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Robustness and assortativity for diffusion-like processes
in scale-free networks

G. D’Agostino
1
, A. Scala

2,3(a)
, V. Zlatić
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Abstract – By analysing the diffusive dynamics of epidemics and of distress in complex networks,
we study the effect of the assortativity on the robustness of the networks. We first determine by
spectral analysis the thresholds above which epidemics/failures can spread; we then calculate
the slowest diffusional times. Our results shows that disassortative networks exhibit a higher
epidemiological threshold and are therefore easier to immunize, while in assortative networks
there is a longer time for intervention before epidemic/failure spreads. Moreover, we study by
computer simulations the sandpile cascade model, a diffusive model of distress propagation
(financial contagion). We show that, while assortative networks are more prone to the propagation
of epidemic/failures, degree-targeted immunization policies increases their resilience to systemic
risk.
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Introduction. – The heterogeneity in the distribution
of contacts in a population is one of the key factors affect-
ing the propagation of diseases [1]. For example, a large
variance of the degree (the number of a node neighbours)
distribution is a typical feature of complex networks [2,3]
that plays a role in determining the dynamical process
defined on the networks itself [4]. It has been shown [5,6]
that in the presence of a large heterogeneity, the value
of epidemic threshold tends to vanish in the limit of infi-
nitely large network leading therefore to a finite proba-
bility of pandemic outbreak [7,8]. Such results have been
obtained for specific models of diffusion processes as SIR
and SIS on complex networks [1,6,9]. Similar considera-
tions apply to the analysis of any kind of propagation, as
that of financial distress, even if in the latter case the chan-
nels of propagation are different from the epidemiological
ones. Most of the derivation of the analytical results are
based on the mean-field hypothesis and on the analysis
of the spectral properties of suitable matrices associated
with the network [6,10–12] (we describe that matrices in
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detail in the following). This kind of studies is particular
useful in order to define suitable procedures to stop the
propagation of an epidemic [13–15].
In comparison to the humongous efforts that have

been devoted to understand the role of the distribution
of contacts in the networks, less attention has been paid
to the assortativity (or vertex-vertex degree correlation)
of the networks. Actually, most if not all real networks
have non-trivial values of this vertex-vertex correlation.
In particular, some networks exhibit “assortative mixing”
on their degrees, i.e. high-degree vertices tend to be
attached to high-degree vertices; other networks show
“disassortative mixing”, i.e. high-degree vertices tend
to be attached to small-degree vertices. The network’s
degree-degree correlation can be summarized by a
single scalar quantity r called the assortativity coeffi-
cient [16]. This quantity assumes the value r= 0 for
degree-uncorrelated networks, is r > 0 for assortative
networks and r < 0 for disassortative ones. Assortative
correlations are typically observed in social networks [16],
while disassortative connections are mainly found in
technological and biological networks [17].
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We produce and analyse different networks with the
same degree sequence but different assortativity. We first
focus on spectral analysis, a very general approach to
determine the diffusion dynamics on a complex network
by matrix analysis; in particular, we derive the differ-
ence in epidemics propagation for networks with differ-
ent assortativity properties. We then focus on a classi-
cal model of distress propagation, the BTW sandpile [18];
using computer simulations, we study the effectiveness of
targeted immunization policies with respect to the assor-
tativity of the underlying network.

Methods. – Formally, a network (or a graph) is defined
as a pair G= (V,E), where V is the set of NV nodes
and E is the set of NE links; each link joins two nodes.
To each graph G we associate its adjacency matrix A,
defined as Aij = 1 if nodes i,j are connected, Aij = 0
otherwise. We consider networks that are simple (no self
loops, i.e. Aii = 0) and undirected (Aij =Aji). The degree
of node i is the number of its neighbours and is defined as
ki =

∑
j Aij . The Laplacian matrix of a network is defined

as L≡K −A, where K is the diagonal matrix of degrees
Kij = kiδij . The Laplacian matrix is the analogous of the
Laplacian operator and describes the diffusion of random
walkers on the network.
The assortative coefficient r is the degree-degree

Pearson correlation coefficient of two vertices connected
by an edge r= [〈kq〉− 〈(1/2)(k+ q)〉2]/[〈(1/2)(k2+ q2)〉−
〈(1/2)(k+ q)〉2], where k, q are the degrees of two adjacent
vertices; averages 〈· · ·〉 are over the edges. In order to
sample the space of possible networks with respect to the
assortativity, we use the procedure of ref. [19].
We sample the statistical ensemble of graphs {G} with

probability measure µ(G)∝ e−H(G) induced by the Hamil-
tonian H(G) =−J∑ij Aijkikj , where J is the coupling
constant measuring the strength of the interaction.
In order to sample configurations according to µ(G),

we explore the configuration space by link rewiring [20]
and accept a link rewiring with probability e−∆H . Once
the initial network is given, such procedure leaves the
initial degree sequence unchanged. We explore 21 equally
spaced values of J ranging from −10 to 10 producing 100
independent configurations for each J . Since H ∝ 〈kikj〉,
the average H/J sampled in this statistical ensemble,
decreases if the assortativity increases and vice versa
(fig. 1). Notice that the values of the assortativity r with
respect to the parameter J is monotonously increasing
(fig. 1, inset).

Spectral analysis. – While the sampling procedure
is general, in this paper we focus on initial network
configurations obtained by the Barabási-Albert preferen-
tial attachment (BA networks) [21]. For each value of J ,
we average over 102 networks of 104 nodes each.
We first calculate the maximum eigenvalue Λ1 of the

adjacency matrices. The adjacency matrix A dictates
which nodes can be immediately reached by a “virulent”
node and is hence central in describing not only the
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Fig. 1: Values of the energy per link H/JNE , vs. the assorta-
tivity coefficient (i.e. degree-degree correlation) r, for all the
2100 networks of 10000 nodes. In the inset the coefficient r for
the same networks as a function of J .
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Fig. 2: (Color on-line) Λ−11 vs. J . The decrease of Λ−11 with
J and therefore with assortativity indicates a lower epidemic
threshold; hence disassortative networks are less prone to
epidemic spreading.

propagation of epidemics but also the propagation of
faults/failures [11]; its maximum eigenvalue Λ1 is related
to how fast a process can spread in a network.
For the SIS model of infections, Wang and coauthors

have shown that the epidemic threshold τ of a network
is exactly τ =Λ−11 [11]; τ is defined as the critical ratio
among the propagation rate and the recovery rate of a
disease above which epidemics ensue.
We find that Λ−11 decreases with assortativity: in the

range of correlation explored, the most disassortative
networks show an epidemic threshold about 60% higher
than most assortative ones (fig. 2). Our findings confirm
the idea that avoiding direct connections between hubs
(highly connected nodes) may provide protection against
epidemics [22].
We then calculate the first non-zero eigenvalue λ2 of

the Laplacian matrices. The Laplacian L describes the

68006-p2



Robustness and assortativity for diffusion-like processes in scale-free networks

-10 -5 0 5 10
J

1

2

3

λ2
-1

Fig. 3: (Colour on-line) λ−12 vs. J . The increase of λ−12
with J and therefore with assortativity indicates a growth
of the longest relaxation time for diffusion processes on the
network. Analogously, both the slowest vibrational mode and
the synchronization time increase with assortativity.

diffusive process ∂tρ=−Lρ on the network. While the
first eigenvalue λ1 = 0 is associated to the stationary
distribution, the first non-zero eigenvalue λ2 is the inverse
timescale of slowest mode of diffusion.
In general, we can think of λ−12 as the longest timescale

after which a perturbation (like the infection of a site)
that spreads diffusively will settle a new state (like
an epidemics) in the network. Therefore, a small value
of λ−12 means that there is less time for intervention
before a network is totally compromised by randomly
propagating failures or epidemics; in this respect most
assortative networks show times up to 80% higher than
most disassortative ones (fig. 3).
The eigenvalues of L govern also the harmonic dynam-

ics of a network: the adimensional vibration equation
in the node displacements x can in fact be written as
∂2t x=−

∑
j Aij(xi−xj) =−Lx and again the period

of the slowest oscillatory mode is λ−12 . Almendral and
coauthors have shown [23] that in general synchroniza-
tion times in complex networks have an almost linear
dependence on λ−12 .

Distress propagation. – Beside epidemiological
models, there are other types of contagion propagation
paradigms that are especially suitable for accounting
cascades of financial distress. Avalanche dynamics or
domino effect (as it is frequently indicated in economics)
is currently regarded as an important feature during finan-
cial crises. These phenomena are frequently modelled by
means of a class of cellular automata known as sandpile
models [18] that can mimic financial distress propa-
gation [24]; financial crisis fluctuations are described,
at least qualitatively, by the avalanches of a sandpile
model [25]. Conservation laws provide the connection
between sandpile models and random-walk (diffusive)
models [26].

In sandpiles every vertex has a given capacity to store
a scalar field (originally “sand”). For our purposes, such
a scalar can represent financial distress (debts) or the
probability of a failure. When such a quantity reaches
a threshold value, the vertex becomes “bankrupt” and
passes its distress to the neighbours. Similarly to previous
studies [27–29] we set the failure threshold equal to the
degree k of vertex. The simulation time is discrete and at
every step we add a grain of sand (distress) on a randomly
drawn vertex. When the threshold is reached, the vertex
topples and distributes a grain of sand (unit of distress)
to every neighbour. Topplings continue as long as some
vertex is above threshold; a single toppling can therefore
produce an avalanche. The size s of an avalanche is defined
as the number of topplings occurring until there are no
more vertices above threshold. When the avalanche stops,
we add new grains until a new avalanche starts and so on.
With respect to the original formulation, here we assume
that a fraction P of the vertices are immunized and that
such vertices can absorb infinite amount of sand (distress);
this is the analogous to say that a vertex is under the
coverage of a central bank. To each strategy of choosing
the immunized vertices corresponds a policy aimed to limit
avalanche propagation, a feature of particularly relevance
in the case of a financial crisis; it is anyhow important to
use the least number of immunized vertices to minimize
the financial cost.
By using this cellular automaton we determine the

effects of the assortativity on different policies to stop the
propagation of distress; in particular, we consider both a
random and a targeted policy of vertex immunization.
In the random policy we pin PNV randomly chosen

vertices; for such a case, assortativity does not play a
significant role and the fraction P of pinned nodes (i.e.
nodes that can absorb any amount of distress) is the only
control parameter.
For small P avalanche sizes are power-law distributed

with an exponent γ = 3/2 [30]; this is the worst scenario,
where avalanches of the size of the system (systemic crisis)
can occur.
The avalanche size frequency takes the functional form
f(s)∝ s−3/2e−s/ξ; the cutoff ξ is a measure of the largest
possible avalanches and increases with P . From the point
of view of the policy maker, it is crucial to limit the size
ξ of the systemic crises keeping the minimum effort (i.e.
small P ).
In the targeted immunization policy we sort the vertices

according to their degrees and pin the first PNV starting
from the largest hub. Such policy takes into account the
fragility of the hubs in power-law networks [31]. At fixed
P , we find that targeted immunization is always more
efficient than the random one; moreover, the effects of
the assortativity become evident even for small values of
P . In fig. 4 we present the avalanche size distribution
for the targeted immunization on networks with large
(J = 10) and small (J =−10) assortativity. While the
exponent of the power law remains γ = 3/2 for both
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Fig. 4: (Colour on-line) Avalanche size frequency distribution
for an ensemble of 100 networks of 10000 nodes each; for
each network, we immunise (pin) the PNV nodes with largest
degrees. In the figure we compare the most assortative networks
with the most disassortative ones. As expected, increasing P
mitigates systemic cascades by depressing the probability of
the biggest avalanches, i.e. decreasing the cut-off values ξ. At
fixed P , we observe a clear improvement between the cut-off
values ξ for assortative networks with respect to disassortative
ones, i.e. the size of the largest avalanche is smaller. As an
example, immunizing 10% (P = 0.1) of the banks, assortativity
improves the effectiveness of the policy by factor ∼4. Such an
effect is monotonous: as an example, the avalanche frequencies
at P = 0.10 for neutral (r∼ 0) networks has an intermediate
behavior respect to the assortative and the disassortative cases.

immunization policies, we find that the value of the cutoff
ξ strongly depends on the assortativity of the network.
In particular, assortative networks are subject to much
smaller systemic crisis than disassortative ones; therefore,
assortative networks are easier to immunise.

Conclusions. – In this paper we considered the effects
of the topology on the propagation of diseases or distress
in a network system by means of spectral analysis and
simulations. This problem is often approached by consid-
ering the statistical distribution of the number of contacts,
we instead focused on the two-point degree correlation.
First, we show that assortativity increases the prob-

ability of a pandemic (low epidemic threshold) while
decreasing the speed of diffusive exploration (slow diffusive
modes).
Second, we find that in a simple model mimicking finan-

cial distress propagation, targeted immunization policy
may limit the size of financial crisis; we find that assorta-
tivity strongly enhances the effectiveness of such a policy.
These results can be used to devise efficient and fast
actions to protect infrastructural networks of any kind.
We believe that this paper contributes to a better under-

standing of immunization procedures on complex networks
and to a better evaluation of the robustness of a given
system. We find that assortativity cannot be regarded

as a topological intrinsic improvement: it enhances time
for intervention and improves the effectiveness of financial
immunization policies, but epidemics/failures are easier
to propagate. Our findings indicate that policy makers in
financial markets need to account carefully for the assor-
tativity of the network to mitigate the spread of economic
crises in financial markets.

∗ ∗ ∗

We thank Prof. L. Braunstein for pointing out
ref. [19]. AS, VZ and GC acknowledge support from
FET Open Project “FOC” No. 255987. GD acknowledges
support by the European project “MOTIA” JLS-2009-
CIPS-AG-C1-016. AS and GC acknowledge support from
the grant HDTRA1-11-1-0048.

REFERENCES

[1] Pastor-Satorras R. and Vespignani A., Phys. Rev.
Lett., 86 (2001) 3200.

[2] Albert R. and Barabási A.-L., Rev. Mod. Phys., 74
(2002) 47.

[3] Caldarelli G., Scale-free Networks (Oxford University
Press) 2007.

[4] Buldyrev S. V., Parshani R., Paul G., Stanley
H. E. and Havlin S., Nature, 464 (2010) 1025.
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