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Abstract—Falls are a major cause of hospitalization and injury-
related deaths among the elderly population. The detrimental
effects of falls, as well as the negative impact on health services
costs, have led to a great interest on fall detection systems by the
health-care industry. The most promising approaches are those
based on a wearable device that monitors the movements of the
patient, recognizes a fall and triggers an alarm. Unfortunately
such techniques suffer from the problem of false alarms: some
activities of daily living are erroneously reported as falls, thus
reducing the confidence of the user. This paper presents a novel
approach for improving the detection accuracy which is based
on the idea of identifying specific movement patterns into the
acceleration data. Using a single accelerometer, our system can
recognize these patterns and use them to distinguish activities of
daily living from real falls; thus the number of false alarms is
reduced.

I. BACKGROUND

For the elderly population, falls are a frequent cause of

severe injury. Thus, the presence of an automated system that

is able to detect falls can improve the caregiving process and

the quality of life among senior citizens. In the remaining

part of this section, recent techniques for the detection of falls

are introduced and discussed, and the motivation for further

improvements is presented.

A. Requirements

In order to be useful, a fall detection system must satisfy

the following requirements:

• Automation: the systems activated by pushing a button

are not satisfactory, since after a fall the persons may be

unable to ask for help.

• Reactivity: fast detection of falls is critical, as it has been

established that earlier the fall is reported, lower is the

rate of disability/mortality.

• Accuracy: the system must offer the greatest degree of

accuracy in detecting actual falls as well as in filtering

false alarms. Two criteria of quality can be defined [9]:

– Sensitivity: capacity to detect actual falls. Defined

as the ratio between the number of falls properly

detected (true positives) and the falls that actually

happened (true positives plus false negatives).

– Specificity: capacity to filter false alarms. Defined as

the ratio between fall-like actions properly discarded

(true negatives) and the total number of discarded

actions (true negatives plus false positives).

The highest degree of accuracy is reached when both

sensitivity and specificity values are equal to 1 (or 100%),

meaning that the system always detects actual falls and

never produces false alarms.

• Usability: the monitoring method should be almost in-

visible to patients and should not pose privacy concerns.

B. Methods for the detection of falls

Fall detection methods can be grouped as follows [10]:

1) Camera based: Cameras are installed in the rooms to

be monitored. Acquired data is then processed using proper

algorithms, which can be divided into three main categories:

i) inactivity detection: based on the principle that a person

after falling remains inactive for some time; ii) shape change

analysis: based on the change of posture during a fall; iii) 3D
head motion analysis: head position and speed are monitored

to recognize alarm conditions.

The advantages of this approach are: the ability to detect

more events simultaneously, the low level of intrusiveness

and the fact that recorded data can be easily used for remote

verification. On the other hand, the limitations are represented

by costs and time required for installation as well as privacy

concerns for people being monitored. Moreover, detection is

strictly limited to the places equipped with cameras.

2) Ambient device: Multiple sensors are installed in the

places to be monitored, in order to acquire some kind of

information when people are close to them. Common examples

are pressure sensors on the floor, bed exit detectors and IR

sensor arrays on the walls. Collected data are then analyzed

to determine if a fall has happened.

This approach uses cheap and non-intrusive devices. How-

ever, installation may require some time and detection is

strictly limited to the area equipped with sensors.

3) Wearable device: The patient wears a smart device

which is generally equipped with sensors such as accelerom-

eters and gyroscopes, to acquire kinematic and posture in-

formation. A first evaluation of sensed data can be done

on the device itself using embedded intelligence, while for

further elaboration collected data are generally sent to a base

station by means of wireless communication. This solution is

somehow more intrusive for patients, as it requires to wear

at least a device. Nevertheless, it offers important benefits

such as fast set-up operations, low cost, and it poses small

privacy concerns, especially when compared with camera-

based solutions.

From now on we will focus on the wearable approach. More

precisely, we will consider only systems that use the analysis

of motion data for the detection of falls.



Sensor(s) position Identified postures

chest (standing or sitting), (bending or lying)

waist (bending or standing or sitting), (lying)

chest+thigh bending, lying, standing, sitting

TABLE I
POSTURES WHICH CAN BE IDENTIFIED DEPENDING ON SENSOR(S)

POSITION.

C. State of the art of fall detection methods using wearable

devices

In recent scientific literature, it is possible to find many

attempts to solve the fall detection problem using one or both

of the following types of sensors:

• Accelerometer: it measures the linear acceleration values

on the different axes. The obtained measure is 0 g when

an axis is orthogonal to the gravity or in case of free fall,

while it is 1 g when the device is not moving and the

considered axis has same direction as the gravity.

• Gyroscope: it measures the angular velocity on each

axis. These sensors are usually quite power consuming

with respect to accelerometers, microcontrollers, and

transceivers.

Fall detection methods can be characterized considering

how kinetic data is used to distinguish “activities of daily-

living” (ADLs) from harmful falls.

1) Fixed threshold approach: In this case a fixed kinematic

threshold is used to determine if a fall has happened. In [3]

the authors describe a system based on the magnitude of

acceleration values, while [2] presents a technique based on

measures of the angular velocity obtained from gyroscopes.

The critical issue in this approach is the definition of a proper

threshold: if the value is too high the system may miss some

real falls (sensitivity < 100%) but never generates false alarms

(100% specificity), while if the value is too low the system

successfully detects all actual falls (100% sensitivity) but, at

the same time, may generate some false alarms (specificity

< 100%). This happens because several ADLs, like little

jumps or fast sitting, are characterized by kinematic peaks

similar to those of real falls. Thus, the overall detection

accuracy of the system is a compromise between sensitivity

and specificity.

2) Combining kinematic thresholds with posture: Some

systems combine a fixed kinematic threshold with posture in-

formation to improve the detection accuracy. Li and Stankovic

proposed a technique based on the idea that a fall always ends

in a lying position [6]. Thus, a fall is detected when all the

following three conditions are verified: i) the user is currently
“static”: acceleration amplitude in the last second is less than

0.4 g; ii) the current static posture is lying; iii) the alarm

thresholds for both angular velocity and linear acceleration

have been reached in the last 5 seconds.

The assumption that a fall always ends in a lying position

allows to filter some fall-like ADLs like little jumps, quick

sitting, and running. However, this assumption could lead to a

number of false negatives because a patient may remain in a

sitting position (for example against a wall [8]) after ground

impact. Moreover, there may be some false positives when

a person lies quickly on a bed or a sofa. According to their

experimental evaluation, the sensitivity of this method is 91%,

while specificity is 92%.

In general, approaches that make use of patients’ posture

need additional mechanisms to collect such information. If the

position and orientation of the wearable device is fixed with

respect to the patients’ body, then posture can be determined

by evaluating the orientation of the device with respect to

the gravity. More information can be obtained by using two

devices placed at different positions of the patients’ body. For

example, Table I shows which postures can be identified by

using one or two sensors placed at user’s chest and/or waist.

If the sensor is attached to the user’s chest, it is possible

to understand if the user is standing/sitting or bending/lying,

but it is not possible to discriminate between standing and

sitting, and so on. The system described in [6] makes use

of two devices equipped with a triaxial accelerometer and a

gyroscope, which are placed at user’s chest and right thigh.

D. Motivation

The solutions based on smart wearable devices equipped

with motion sensors fully satisfy the requirements of automa-

tion and reactivity. Such systems also have the advantage of

a fast and easy set-up, as well as the low costs required.

However, the weak points of these approaches are represented

by their usability and detection accuracy. Solutions based on a

single device can be considered comfortable enough from the

point of view of the monitored patient. Unfortunately, since

it is not easy to gather relevant posture information using

only one accelerometer, these systems generally relay only

on a fixed threshold for the acceleration magnitude to detect

falls, thus incurring into frequent and annoying false alarms

(low specificity). On the other hand, attempts to improve

accuracy, like the one based on postures proposed by Li et

al. [6], generally require two or more devices and this is quite

uncomfortable for patients. Moreover, when posture is inferred

from data coming from two or more sensors, communication

is required for their coordination which considerably reduces

the lifetime of batteries.

We advocate the design of a fall detection system based

on a single device able to filter false alarms without using

posture information. The system we propose i) does not use

gyroscopes, because they have a dramatic impact on battery

lifetime [7]; ii) uses a relatively low sampling frequency

(sampling at 50 Hz seems to be a good trade-off between

saving energy and collecting enough acceleration data about

the fall-like event [5]); iii) uses a single device placed at user’s
waist (waist is proved to offer the more relevant acceleration

data [4] together with head and chest; however, waist seems

to be the most comfortable position from patient’s point of

view); iv) does not use posture information (the validity of

posture information strongly depends on the knowledge of

the original orientation of the device; this information can be

lost if, for example, a patient moves the device or after a

violent fall; at the same time, if orientation is not considered,

it is easier to wear the device); v) includes an innovative



approach for the recognition and filtering of false alarms by

using novel algorithms that use acceleration data to identify

the most common fall-like ADLs.

II. THE BASIC SYSTEM

The system we implemented can be considered as a basic

system, based on a single waist-mounted sensor, extended with

a set of techniques able to filter the false alarms and increase

its accuracy.

Even if the analysis of acceleration along the three different

axes would provide more detailed information, the basic

system uses only the magnitude of the acceleration vector. This

choice is because the device is not completely integral with

respect to the patient’s body, and its orientation may change

both at the time when it is put on or as a consequence of

movements.

The basic system detects a fall-like event when the follow-

ing conditions are satisfied: i) the magnitude of acceleration

is greater than 3 g; ii) the peak of acceleration magnitude is

followed by a “static interval”, which is a period of at least

1200 ms in which there are no peaks exceeding the threshold.

The 3 g value has been chosen so that, according to results

obtained in [3] and in our collected data, the risk of false neg-

atives is avoided, thus achieving a 100% degree of sensitivity.

As already mentioned, there are several fall-like ADLs that

reach this threshold, thus the specificity achieved is inevitably

low. The static interval is used to understand when the previous

event is finished, both when it is a fall-like ADL or when it is

a real fall. After the detection of a fall-like event, the system

tries to understand if the event is the consequence of an ADL

or has been caused by a real fall. In the second case the system

alerts the caregiver.

III. RECOGNITION OF FALSE ALARMS

The main contribution of our approach is the definition of

a set of techniques able to filter false alarms without using

posture information and thus making possible the adoption of

fall detection systems based on a single accelerometer.

False alarms are recognized on the basis of peculiar patterns

of the acceleration data. In a preliminary phase, we performed

experiments to collect information about different types of

real falls and common ADLs. In particular, we gathered the

acceleration data of about 32 falls and 68 executions of

different ADLs (the details of the data collection process,

including the list of the different types of falls and ADLs,

are presented in Section IV).

A. Activities of daily living that may cause false alarms

The analysis of the characteristics of ADLs and falls is

fundamental for the development of filtering methods able to

isolate false alarms from actual falls. The following ones are

some classes of ADLs that can be confused with real falls and

could generate false alarms:

A) sitting/lying quickly on soft/elastic surfaces (such as a bed

or a sofa);

B) sitting quickly on medium/hard surfaces (such as a chair);

C) jumping on the ground.

The reason is that they present at least an acceleration

magnitude peak which in some cases can be greater than 3 g,

which is the threshold used to detect a fall. Fortunately, each

previously listed class of fall-like ADLs presents at least a

feature that can be used to distinguish it from a real fall:

A) the fall-like ADLs happen on soft/elastic surfaces, thus

they are characterized by smooth acceleration peaks;

B) it is distinguished by low/medium kinetic energy, which is

quickly absorbed with a single sharp peak;

C) it has a typical acceleration shape, due to push, free fall

and landing phases.

B. Recognition of ADLs belonging to classes A and B

Falls are characterized by a violent impact on hard surfaces

causing sharp peaks in the graph of acceleration magnitude. In

general, the graph of acceleration magnitude contains several

peaks (even if not all of them are greater than 3 g) because

of the following reasons: different parts of the body touch the

ground at different times; the relatively high kinetic energy

causes a sort of “rebound” effect on the body or parts of

it. A sharp peak is characterized by quick variations of

acceleration magnitude from a sample to the next. Differently,

class A ADLs (sitting/lying on soft/elastic surfaces) present

smooth peaks, since the kinetic energy is gracefully dissipated

after impact, while class B ADLs (sitting on hard surfaces)

generally determine a single sharp peak followed by quick

stabilization. Therefore, there are relatively quick and numer-

ous acceleration variations in falls, slow variations in class A

ADLs and few variations in class B ADLs.

In order to extract the features previously described from

raw acceleration data, we defined a measure, the Average

Acceleration Magnitude Variation index, defined as follows:

AAMV =
∑

i∈W

|acci+1| − |acci|

number of samples in W
(1)

The value is computed in a time window (W ) of proper size

which includes the 3 g peak. Through an empirical evaluation

we found that the AAMV window which provides the best

results, according to our dataset, is the one that starts 640 ms

before the last 3 g peak and ends 540 ms after the peak. The

value of AAMV is directly proportional not only to how

quickly the acceleration magnitude changes, but also to the

number of peaks present in the considered window. As a

consequence, we expect to find greater AAMV values for

real falls with respect to those obtained for ADLs belonging

to classes A and B. Figures 1a, 1b, 1c, and 1d show the

typical acceleration graphs of examples of real falls and ADLs

belonging to classes A and B. The AAMV window is also

shown. We performed a binary classification of data and, as

expected, the AAMV values obtained for ADLs belonging to

class A and B are lower than those obtained for real falls.

This difference is clearly shown in Fig. 2. By comparing the

AAMV of the potential fall with a threshold (approximately

0.27 g) it is possible to classify the event as a real fall, or as an

ADL belonging to class A or B. In the latter case, even if the

acceleration magnitude exceeds the 3 g threshold, the fall-like



(a) Real fall (b) Class A (sitting/lying quickly on a elastic surface)

(c) Class A (sitting/lying quickly on a soft surface) (d) Class B (sitting quickly on a medium/hard surface)

(e) Class C (jumping)

Fig. 1. Acceleration for real falls and ADLs belonging to classes A, B, and C

event is filtered and an alarm is not raised, thus increasing the

specificity of the system.

C. Recognition of ADLs belonging to class C

The filtering method based on the AAMV index cannot be

applied successfully to class C fall-like ADLs. The reason of

this can be explained considering Figure 1e, which shows a

typical acceleration magnitude graph obtained performing a

small jump on the floor. There are two relevant peaks: the

first is produced when the user leaps, the second (about 4.5 g)

is higher and sharper and corresponds to the landing on the

floor. These variations determine AAMV values for jumps that

are comparable to those obtained for real falls.

Jumping consists of three phases: leap, free fall, landing. As

shown in Figure 1e, each phase can be easily identified in the

acceleration magnitude graph. This peculiar shape represents

the feature that can be used to filter this class of false alarms.

Recognition of a jump can be performed through the following

procedure:

1) Verify the presence of a peak associated with the leap.

2) Find two instants
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User ID Sex Age Height cm Weight kg

U1 male 24 175 62

U2 male 37 177 81

U3 male 26 178 75

U4 male 64 175 91

TABLE II
USERS INVOLVED IN THE DATA COLLECTION.

a) landing start: 80 ms before the last acceleration mag-

nitude peak greater than 3 g. This is a empirical esti-

mation of when landing begins.

b) leap end: found searching backwards in time from

20 ms before landing start until measured acceleration

magnitude is greater than or equal to 1 g. This is a

simple estimation of when free fall begins.

3) Use these instants to find two quantities:

a) Free Fall Interval (FFI): as the difference between

landing start and leap end.

b) Free Fall Average Acceleration Magnitude (FFAAM):

average acceleration magnitude in the free fall interval.

We noticed that real falls have a lower FFI or a higher

FFAAM value with respect to the values obtained for jumps.

Thus, we defined two conditions useful to recognize an event

as a class C ADLs:

• FFI > 100ms

• FFAAM < 0.5g

An event is classified as a class C ADL only if both tests

are passed. In such case, an alarm is not raised.

IV. COLLECTION OF DATA AND IMPLEMENTATION

In this section we describe the acquisition of data related to

real falls and different ADLs. We also provide some details

about the implementation of the system.

A. Data collection

Data acquisition is the first step in every fall detection study

and it is a time-consuming process. Accelerations measured

during tests are fundamental to understand the features that

can be used to isolate falls from harmless actions like sitting

Action Short form

Jumping JUM

Lying quickly on bed LBE

Lying quickly on a mat LMA

Lying quickly on sofa LSO

Parkinsonian gait PGA

Running RUN

Sitting quickly on armchair SAR

Sitting quickly on chair SCH

Sitting quickly on sofa SSO

TABLE III
LIST OF FALL-LIKE ADLS.

Action Short form

Fall from bed FBE

Fall almost vertically from standing (faint) FFA

Fall after parkinsonian gait FPG

Fall forward landing on hands first FHA

Fall after a small jump FJU

Fall forward landing on knees first FKN

Fall while running FRU

Fall from sitting FSI

TABLE IV
TYPES OF FALLS PERFORMED.

or lying. Unfortunately, previous studies generally describe the

performed tests and the obtained results, but the acceleration

data is usually not made available.

Our experiments involved four male subjects. They have

been engaged into a battery of tests designed to collect data

about the most common fall-like ADLs and falls. Recorded

ADLs always present at least an acceleration magnitude peak

greater than 3 g, which is followed by a static interval lasting

at least 1200 ms. These are the kinds of ADLs that would

produce a false alarm in the basic fall detection system. Skate

pads have been used to avoid injuries to knees, elbows and

wrists, since landing always took place on hard surfaces. This

also ensured a realistic execution of falls as it removed the fear

of hitting the ground (and thus reduced the effects of those

semi-unconscious actions aimed at self-protection in planned

falls). Table II shows the profiles of the volunteers who have

been involved in the collection of data. Table III describes the

list of fall-like ADLs, while Table IV shows the list of real

falls. In fact, different types of falls could be defined, each

characterized by a peculiar way of landing on the floor, or by

the action performed before losing balance. Finally, Tables V

and VI respectively show the number of ADLs and the number

of falls performed by each volunteer.

Note that we decided to collect, represent, and store also

the information not used in our method for the recognition of

false alarms, such as the posture of the user before and after

a potential fall or the separate acceleration values along the

three axes (we used only the magnitude). This has been done

to foster the reuse of the collected data in future work and to

enable the evaluation of future techniques on the same set of

data1.

1The database will be made available via Web and open without any access
restriction in case of publication of this paper.



LBE LMA LSO SAR SCH SSO JUM PGA RUN

U1 6 2 4 4 6 2 14 5 5

U2 0 0 0 0 3 0 0 0 0

U3 0 2 0 0 3 0 0 0 0

U4 3 0 0 3 3 3 0 0 0

TABLE V
FALL-LIKE ADLS PERFORMED BY EACH USER.

FHA FKN FBE FFA FSI FJU FPG FRU

U1 5 2 3 3 3 2 2 2

U2 2 2 0 2 0 0 0 0

U3 0 3 0 1 0 0 0 0

TABLE VI
FALLS PERFORMED BY EACH VOLUNTEER

B. Implementation

We used a Shimmer mote as the wearable device [1].

Shimmer is a wireless sensor platform, characterized by a

small form factor, that can record and transmit physiological

and kinetic data in real-time. The chosen device incorpo-

rates a triaxial accelerometer, a microcontroller and a radio

transceiver. The output of the accelerometer is sampled by the

microcontroller at a 50 Hz frequency. Another mote is used

to transform a generic PC into a base station. It is connected

via the USB port to the PC and communicates using the radio

with the wearable device, acting as a packet forwarder. The

base station displays an alarm message to the caregiver when

an alarm packet is received from the wearable device. There

are two ways of implementing the filtering technique. The first

consists of using the embedded intelligence of the wearable

device. The main advantage of this approach is that several

useless transmissions to the base station can be avoided by fil-

tering the false alarms directly on the remote device, enhancing

the lifetime of batteries. The second consists in running the

algorithm on the base station, after the acceleration samples

of the event have been received via radio. The advantage of

this approach is the abundance of computing resources on

the base station. Since the extraction of AAMV, FFI, and

FFAAM values from acceleration data is not computationally

intensive, we implemented the filtering techniques directly

on the wearable device in order to communicate with the

base station only when an alarm occurs. Software has been

developed using the TinyOS/nesC platform.

V. RESULTS AND CONCLUSION

The collected data has been used to evaluate the perfor-

mance of our techniques for the recognition of false alarms.

As previously mentioned in Section III-B, in the data we

collected, the set of AAMV values of real falls does not

overlap with the set of AAMV values of ADLs belonging to

classes A and B. This allowed us to filter all the false alarms

coming from such activities without missing any real fall.

Similarly, all the ADLs belonging to class C of our collected

data satisfy the conditions described in Section III-C, while the

real falls fail both of them. Henceforth, these filtering methods

achieve 100% sensitivity and specificity values with respect to

the data we collected.

Despite the relatively small data set, the prototype proves

that the idea of filtering ADLs on the basis of peculiar features

of the acceleration data can be used to enhance significantly

the specificity of a basic fall detection system. We applied

this idea to a system based on just one accelerometer placed

at patient’s waist. However, the same idea could be adapted

to improve the accuracy of systems based on two or more

devices, or placed at a different position of the patient’s body,

after proper analysis of the acceleration data and the extraction

of new peculiar features. It is also important to notice that

the enhancements in terms of detection accuracy have been

achieved without compromising the usability of the system.

Certainly we do not believe to have definitely solved the

fall detection problem, since more falls and fall-like events

have to be studied in order to refine the filtering algorithms.

However, from our results we have reasons to believe that the

proposed approach can actually facilitate the development of

fall detection systems with an improved level of accuracy and

usability.
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