a given ancestor mutation with. = A.
an ecology. Bulk and boundary refer to different locationsin the system the minimak value does not exceed
of a given species within the network of interactions withfor the whole duration of the avalanche. The probability
other species conditioning its evolution. P that an avalanche involvesmutations is expected to

In a coarse grained, simplified description, BS associateary asymptotically as(s) « s~ 7 in the SOC state, in
to theith species of an ecology a single fitness parameteryhich for all avalanchea attains the value., the sharp
x; (0 < x; < 1). x; represents the ability of specieso  threshold of the stationarydistribution [8].
survive: the highex;, the higher the barrier to overcome  So far, in models like the n.n. chain,and similar ex-
in order to switch a mutation in the species. A geneticponents have always been discussed as bulk quantities
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[12,13], i.e., considering statistics of avalanches starting), 1,2,..., K), apply to the events in which a given species
everywhere within large, periodic systems. Comparedindergoing mutation triggers subsequent genetic changes,
to those in the bulk, a species at one end of an opeim the same avalanche, irspecies, possibly including it-
chain (e.g., main predator, or basic level of microscopicself. Independence of branchings leads to the validity of
life) has less species directly or indirectly connected tdNatson's functional equation [1]
it. The paths through which dynamical correlations can
propagate starting from an initial mutation on the bound-
ary are also reduced. So, e.g., in semi-infinite geometry,
boundary avalanches could be characterized by peculiar
exponents, different from the bulk ones. Demonstratingvith G(y) = po + p1y + pay> + --- + pxyX. Equa-
boundary scaling in models like the BS one is a chaltion (2) imposes a constraint on tipe's consistent with a
lenge, especially at the analytical level. Indeed, in thesingularity of the form (1). Such constraint rea@41) =
context of SOC with extremal dynamics, exact results ard and automatically fixes = /2/G"(1) and 7 = 3/2
essentially limited to the above mentioned MF treatmentis the only compatible exponent [15]. This result for
[11,14]. Consideration of boundary effects or other inho-r is largely universal with respect to different choices
mogeneities clearly requires a meaningful notion of dis-of the parameterp; and relies only on the analytic-
tance. We achieve this within a novel MF description ofity of G. A natural choice isp; = (¥)xi(1 — x.)X~".
the BS model with n.n. interactions, generalizing the stanin the r.n. model, = 1/K [8], implying satisfaction of
dard BP studied in probability theory [1]. G'(1) = 1. Replacingx. by A < x. would amount to
The main scaling result for the random neighbor MFconsider off-critical avalanchelgG’(1) < 1], with x. —
model isT = 3/2 [8,11]. This7 is consistent with MF A playing the role of a temperaturelike field. Let us
BS avalanche dynamics being equivalent to a BP. Arconsider now a semi-infinite sequence of species on a
avalanche can be identified with a tree, where nodes rehain. To each species is associated an integer coordi-
resent species mutating within the avalanche. From eaadtate j = 0,1,2,.... In a n.n. model the presence of the
node, as many branches depart as there are species loundary requires us to allow forjadependence of the
dergoing genetic change directly due to a mutation taking@valanche size distribution; thug,(s) or P;(z) will de-
place at that node. The same species can act as a nost&ibe avalanches starting at sjtalong the chain. This
more than once within an avalanche. The complex strucsituation can still be analyzed within what we call here
ture of correlations of the BS model is simplified in MF inhomogeneous BP. Since, as a consequence of a mu-
by assuming that, at each node, well defined, independetdtion at j = 1, at most three species can be further
probabilities exist for all branchings compatible with theinvolved in the avalanchek( = 3 for the n.n. case), prob-
dynamical rules. Avalanches are generation trees, whoshilities po, pi, p», and p; will describe the possible
distribution in number of generating individuassijs given  outcomes of such a mutation. For convenience, and con-
by P. The existing MF approach clearly cannot address exsistently with the above expressions of thgs in terms
ponents for diverging lengths, as defined, e.g., in a Landaaf x., one can further assume that with probability no
approach to standard criticality. We introduce a characterfurther mutation takes place in the avalanche; with prob-
istic length within MF through boundaries breaking trans-abilities p; /3 and p,/3 the avalanche propagates, respec-
lation invariance and leading to a position dependence dively, in any one and any two of the species in the set
the BP description. Standard BP theory deals with the distj — 1,j,j + 1}; finally, ps is the probability that the
crete transfornP(z) = >._, P(s)z*, on which the scaling avalanche involves all three species. In the MF spirit it is

P(z) = zG(P(2)), (2)

of P(s) produces singular behavior of the form also sensible to assumadependence for thg;’s as long
asj = 1. Of course, there should be different probabil-
P(z)=1-c(1 —2)7 " +lst (1) ities p; for j = 0, where the boundary imposgg = 0.

A possible choice made below is to assigh = po +
for z — 17. In Eqg. (1) c is a suitable positive constant %pl,pi = %pl + %pz, and p} = %pz + pyatj=0,
and the last term on the right-hand side indicates reguagain implying equivalence gf = 0 andj = 1 with re-
lar or less singular terms. Without making reference tcspect to single branch outcomes.
relative locations of the species along the chain, the stan- With the above positions, Eq. (2) is replaced by a full
dard BP assumes that well defined probabilitigs(i =  hierarchy of equations:

Pote) = < ph + EL P + P + pAP@PI@), Pi) = 2 po + BP0 + Pya) + Pro(2)]

+ %[i’j—l(z)i’jﬂ(Z) + Pi(z)Pj+1(z) + Pi—1(2)P;(2)] + P3[1~’j—1(Z)pj(Z)PjH(Z)]), j=1. (3)
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P;(z) should converge to the bulk solution of Eq. (2), der avalanches in Abelian sandpile models (ASM) with
for j approaching infinity. Thus, it is advantageous toDirichlet boundary conditions [16]. This lends further

adopt the following ansatz: support to the idea that in ASM a BP description un-
derlies the statistics of avalanches in the MF limit, for
Pi(z) = P(z) + A(z)e 197 + | st (4)  which alsor = 3/2is expected [17]. By a numerical ap-

proach one can also identif{f = 7/4 for MF avalanches
where g is an inverse length an@ is the solution of of the earthquake model of Refs. [5,18], confirming an
Eg. (2). As shown below, the assumgdndependence underlying BP also in this case. A further consequence of
of A and g is consistent, as corrections to it would Egs. (6) and (7) is the singularity
involve only subleading singular terms for— 1. By
substituting Eq. (4) into Egs. (3) one can deduce singular q(z) ~ (1 — )4, (10)
behaviors ofP, andg. Forz — 17, we expectA(z) ~ _ _
(1 — 2)* and g(z) ~ (1 — z)B, with « and B suitable Thus, the penetration length of the border disturbance,

exponents. After substitution in Eqgs. (3) fgr= 1 one ¢ ', diverges forz — 17. In MF treatments of inho-

gets mogeneous equilibrium models, quantities like! show
the same divergence with temperature as classical corre-
| = i[l + 2coshy(z)] lation lengths. By interpreting as a standard fugacity
3 for a polymer, one deduces from Eq. (10) a correlation
. A2) ez length exponeny = 1/4. This is indeed the classical
! 1
x <G (Pl) + == G(P (Z))> 1St ) of branched polymers [19]. Of course the definition of
o _ _ v for a SOC system requires one to identify physically
Taking into account thaP has the form (1) withr =  meaningful parameters describing the approach or the
3/2, the leading singular terms in Eq. (5) give departure from criticality. For BS avalanches such a pa-

(2> 1 rameter is the temperaturelike deviation— A. By in-
“— 4+ —A(x) =a(l —2)"? +1st, (6) troducingA-dependenp;’s andp;’s in our equations, the
3G"(1) 2 result (10) can be converted inigA,z = 1) ~ (x. —
wherea = ¢ of Eq. (1). The same kind of substitution in _)‘)1/2’ which implies» = 1/2. Remarkably enough, this
the first of Egs. (3) leads to is the classicab exponent expec_ted for ASM [17]. This

and the above mentioned coincidencerbftrongly sup-
7) port the idea that BP fully underlie also the MF descrip-
tion of ASM avalanches.

In order to identify boundary scaling beyond MF, we
performed systematic simulations with open, n.n. BS
chains of different lengthéV = 10%). First we verified
~ s that the distribution of boundaryx's in the stationary

Po(z) = P(z) + Az) + Isit. state is essentially unaltered with respect to that of
=1—+3ab(l — z)¥* + Ist. (8) the periodic, bulk case, and displays the same sharp
threshold at. = 0.665 = 0.015 [7]. This coincidence is
In generalb = (p1/2 + p5)/[2(p1/2 + p5) — 1] and  fully consistent with our choices of the’s in the MF
the results (6) and (8) make sense Joiip; < 1. This approach. By selectively sampling avalanches starting
condition is satisfied by our choice pf’s, which further near the boundaries or in the interior of the chains, we
acquire the formp; = (“7")xi(1 — x.)X~'~/ ifthe p;/’s  extrapolater’ = 1.25 = 0.01 (see Fig. 1). This value is
are expressed in terms of as discussed above. Thus, theclearly different from the bulk one = 1.08 [12].
thresholdx, for the distribution ofx values at the borders So, also in the n.n. model boundary avalanches have a
in the stationary state should be the same as in the bullprobability of decaying more rapidly at large than in

AG) = a(l — )" — bA(z2)q(z) + |st.,

with b = 1. Equations (6) and (7) determine bathand
B above. In particularPy(z) takes the form

According to Egs. (1) and (8) bulk. A further characterization of boundary scaling is
given by the distribution of first return times of activity
Py(s) ~ ¢4 9) (x taking the minimum value) at the same boundary

site. These times are distributed @g~, with 7y =
Thus, in our MF description the BS SOC state is characi.35 = 0.01, different from the bulk valuersj,, = 1.58
terized by a boundary scaling with an exponeht= 7/4  [13]. By recording the times of all subsequent returns of
different from the bulk one. Boundary avalanches ofactivity one can also obtain a distributiory ™1, with
course suffer more rapid extinction and their distributionr,;, = 0.65 = 0.01, again distinct fromr,;; = 0.42 in
decreases faster for large It is interesting to note that, bulk [13]. Such boundary exponents are consistent with a
by exploiting analogies with magnetic systems= 7/4  scaling relationrf;,,, + 7.;; = 2, already satisfied in the
has been predicted recently within a MF approach to borbulk [13]. Since the validity of such a relation should
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4.0 - - assumed. However, the distinction elucidated above be-
Numerical Data tween bulk and boundary species appears to have impor-
—— Fitting Function tant consequences, affecting the universal scaling features
of evolution. Thus, boundary scaling offers additional,
deeper insight into the properties of biological models and
widens the context of their possible comparison with pa-
leontological data. Summarizing, we showed here that
within the framework of punctuated equilibrium there ex-
ists a well defined boundary scaling in addition to the bulk
one. Atthe MF level this scaling can be analyzed exactly
within a generalization of BP theory, which considerably
extends previous classical descriptions of the BS model,
and directly focuses on its relation with other models. In
particular also ASM with Dirichlet boundary conditions
fall fully in the MF universality class of our BP. Also in
0.0 : : T the n.n. case our results show the existence of new scal-
0.0 1.0 20 3.0 4.0 . . . .
Log(s) ings which make the notion of species at the ends of a
chain meaningful in a universal sense.

Log(Q(s))
N
o

10

FIG. 1. Q(s) = [:™ P(s')ds’ is the integrated distribution;
the fitting form is As'™" + C with 7/ = 1.25 + 0.0l (N =
1000).
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