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1 Introduction

Innovation is a cumulative process (Scotchmer, 2004), where researchers learn

from past results and adjust their behaviour on the basis of previous experience

(Herriot et al., 1985, Cyert and March, 1992). Successes (e.g., successful achieve-

ment of some milestones, or an invention) are widely recognized to be the corner-

stones of scientific and technological progress. Inventors tend to privilege learning

from successes, also driven by the strong emphasis on positive outcomes in sci-

entific journals and the business press (Denrell, 2003). However, theoretical and

empirical contributions highlight the essential role of failures in learning, even

though individuals and organizations do not always openly share knowledge about

their mistakes (Levitt and March, 1988, Levinthal and March, 1993, Desai, 2010).

In addition to its own experience, a research organization can learn by vicariously

observing other players in the same field, in particular others’ failures (Teerlak and

Gong, 2008, Francis and Zheng, 2010). Empirical works have provided evidence

of the benefit of learning from failures via both direct and vicarious experiences

and feedbacks (Ingram and Baum, 1997, Haunschild and Miner, 1997, Baum and

Ingram, 1998, Chuang and Baum, 2003, Baum and Dahlin, 2007, Kim and Miner,

2007, Madsen, 2009, Madsen and Desai, 2010, Francis and Zheng, 2010).

Against this background, in this paper we analyse the learning process in the

pharmaceutical industry, exploring how firms build on own and others’ failures and

successes. The pharmaceutical industry is a domain characterized by high develop-

ment costs, radical uncertainty and delayed feedbacks. Failures to let compounds

advance in clinical trials entail large losses: pre-approval costs per approved drug

have been recently estimated to be over 1 billion US dollars (DiMasi et al., 2003,

Adams and Brantner, 2006, Paul et al., 2010). The growing number of R&D fail-

ures is one of the main causes of the upsurge of the estimated R&D costs per new

molecular entity, leading scholars to ask whether the pharmaceutical industry is

now facing an R&D productivity crisis (Cockburn, 2006, Pammolli et al., 2011).

In this paper we study to which extent firms learn from past failures and

successes in pharmaceutical R&D. We show that the learning process in pharma-

ceuticals builds both on R&D successes and failures, analogously to the economic

value of findings and non-findings spanning from basic research (David et al.,
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1992). However, since open science is strongly biased toward the publication of

positive results, patents and clinical trials play a fundamental role in pharmaceu-

ticals to disclose R&D failures information (Pammolli and Rossi, 2005, Magazzini

et al., 2009).1 Under conditions of uncertainty, patent disclosure may contribute

to generate knowledge spillovers, promoting multiple parallel research efforts on

plausible targets and stimulating private investment and competition. Moreover,

we maintain that the disclosure of failed drug development attempts should be fur-

ther enhanced by providing full access to the information concerning discontinued

clinical trials.

The paper proceeds as follows. In the next section we outline a simple model

of pharmaceutical R&D. We consider the case of multiple candidate approaches,

as emphasized by recent economic theory of innovation (e.g., Aghion et al., 2008).

We assume that, among several approaches, at most one is the right approach

that can lead to a final invention (i.e., a marketable drug). In this environment, a

piece of “positive” information that raises the success likelihood of one approach

will simultaneously reduce that of the other approaches. Similarly, “negative”

information, e.g., when a research project based on some approach fails, will reduce

the success probability of the experimented approach, and at the same time raise

the prospects of other approaches. In a simple way, this captures the idea that

both success and failure convey useful information for subsequent innovation.

In section 3 we exploit a comprehensive dataset which covers innovative ac-

tivities of world-wide pharmaceutical and biotechnology firms as well as public

research organizations.2 The dataset covers more than 200,000 patents in the

pharmaceutical field, and provides history records about more than 22,000 drug

development projects. Exploiting this information, we link each compound that

entered preclinical or clinical development to its patent(s). For every investiga-

tional drug our database reports detailed information of development history, from

patent application to project termination (when and at which stage) or market-

ing. This provides us with a unique opportunity to trace an R&D project from

patent filing to clinical development outcome. According to the outcome of asso-

1More in general, dedicated incentive schemes such as a “market for R&D failures” (Shalem
and Trajtenberg, 2009) has been put forward to enhance the transmission of the information
regarding failures among competitors.

2This dataset is maintained at IMT Institute for Advanced Studies, Lucca, Italy.
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ciated R&D projects, we classify patents into three categories. A patent is called

(i) a success, when it is matched to a R&D project which leads to a drug being

marketed, (ii) a failure, when the associated R&D project is terminated during

preclinical or clinical trials (due to, for instance, toxicological effects or lack of

effectiveness), and (iii) inconclusive (or no information), when we have no infor-

mation about entry into clinical trials. We emphasize that, by a “successful” or

“failed” patent, we do not mean that the patent itself is a success or failure. A

patent is granted for its technological or scientific contribution, and thus represents

some “success” in advancing knowledge. These modifiers refer to the subsequent

experimental outcome of R&D projects associated with the patent. Since all new

drug candidates are patented well before entering into clinical trials and all com-

panies must successfully pass through clinical trials to launch innovative drugs,

the pharmaceutical industry provides an ideal setting to investigate the value of

failed R&D attempts.

Following the literature, we use the forward citation a patent receives from

other research entities to measure knowledge flows, and compare the citation num-

bers of success, failure, and uninformative projects. A higher citation number im-

plies a broader dissemination of knowledge contained in the patent (Trajtenberg,

1990, Lanjouw and Schankerman, 1999, Harhoff et al., 1999, Jaffe et al., 2000, Tra-

jtenberg et al., 1997, Jaffe and Trajtenberg, 2002). We find that successful patents

do receive more citations than failed ones, which in turn are cited more often than

inconclusive ones. Consistent with our theory, there is learning from both success

and failure. In addition, we also find that learning from success persists longer –

that is, knowledge generated from failure decays faster than that from success.

Section 4 discusses our main findings and provides some conclusions.

2 Learning in Pharmaceutical R&D

The pharmaceutical industry is a textbook example of a “science-based” sector

(Pavitt, 1984, Orsenigo et al., 2001). Scientific progress and drug development

are deeply intertwined: innovations of both new therapeutic products and im-

provements of existing ones (in terms of better delivery, reduced side-effects, or

improved efficacy) are driven by new discoveries in bacterial, animal, and human
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processes by scientific communities. As Science advances, firms dissect and analyse

an increasing number of research methods and R&D trajectories (Orsenigo et al.,

2001). Furthermore, biopharmaceutical firms are also involved in basic research,

with important effects on research productivity (Cockburn and Henderson, 1998).

We therefore consider scientific research in this field as a cumulative process

which consists of a series of experiments to discover the “right” or successful ap-

proach for product development (e.g., drugs). Within each technology space, such

as a disease area, J > 1 alternative candidate approaches or trajectories coexist

(e.g. different research hypothesis on biological targets and chemically related fam-

ilies of compounds).3 For the sake of simplicity we consider the case in which at

most one approach can lead to success (e.g., a treatment for a medical condition),

and it is possible that no approaches succeed. However, our results hold also in

the case in which more than one approach can be successful. The true state of

nature is described by which approach, if any, is the successful one.

Three outcomes may arise for each approach j, τ j ∈ {s, f, n}. A result τ j = s

indicates “success,” namely, positive evidence of the tested approach; τ j = f and

n represent “failure” (negative evidence) and “no result,” respectively.4 With

probability β, the experimental result coincides with the true state: the outcome

is a good sign τ j = s if approach j succeeds, and a bad sign τ j = f if it fails.

With probability γ, no useful result is generated: the occurrence of the sign τ j = n

does not depend on the true state. And, with the remaining probability 1−β−γ,

the experiment delivers the wrong result. We impose the following assumption, so

that a result τ j ∈ {s, f} remains informative.

Assumption 1. (Informative experiments) β > 1− β − γ > 0.

3Sutton (2001) takes a similar approach to analyse the R&D competition in pharmaceuticals
by considering different chemically related families as independent R&D trajectories.

4A success validates an approach and a new drug is launched in the market. However, other
drugs can follow if they demonstrate in clinical trials to be more effective than the best available
treatment. In the cancer field, chemiotherapic agents such as camptothecin (CPT), were first
discovered in the Sixties. However drug development of CPT was early discontinued due to severe
side effects. New attention was raised over the compound in 1985 when researchers discovered
that DNA topoisomerase I is the molecular target of CPT. However, the lactone ring of CPT,
necessary for a proper fit into the active site of Topo I exhibit very unstable properties. Following
this discovery different approaches have been considered to find more stable and soluble CPT
analogues and a set of more effective products has been launched.
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A lower γ raises the likelihood that the experiment delivers some outcome

(success or failure), and a higher β ensures that this outcome provides more infor-

mation, that is, it is more aligned with the true state of nature. These parameters

capture the “quality” of the experiment and determine how informative its out-

come is.5

After t experiments have been conducted, let {α̂j
t}j=1,2,...,J be the profile of the

success probability of each approach, with 0 ≤
∑J

j=1
α̂
j
t ≤ 1, due to the mutually

exclusive success of each approach. Let us assume that the t + 1th experiment is

run on approach j. We use Bayes’ rule to update success probabilities according

to the new experiment outcome.

Experiment t+1 delivers a positive sign for approach j, τ jt+1 = s, with probabil-

ity α̂
j
tβ+(1−α̂

j
t )(1−β−γ). With probability α̂

j
t , this approach is the successful one

and the experiment gives the right outcome with probability β. With probability

1− α̂
j
t , approach j cannot lead to success but the experiment mistakenly delivers

the opposite result, with probability 1− β − γ. The updated success probabilities

are

α̂
j
t+1 =

α̂
j
tβ

α̂
j
tβ + (1− α̂

j
t )(1− β − γ)

> α̂
j
t (1)

for approach j, and

α̂k
t+1 =

α̂k
t (1− β − γ)

α̂
j
tβ + (1− α̂

j
t )(1− β − γ)

< α̂k
t (2)

for all other approaches k ∈ {1, 2, . . . , J}, k 6= j. Similarly, the experiment gives

a negative result, τ jt+1 = f , with probability α̂
j
t (1 − β − γ) + (1 − α̂

j
t )β, and the

5This type of research is “applied” in the sense that the experiment is conducted only on
one approach, despite its informational externality to be shown below. Instead, “basic” or
“fundamental” research may be viewed as experiments delivering direct results about several
approaches. This distinction between basic and applied research stresses not the timing of
invention, but the contribution to the knowledge accumulation process. Another type of research
is that of research tools, which may be modeled as an invention which increases the precision of
applied research, i.e., a better research tool increases β.
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updated probabilities are

α̂
j
t+1 =

α̂
j
t (1− β − γ)

α̂
j
t (1− β − γ) + (1− α̂

j
t )β

< α̂
j
t (3)

for approach j, and

α̂k
t+1 =

α̂k
t β

α̂
j
t (1− β − γ) + (1− α̂

j
t )β

> α̂k
t (4)

for other approaches. Lastly, the experiment generates an uninformative outcome,

τ
j
t+1 = n, with probability α̂

j
tγ + (1− α̂

j
t )γ = γ, and assessment of success proba-

bility remains unchanged:

α̂
j
t+1 =

α̂
j
tγ

α̂
j
tγ + (1− α̂

j
t )γ

= α̂
j
t , α̂k

t+1 =
α̂k
t γ

α̂
j
tγ + (1− α̂

j
t )γ

= α̂k
t . (5)

By mutual exclusivity, a positive outcome for one approach “crowds out” the

prospects of other approaches. More interestingly, a failed experiment reduces the

success probability of that approach (and of the whole field), but at the same

time it increases the probability that the successful route may be concealed in

other approaches. In other words, both successful and failed experiments are

informative.

To test this insight empirically, we use forward citations to assess the knowledge

contribution of a patented technology. We consider a very simple R&D decision

and patent citation generation process.6 Once a new approach is pursued (i.e. a

new patent is applied for claiming the new trajectory), let us assume that all the

previous patents in the same fields are cited, i.e., there is no strategic citation.7

6Strategic interactions at both the final market and R&D competition stages can be intro-
duced to enrich the model, but as a first step, we leave these concerns aside in order to focus on
the learning mechanism described above.

7The importance of pharmaceutical patents as an incentive to innovation is unquestionable.
Survey evidence on the nature and the strength of appropriability conditions in the US and
Europe show that the biopharmaceutical industry is the one where patents received the highest
score as an effective mechanism for protecting intellectual property rights as well as the one
with the highest propensity to patent (Cohen et al., 2000, Arundel and Kabla, 1998). As a
result, when analyzing the pharmaceutical industry, patents can be considered a good proxy for
innovations.

6



The number of forward citations a patent receives is thus positively correlated

with subsequent inventors’ incentives to enter the field. Denote α̂∗

t ≡ max{α̂j
t}

as the highest success probability in the field after t experiments, and let the

corresponding approach be j∗. For the sake of simplicity, we assume that a firm’s

incentive to enter and start a research project increases in probability α̂∗

t . Post-

entry, the firm, with knowledge {α̂j
t}, conducts experiments on the most promising

approach j∗. In sum, these assumptions imply that a patent will receive more

forward citations if its outcome raises the highest success probability in the field

by a larger magnitude.

We now derive our hypothesis. First, consider the firm’s experiment on ap-

proach j∗. An uninformative result (τ j
∗

t+1 = n) does not change the knowledge

stock or the entry incentives, {α̂j
t+1} = {α̂j

t}. But a positive sign (τ j
∗

t+1 = s)

raises the highest success probability. A positive experimental result maintains

the status of j∗ as the most promising approach, and raises its success probability,

α̂
j∗

t+1 > α̂
j∗

t . Therefore, a patent associated with a successful experiment should

receive more forward citations than one with no informative outcome.

If the experiment outcome is negative, (τ j
∗

t+1 = f), then the success probability

of approach j∗ becomes lower. But the information brought by a failed experiment

may sufficiently boost the success probability of other approaches, so that, after

incorporating the new information, the highest success probability in the field is

larger than α̂
j∗

t . That is, there may exist k 6= j∗ so that:

α̂k
t+1 =

α̂k
t β

α̂
j∗

t (1− β − γ) + (1− α̂
j∗

t )β
> α̂

j∗

t ⇔ β

(

α̂
j∗

t −
α̂
j∗

t − α̂k
t

α̂
j∗

t

)

> (1− β − γ)α̂j∗

t .

(6)

When this condition holds, a patent associated with a failed outcome will also

receive more forward citations than one with uninformative outcomes.8 In gen-

eral, this condition requires the difference in success probability between the most

promising and the second most promising approach to be not too large. For in-

stance, if at the initial state, i.e., before any experiments are run, the prior belief

8If we assume that patents with informative outcomes receive more forward citations than
those with uninformative outcomes, then this relationship holds directly from the information
spillover of failed experiments.
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is characterized by uniform distribution, α̂j
0 is the same for all j, then the condi-

tion holds for the first experiment. Alternatively, under the assumption of uniform

prior, if all past experiments are failures and there is still some “untested” approach

k, then the success probability of approach k is the same as α̂j∗

t ; the condition also

holds.9 These two scenarios seem to fit the pharmaceutical context well, where

most patents either have no informative results in their backward citations, or only

cite past failures. In our data, the vast majority of patents (80.34%) do not con-

tain any informative outcomes in their backward citations. By summing patents

that cite only uninformative or negative results, we obtain that 88.12% of total

pharmaceutical patents cite no successful patent.

Second, we compare positive and negative experimental outcomes. Fixing α̂
j∗

t ,

compare the highest success probability after an experiment is conducted on ap-

proach j∗. For k 6= j∗,

α̂
j∗

t β

α̂
j∗

t β + (1− α̂
j∗

t )(1− β − γ)
>

α̂k
t β

α̂
j∗

t (1− β − γ) + (1− α̂
j∗

t )β
(7)

⇔ α̂
j∗

t [(1− α̂
j∗

t )− α̂k
t ]β > [α̂k

t (1− α̂
j∗

t )− α̂
j∗2
t ](1− β − γ), (8)

because β > 1− β − γ, and because

α̂
j∗

t [(1− α̂
j∗

t )− α̂k
t ] > α̂k

t (1− α̂
j∗

t )− α̂
j∗2
t ⇔ α̂

j∗

t > α̂k
t , (9)

where α̂j∗

t + α̂k
t ≤ 1. A positive result must raise the highest success probability by

a larger amount than a negative result, and so must receive more forward citations.

Note that this is robust to the history of research, as summarized in {α̂j
t}.

To summarize, we test the hypothesis that a patent associated with a successful

project receives more citations than one associated with a failed project or a patent

whose project is inconclusive. When condition (6) holds, a patent corresponding

to a failed project also receives more forward citations than one corresponding to

a project which is inconclusive.

Lastly, note that we do not rule out the possibility that none of the candidate

approaches are correct. Therefore, if more and more failures are accumulated,

9As for assumption 1, β > 1−β−γ, condition (6) certainly holds if α̂j∗

t −[(α̂j∗

t −α̂k
t )/α̂

j∗

t ] = α̂j∗

t ,

i.e. when α̂j∗

t = α̂k
t . More generally, it holds when the two probabilities are not too far apart.
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eventually an extra failed experiment only indicates that the whole research field

is an impasse. We may observe fewer entries, and thus fewer forward citations, for a

failed project as more knowledge is accumulated. This is in contrast with previous

works such as those of Fershtman and Rubinstein (1997), Haller and Pavlopoulos

(2002), Shalem and Trajtenberg (2009), in which one (and only one) right research

always exists, and failure in one approach always brings good news in the form of

narrowing the range of future exploration.

To help the reader thinking about the process we have in mind, consider, as

an example, the case of p38 mitogen-activating protein kinase, a serine-threonine

kinase that regulates the inflammatory processes.10 The biological target was first

exploited in two patents by GlaxoSmithKline (GSK) in the early 1980s. Since

then, various companies have entered the field and different approaches have been

considered. Some companies have patented compounds with structural homology

to the original GSK lead compound (that was discontinued in 1998 due to the

emergence of toxicological problems), and cited the GSK patent. Others have

explored alternative approaches based on the same target but chemically unrelated

families of drug candidates. After more than thirty years of research and multiple

failures no p38 inhibitor has been commercialized yet. As a result, despite the

patent covering the GSK leading compound has received several citations it has

been recently questioned whether this inhibitors have still to be considered as

viable therapeutic opportunities (Gaestel et al., 2009).

3 Empirical Strategy

3.1 Data and measures

The Pharmaceutical Industry Database (PhID) maintained at IMT Institute for

Advanced Studies in Lucca (Italy) contains comprehensive information on innova-

tive activity within the pharmaceutical industry, including R&D project level data,

patents and their citations, and collaborations and sales data. It has two broad

categories of information, pharmaceutical patents and drug development projects.

10The example presented here are drawn from Magazzini et al. (2009). Please refer to the
original paper for additional details.
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The database covers all pharmaceutical and biotechnology patents granted by the

United States Patent and Trademark Office (henceforth, USPTO) since 1965, with

information such as numbers of backward citations and forward citations (up to

May 2004), application dates, and names of assignees. It also includes worldwide

R&D projects for the past 30 years, with more than 22,000 drug development

projects in total. The database tracks the development history of each compound,

from patent application, preclinical and clinical trials, to final marketing. If a

research project (chemical compound) was aborted, information about when ter-

mination was announced is also reported.

Our empirical strategy is to compare the patterns of forward citation among

patents with different project outcomes. We focus on the pharmaceutical industry

and consider only citations from other pharmaceutical patents.11 We distinguish

self-citations from citations by other organizations. It is interesting to compare the

dynamics of the two groups as self-citations and citations by other organizations

are considered as characterizing of different patterns in knowledge diffusion. On

the one side, citations by other inventors have been proved to be good proxies

for knowledge flows in the literature (Jaffe et al., 2000). On the other side, self-

citations may measure factors other than learning, such as the cumulative nature

of the technology and the extent to which innovators are able to benefit by their

own research efforts (Hall et al., 2001).

To classify patents according to project outcomes, we exploit the information

provided by the dataset, where a patent search was conducted for each compound

and one or more relevant patents protecting the compound were identified.12 Since

our data source only provides citation information for US patents, we restrict

analysis to those projects that can be matched with US patents (either directly

or via the patent family). By doing this, we also avoid institutional factors, as

different patent offices may adopt different examination procedures which may

lead to different citation behaviors (Breschi and Lissoni, 2004, Michel and Bettles,

11We define pharmaceutical patents as those in classes A61K and A01N according to the
International Patent Classification (henceforth, IPC; see Lanjouw and Cockburn (2001)) and US
classes 424, 435, 514, and 800.

12The relationship between R&D projects and patents is one-to-many. When more than one
patent is associated with a project, we considered all associated patents (and replicated the
record accordingly). In our sample, each project is associated with an average of 1.1 US patents.
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2001).13 According to this criterion, we are able to identify the patent history of

49% of projects in the dataset.

We also select patents whose projects have successful outcomes (i.e., a new drug

was launched on the market) or failed ones (i.e., the project was aborted, due, for

instance, to the emergence of toxicological effects or to lack of effectiveness). We

refer to these patents as successful or failed patents, depending on the outcome

of the associated R&D projects. Overall, there are about 2,000 projects with

informative outcomes.

As a last step to construct the data for empirical analysis, we create a “reference

group,” i.e., those patents for which we have no information about preclinical

or clinical development. For each informative (successful or failed) patent, we

randomly match it with a patent from the pool of pharmaceutical patents with

the same application year, publication year, and IPC class, but with no information

about preclinical or clinical development, that is, the protected compound has not

yet entered preclinical or clinical trials.14 These are projects of “no results,” or

“uninformative results” in our theoretical model.

3.2 Methodology

We estimate and compare the lag distributions of forward citations (self-citations

and citations by other organizations) among different groups of patents, that is,

the frequency of citations received (citation intensity) across the time differences

between the granting years of citing and cited patents (citation lags).

The analysis of lag distributions aims at revealing some interesting dynamic

patterns of forward citations according to patent groups. We use the double-

exponential function to model the citation lag distributions of successful and failed

13We further excluded old compounds and/or natural products, which do not have any asso-
ciated patent.

14Our dataset contains all preclinical and clinical trial information in the United States and
major European countries. Some projects may have been misclassified as inconclusive because
their trials were conduced in other countries and not reported in the dataset. However, absent a
mutual recognition precedure, the Food and Drug Administration and the European Medicines
also consider the outcome of clinical trials conducted in third countries as inconclusive for drug
launches in the United States and Europe respectively. Thus, we are confident that this does not
significantly bias our result. If at all, it only works against our hypothesis that failed projects
provide more information than inconclusive ones.
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patents vis-à-vis uninformative patents. This model provides a flexible framework

to study the process of citation generation: An exponential process to capture

knowledge diffusion is coupled with a second exponential process to capture knowl-

edge obsolescence (Jaffe and Trajtenberg, 1996, Caballero and Jaffe, 1993). We

use the following specification as in Jaffe and Trajtenberg (1996):

p(t, T, τ) = δτ0 (t, T ) exp[−δτ1 (T − t)](1− exp[−δ2(T − t)]), (10)

where τ ∈ {s, f, n} is the project outcome of the cited patent (s for success, f

for failure, n for uninformative outcome), t the granting year of the cited patent,

and T the granting year of the citing patent, with T > t. Therefore, p(t, T, τ) is

the likelihood that a patent granted in year T will cite a patent granted in year

t with outcome τ . Parameter δ·0 is related to the overall likelihood of being cited

(average citation intensity). Parameters δ·1 and δ2 capture the rates of knowledge

obsolescence (i.e., citations to patent granted in year t decrease and eventually

stop, as the patented innovation is replaced by new knowledge)15 and knowledge

diffusion, respectively. We assume that granting years T and t only affect average

citation intensity δ·0, and that the project outcome of cited patent τ affect both

δτ0 and the rate of obsolescence δτ1 , but not the rate of diffusion δ2. We keep δ2

constant over time and project outcomes, to avoid identification issues.16

To estimate equation (10), we compute the observed citation frequency as the

ratio between C(t, T, τ), the number of citations received by patents of outcome τ

and granted in year t from patents granted in year T , and the potential number

of citations, i.e., the number of citations which would have been observed if all

patents granted in year T had cited all patents granted in year t with outcome τ :

p(t, T, τ) =
C(t, T, τ)

N(t, τ)N(T )
,

15Higher δ1 corresponds to faster obsolescence, i.e., the citation function is shifted to the left
for higher values of δ1.

16Increases in δ2, holding δ1 constant, increases the overall citation intensity, i.e., they are very
close to increases in δ0. As a result, models in which both δ0 and δ2 vary as a function of the
same set of characteristics are not identified. Convergence problems also forbid the inclusion of
all cited-year effects. We follow the literature and solve the problem by introducing cited-year
effects defined on the basis of 5-year time periods (Jaffe and Trajtenberg, 1996).
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where N(T ) is the number of (citing) patents granted in year T , and N(t, τ) the

number of (cited) patents granted in year t and with outcome τ . For estimation,

we use nonlinear least squares and weight each observation by [N(t, τ)N(T )]1/2.

3.3 Results

The results from the double-exponential analysis are shown in Figure 1 and Table

1. Note that the regression results are obtained by comparing the citation patterns

of informed patents (success or failure) against the benchmark (those patents with

no information about preclinical or clinical development).17 In Figure 1, we plot

the estimated citation lag distributions of different groups of patents, including

those without known results. We distinguish self-citations from citations by other

organizations. The horizontal axis is the citation lag, i.e., the difference in granting

years between citing and cited patents (T − t), and the vertical axis is citation

intensity. We use results from Model 2 in Table 1 to draw the fitted lines in Figure

1. The vertical line at the lag of eight years (after the cited patent is granted)

indicates the average project duration (from patent application to achievement of

project outcome) in our data.18

Our hypothesis predicts that successful patents receive more citations than

failed ones, which in turn have a higher number of forward citations than patents

with no results. In Table 1, the estimates of overall likelihoods of forward citations

for failed patents (δf0 ) and successful patents (δs0) are both greater than one when

citations by other organizations are taken into account, whereas in the case of self-

citations we cannot reject the null hypothesis that the failed and successful patents

have an average citation intensity that is equal to the one of the uninformative

patents. This means that failed and successful patents are more likely to be cited

17We stress here that our analysis was undertaken by comparing the three groups of patents
in terms of numbers of citations. A known source of noise in citation studies comes from the fact
that citations in the final patent document are not only those declared by the inventors, but also
added by the examiner. Recent literature shows that analysis based on pooled sets of citations
may suffer from bias (Alcácer and Gittelman, 2006). As long as the number of citations added
by the examiner is unrelated to the outcome of the associated R&D project (which is unknown
when the patent is granted), our relative comparison is unaffected by the examiner-citation issue.

18The average length is 7.8 years for failed projects and 8.3 years for successful ones. These
figures are consistent with previous studies on the duration of the drug development process
(Abrantes-Metz et al., 2004).
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Figure 1: Estimated citation lag distribution function, citations by others and
self-citations
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by other organizations than the reference group, i.e., those without any project

information. In Model 2, we can also reject the null hypothesis that δs0 equals

δ
f
0 at the 5% level, meaning that in the case of citations by other organizations,

our hypothesis is supported by our data. On the contrary, this is no longer true

when self-citations are taken into account. This result is also illustrated in Figure

1, where the fitted line for failed patents lies between the fitted lines for two

other groups of patents. Previous literature emphasizes a positive correlation

between the value of a patent and the number of forward citations it receives

(Trajtenberg, 1994, Lanjouw and Schankerman, 1999, Harhoff et al., 1999, Jaffe

et al., 2000, Trajtenberg et al., 1997, Jaffe and Trajtenberg, 2002, Gambardella

et al., 2008). From this point of view, our result thus suggests that there is a

value attached to a failed patent that spills over firm boundaries. Although the

compound associated with the patent will never reach the market (e.g., due to

the emergence of toxicological problems or lack of effectiveness), the open research

approach and related information is subsequently exploited by other inventors.

The double-exponential model allows us to examine the dynamics of the knowl-

edge diffusion process further. When citations by other organizations are consid-

ered, failed patents have an earlier “peak” of forward citations (i.e., modal lag)

than successful ones.19 Another interesting feature is that the citation patterns for

successful and failed patents differ significantly only five years after patent grant.

For the first five years, there is no significant difference between the two trends.

Comparison of the estimates of δ1 (rate of obsolescence) reveals a difference be-

tween successful and failed patents in terms of citations by other organizations,

whereas the difference fades away when self-citations are considered. In this as-

pect, when citations by other organizations are considered, failed patents share

very similar dynamics as with patents with no results. The value of δf1 is very

19Our results are consistent with the estimates of the Drugs and Medical sector in Hall et al.
(2001), except that we obtain a lower value of δ2, the rate of knowledge diffusion. However, com-
parison is made difficult by the fact that we separately analyze citations by other organizations
and self-citations. This limitation notwithstanding, note that Hall et al. (2001) report a citation
lag distribution in the Drugs and Medical sector that is flatter than in other sectors such as
Computers and Communications, Electrical and Electronics, Chemical, and Mechanical sectors,
where higher peak tends to come earlier in time. In other words, knowledge in the Drugs and
Medical sector diffuses less rapidly and takes longer to become obsolete. Important information
about protected compounds, such as toxicological effects and effectiveness, is revealed over time,
and leads to a lengthier process to generate citations.
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Citations by others Self-citations
Coefficients Model 1 Model 2 Model 3 Model 4

δ
f
0 1.264* 1.329* 1.194* 1.121*

(0.182) (0.111) (0.197) (0.173)
[1.451] [2.964] [0.985] [0.699]

δs0 1.309* 1.511* 0.926* 0.903*
(0.158) (0.108) (0.141) (0.127)
[1.956] [4.731] [-0.525] [-0.764]

δ1 0.107* 0.084* 0.323* 0.300*
(0.008) (0.013) (0.027) (0.037)

δ
f
1 0.827* 1.049* 0.710* 0.653*

(0.135) (0.108) (0.086) (0.087)
[-1.281] [0.454] [-3.372] [-3.989]

δs1 0.554* 0.604* 0.491* 0.413*
(0.087) (0.077) (0.060) (0.066)
[-5.126] [-5.143] [-8.483] [-8.894]

δ2 0.114* 0.248* 0.094* 0.197*
(0.014) (0.042) (0.013) (0.061)

Cited year effects no yes no yes
Citing year effects no yes no yes

R-squared 0.686 0.858 0.609 0.641
Dependent variable: citation intensity

Standard errors in parenthesis.

In square brackets: t-stat. for H0: parameter = 1 (if relevant)

* statistically significant at 5% level.

Table 1: Results of estimation of double-exponential function

close to one, which implies no significant difference between the rates of obsoles-

cence in the two groups. On the contrary, the value of δs1 is significantly lower than

one, i.e., the knowledge embedded in patents protecting marketed compounds be-

comes obsolete less quickly than knowledge in other groups. Indeed, the citation

intensity of marketed compounds is quite stable after marketing, whereas the ci-

tation intensity of failed patents decreases substantially. When self-citations are

considered, both δs1 and δ
f
1 are lower than 1, pointing to smaller obsolescence rates

of failed and successful patents with respect to the uninformative ones.

We now dig further into the citation patterns of successful and failed com-
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pounds after the outcome is known. Figure 2 and Figure 3 compare the average

number of citations received by failed and successful patents with the control group

of inconclusive patents before and after the outcome of the project is disclosed (i.e.

either the compound is marketed or termination of the trial is announced). First,

we compute the ratio of the citations received by s- and f -patents to the average

number of citation in the control group (n) each year after the publication.20 Then,

the ratio are arranged around the time when the outcome of the project becomes

known: time 0 is the time of market launch for successful drugs or the time of

announcement of discontinuation for failed projects. We distinguish citations by

others (Figure 2) from self-citations (Figure 3).

Figure 2 shows that 5 years before the outcome is known the number of ci-

tations to failed and successful patents is about twice the number of citations to

patents without information about clinical trials. Few years before the outcome,

the two series start to diverge. On the one side, successful compounds pass phase

III of clinical trials and enter the registration status, so people get to know that

the product will be launched soon. Conversely, early evidence of problems in clin-

ical trials (e.g., side effects, lack of effectiveness, toxicity) is likely to emerge for

those compounds that are deemed to fail. For failed patents, once the outcome is

announced, the number of citations slowly converges to the number of citations

of non-informative compounds. However, citations to failed patents are signifi-

cantly higher than citations to the uninformative ones even several years after the

clinical trial outcome is known. The gap between citations received by failed and

uninformative patents quantifies the informative contribution of failed drug to the

innovation process in pharmaceuticals.

Figure 3 depicts a similar pattern for self-citations. However, the converge of

the failed patents curve to the uninformative benchmark is faster. Since the likely

outcome of the clinical trial is known to the sponsoring organization well before

the public announcement, self-citations can anticipate citations by others.

All in all, we show that failures play an important role in pharmaceutical

research, especially for unmet medical needs in which no effective treatment has

been developed yet. Patents covering drug candidates that failed to pass clinical

trials obtain a larger number of citations by other innovators than patents without

20Ratios are computed grouping patents based on publication year.
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Figure 2: Relative number of citations by others for failed (red line) and successful
patents (blue line) as compared to the uninformative ones (reference line equal
to 1) before and after the project outcome is disclosed (time 0), in years. 95%
confidence interval are also reported.
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Figure 3: Relative number of self-citations by others for failed (red line) and
successful patents (blue line) as compared to the uninformative ones (reference
line equal to 1) before and after the project outcome is disclosed (time 0), in
years. 95% confidence interval are also reported.
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clinical evidence. In pharmaceutical R&D, researchers tend to cumulate on failed

drug development attempts over a long time span.

4 Concluding Remarks

In this paper we present empirical evidence of the contribution of failure vis-á-vis

success to the pharmaceutical innovation process. We also suggested a theoretical

framework to capture the learning mechanism. Overall, the prediction generated

by the theory are consistent with the empirical results. In other words, failures as

well as successes contain valuable lessons for future endeavor.

In light of this finding, an important policy question is whether an inventor

should be rewarded for failures, or negative results; and if so, how to construct a

proper incentive mechanism, which may be highly sensitive to the technological

and organizational features of the prevailing context. In the world of innova-

tion, for instance, for firms in our dataset, patent policy, such as infringement

issues, determines whether they can reap some reward from their failure. And in

other fields, inventors may not be able to secure a patent based on their failures

in the first place. To the extent that this knowledge should also be rewarded,

this problem may be somewhat mitigated (for academic players at least) by the

introduction of (peer-reviewed) journals of negative results, such as Journal Neg-

ative Results - Ecology and Evolutionary Biology, Journal of Negative Results in

Biomedicine, Journal of Pharmaceutical Negative Results. But whether this is suf-

ficient, and more generally, how to reward failure in other contexts, such as in a

profit-maximizing firm, remain an interesting topic to be tackled.

Our work also contributes to the ongoing debate on the disclosure of clinical tri-

als information. Traditionally, data collected by pharmaceutical companies while

conducting clinical trials have been considered confidential and legally designated

as trade secret. However, the situation with regard to clinical trial disclosure is

changing at a fast pace. In the United States, the Food and Drug Administration

Amendment Act (FDAA) of 2007 requires that results of completed clinical trials

of FDA-approved or cleared drugs to be electronically available in a public reg-
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ister.21 Unsuccessful trials were not covered by the result disclosure policy even

if an extension of FDAAA to cover failed clinical trials is currently under discus-

sion (Zarin et al., 2011). Our findings on the information value of failed clinical

trials provide support to the extension of the results disclosure policy to include

unapproved drugs.

Another line for future study is to extend and enrich the analysis in this paper.

To focus on learning, we left out some important concerns in our model. Among

others, we disregarded strategic behavior in our theoretical treatment It would be

interesting to investigate how strategic concerns (both in market competition and

R&D competition) affect a firm’s decisions to exploit others’ as well as its own

successes and failures, and how these factors distort the value of failure in the

innovation process for small and big research organizations.
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