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Abstract

Several economic phenomena are found to follow an approximate Pareto distribu-
tion, at least in the upper tail. The debate is well established for the distribution of
wealth and business firms, and has recently been particularly animated with respect
to city sizes. In this paper we contribute to this stream of the literature by showing
that the power-law tail emerges upon aggregation, and this holds true across three
different domains: cities, firms and trade flows. We explore different mechanisms that
could give rise to this effect, from mere sample size to correlation among the number
of constituent parts of aggregate entities and their size, to the aggregation rule, and
discuss their impact on the Pareto tail. Using multiple statistical tests we show that
it is impossible to prove the existence of a genuine Pareto tail for the US city size
distribution because of the smallness of the number of observations. Furthermore, the
presence of a positive power-law relationship between the number of units (products,
establishments) comprised in each firm and their average size is key to explain why
the size distribution of business firms displays a power-law tail. Conversely, we do not
find any Pareto tail for trade flows. The paper casts new light on the mechanisms
through which idiosyncratic shocks do not average out upon aggregation, so that indi-
vidual shocks are not washed away in economic aggregates, as the central limit theorem

would predict, but can even be magnified.

Keywords: Zipf distribution; lognormal distribution; maximum entropy; cities, size

distribution; firms, size distribution; international trade.

JEL classification: C14, C51, C52

*Department of Economics - University of Trento, via Inama 5 — 38122 Trento (Italy), marco.bee@Qunitn.it.

TIMT Institute for Advanced Studies, Piazza San Ponziano 6 — 55100 Lucca (Italy) and Department of
Managerial Economics, Strategy and Innovation (MSI), K.U.Leuven, massimo.riccaboni@imtlucca.it.

tDepartment of Economics - University of Trento, via Inama 5 — 38122 Trento (Italy), and OFCE-DRIC
(France), stefano.schiavo@unitn.it.






1 Introduction

Several phenomena in economics and finance follow a Pareto distribution, at least in the
upper tail (Gabaix, 2009). Well-known examples are the distribution of wealth (Pareto,
1896; Champernowne, 1953; Benhabib, Bisin and Zhu, 2011), firm (Gibrat, 1931; Tjiri and
Simon, 1977; Axtell, 2001; Cabral and Mata, 2003; Luttmer, 2007), and city sizes (Zipf,
1949; Gabaix, 1999). Recently, the last one has been at the center of a lively debate on
whether it is better approximated by a Pareto or by a lognormal distribution (Eeckhout,
2004; Levy, 2009; Eeckhout, 2009; Malevergne, Pisarenko and Sornette, 2009; Rozenfeld
et al., 2011). This debate is hampered by the difficulty in distinguishing lognormal from
Pareto tails (Embrechts, Kliippelberg and Mikosch, 1997; Bee, Riccaboni and Schiavo, 2011).
To ascertain the exact shape of the size distribution of economic systems at different levels of
aggregation is of crucial importance since the Pareto distribution of firm sizes is a building
block of many economic models, such as for instance Melitz (2003) and Helpman, Melitz and
Yeaple (2004), other models have been developed to generate a Pareto firm size distribution
(Steindl, 1965; Ijiri and Simon, 1977; Luttmer, 2007), and it has been recently demonstrated
that the impact of idiosyncratic shocks on the economic system as a whole depends in the
size distribution of economic units (Gabaix, 2011) as well as their relations (Acemoglu et al.,
2011).

Here we present new evidence concerning the size distribution of firms and cities —two
domains where the issue has been studied at length— as well as bilateral trade flows, at
different levels of granularity of the economic system from elementary units (products and
census blocks) to aggregate entities (firms, cities and bilateral trade flows). Although the
literature on trade flows is not very large, the size distribution of trade flows has been re-
cently analyzed by Easterly, Reshef and Schwenkenberg (2009), who derive important policy
implications from its alleged power-law distribution.! The issuc appears then relevant not
only from the statistical standpoint, but also for its broader implications. Easterly, Reshef
and Schwenkenberg (2009) analyze bilateral trade flows for 151 countries (at the lowest
comparable level of aggregation, i.e. using 6 digits of the Harmonized System commodity
classification) and conclude that their distribution is a mixture of a lognormal body with
a Parcto upper tail. To account for this shape the paper develops a model incorporating
both (Pareto distributed) productivity shocks and demand shifts (which follow a lognormal

distribution). Furthermore, building on the existence of a power-law upper tail, the authors

1Recent papers dealing with the distribution of trade flows are Bhattacharya et al. (2008), Fagiolo, Schiavo
and Reyes (2008), Fagiolo, Reyes and Schiavo (2009), Riccaboni and Schiavo (2010), all of which tend to agree
with lognormality. When reviewing the economic literature on power-laws, for what concerns international
trade Gabaix (2009) quotes works that look at rather different phenomena such as the size of exporting
firms (Helpman, Melitz and Yeaple, 2004), the number of markets served by each firm (Eaton, Kortum and
Kramarz, 2004), and the Balassa index of comparative advantage (Hinloopen and van Marrewijk, 2012).
Chaney (2011) only focuses on the extensive margin of trade, i.e. the number of destinations served by each
country and not to trade flows per se, whereas di Giovanni, Levchenko and Ranciere (2011) analyze the
impact of openness on the size distribution of firms.



argue against active industrial policies since the skewness of the distribution makes it very
hard to pick a ‘big hit’, i.e. a product whose export can provide a meaningful contribution
to aggregate trade and economic growth.

The second domain we study is the size of business firms, where there is a long-standing
debate on whether empirical observations are better approximated by a lognormal or a
power-law distribution (Sutton, 1997; Gabaix, 2009). The issue dates back at least to Gibrat
(1931), who postulates a model of firm growth leading to a lognormal distribution. Years
later, Hart and Prais (1956) confirm that such a distribution fits the data quite well, using
a sample of British manufacturing firms listed on the London Stock Exchange. A similar
conclusion is reached more recently by Stanley et al. (1995), who use data on pubblicy listed
US firms taken from Compustat.

However, already Simon and Bonini (1958) note that the empirical distribution displays
a thicker upper tail than a lognormal would imply, so that a Parcto fits better that part
of the distribution.? The presence of a Pareto upper tail (and a lognormal body) is later
confirmed by many studies, such as Marsili (2005) or Growiec et al. (2008) among others.
The controversy is not over yet, as there is at least two recent influential papers claiming
that the whole distribution of firm size is well approximated by a power-law, not just its
upper tail (Axtell, 2001; Luttmer, 2010).

Three issues emerge forcefully from this literature. First, the coverage of the samples
used in the analysis does matter: while early studies only look at large listed firms (Hart
and Prais, 1956; Simon and Bonini, 1958; Stanley et al., 1995), Axtell (2001) uses Census
data covering the universe of US firms, and claims this is the main explanation for the
novelty of his results.® Second, the level of aggregation at which phenomena are observed,
typically establishments and firms, does matter. Quandt (1966) notes that regularities
observed for aggregate data do not hold at a disaggregate level. By analyzing multiple
levels of aggregation from products to companies Growiec et al. (2008) show that even if
elementary units are lognormally distributed, a power-law may emerge upon aggregation as
the result of a skewed aggregation rule. Third, at a certain level of resolution, results are
robust to different definitions of firm size (employment, sales, market valuation), and over
time (Axtell, 2001; Luttmer, 2010).

Our last application concerns the size distribution of cities: in recent years a remarkable
effort has been devoted to determining its proper shape or, at least, the correct shape
of its upper tail (see Gabaix, 1999; Eeckhout, 2004; Levy, 2009; Malevergne, Pisarenko
and Sornette, 2011, to name just a few). Scholars are engaged in an ongoing debate on

whether such a distribution displays a Pareto tail and whether this conforms to a Zipf’s

2Simon and Bonini (1958) and later Ijiri and Simon (1977) refer more precisely to the Yule distribution,
which is a discrete version of a power-law.

3Comparing Census data with Compustat, Axtell (2001) notes that the latter disregards all the large
privately-held firms; furthermore, the former displays increasing frequencies of smaller firms, a shape that
is not consistent with a lognormal distribution.



law (i.e. a power-law distribution with shape parameter equal to one) or not. Beside the
specific intellectual curiosity the issue may raise, there are broader theoretical reasons for
investigating the matter, as competing models yield different implications (Fujita, Krugman
and Venables, 2001). Indeed, while the seminal paper by Gabaix (1999) predict a Zipf’s
law, Eeckhout (2004) proposes an equilibrium theory to explain the lognormal distribution
of cities.*

The contention is partly based on the difficulty of properly defining what a city is and,
cmpirically, what is the correct measure to use.’ Indeed, while carly studies focus on the
largest US Metropolitan Statistical Areas (MSA) only (Gabaix, 1999), Eeckhout (2004) uses
data for all the US populated places identified by the US Census in years 2000 and 2001. By
so doing the author shows that the size distribution of cities is lognormal, not power-law as
previously thought (at least since Zipf, 1949). A few years later Levy (2009) acknowledges
that the body of the city size distribution is well approximated by a lognormal, but claims
that there are significant departures in the upper tail. Specifically, the top 0.6 percent of
the distribution, i.e. the MSA, appear to fit better a power-law. Eeckhout (2009) replies to
these new findings by highlighting potential problems associated with the procedures used
by Levy (2009) to identify the power-law tail. Specifically, Eeckhout (2009) suggests that
the graphical procedure based on visual inspection of a log-log plot introduces significant
biases in the right tail of the distribution. Moreover, he warns against the practice of
estimating a truncated subsample of the distribution only, while testing its significance
against a complete distribution with specific parameters. Recently Malevergne, Pisarenko
and Sornette (2011) have suggested that the debate rests on the small power of the tests
employed by both Eeckhout (2004) and Levy (2009). They claim the issue can be definitely
settled by adopting a better testing procedure, namely the uniformly most powerful unbiased
test of the exponential versus truncated normal distribution in log-scale developed by del
Castillo and Puig (1999). Hence, for what concerns city size, methodological issues related to
the proper way of identifying a power-law tail seems at least as relevant as sample coverage.

We contribute to this debate by providing new empirical evidence that cuts across differ-
ent domains, and points to the fact that the tail behavior of the distributions changes upon
aggregation, giving rise to a more pronounced (longer) power-law tail. To the best of our
knowledge this is the first time that such a regularity is documented across different empir-
ical applications. Furthermore, we investigate three different mechanisms that can generate

this phenomenon, namely sample size, correlation between the number of elementary units

4The same holds true in the industrial organization literature, where models to generate different skewed
firm size distributions have been contrasted.

5This point is particularly stressed in Rozenfeld et al. (2011), who propose a new methodology to define
cities based on microdata and a clustering algorithm that identifies a city as the maximal connected cluster
of populated sites. By applying this methodology to both US and UK data, the authors find that a Zipf’s
law approximates well the distribution of 1,947 US cities with more than 12,000 inhabitants (1,007 cities
with more than 5,000 inhabitants for the UK).



and their average size, and the aggregation function (i.e. the shape of the distribution of the
number of elementary units associated to each aggregate element). We find the last factor
exerts the largest influence and needs to be carefully scrutinized when proposing models
aiming at explaining the shape of the distribution of particular phenomena Rozenfeld et al.
(2011). However, in the case of cities, sample size appears to crucially determine the length
of the power-law tail found in the data. In this respect then, the debate is not yet closed.

More in general, our work casts new light on the fact that upon aggregation one observes
the emergence of a thicker tail, so that extreme events become more likely (Perline, 2005;
Growiec et al., 2008). Such a behavior is counterintuitive since the common wisdom based
on the Central Limit Theorem assumes idiosyncratic shocks to cancel out upon aggregation,
so that aggregate economies might be more stable than constintuent entities, and reinforces
the claim recently made by Gabaix (2011).

The paper is organized as follows: the next section describes methodology and data used
in the analysis to detect the presence and origin of power-law tails; Section 3 presents the
results and explores mechanisms through which a power-law could emerge upon aggregation.

Finally, Section 4 concludes.

2 Methodology and Data

In this paper we apply several statistical tests to the size distributions of economic systems
in different domains. Most papers apply one method to a specific field of investigation. By
comparing our findings across domains and methods we aim at identifying general stylized
facts as well as domain-specific effects. We analyze the distribution of US city sizes, pharma-
ceutical firms and world trade flows. In all the three cases we decompose aggregate entities
(i.e. cities, firms and trade flows) into constituent parts: census blocks, product sales and
product-level trade flows. We analyze the size distribution of aggregate entities, P(S;) and
the size of constituent parts P(s;), with .S; = Z]A:H sj where K; is the number of parts of
aggregate i and s; is the size of the building blocks. A traditional argument states that if
an integrated entity of larger size had higher unit costs, then it should be possible to split it
into independent and separately managed units so that any such disadvantage is eliminated
(Sutton, 1997). Thus the presence of non-diminishing returns at the level of aggregated
entities and constituent units imply that at the aggregate level economic organizations are

made by an uneven number of units of different sizes.%

6 Aggregate economies can thus be represented and as (random) partitions (Sutton, 2002; Aoki and
Yoshikawa, 2011) or as sums of a random number of random variables.



2.1 Testing for a power-law tail

Discriminating between power-law (Pareto) and lognormal tail behavior is a difficult task.
The methodological reference is Extreme Value Theory (EVT), which studies the statistical
properties of the distributions of upper order statistics. It is well-known that they belong to
the domain of attraction of one of three distributions, namely Fréchet, Gumbel or Weibull
(Embrechts, Klippelberg and Mikosch, 1997). Whereas the distributions in the Fréchet
domain of attraction are definitely heavy-tailed and the distributions in the Weibull domain
are light-tailed, the Gumbel domain includes both distributions with a relatively light tail
(exponentially decreasing, such as the normal) and with a relatively heavy tail (such as
the lognormal). Things are further complicated by the fact that there exist several defi-
nitions of “heavy-tailed distributions”, corresponding to different degrees of tail heaviness
(see Embrechts, Kliippelberg and Mikosch, 1997, pp. 49-50).

For the purposes of testing between Pareto and Lognormal, the main result is that
the upper order statistics of the lognormal converge to the Gumbel distribution, whereas
the upper order statistics of the Pareto converge to the Fréchet. This implies that the
asymptotic tail behaviors of the two distributions are mathematically different. However,
the convergence of the lognormal to the asymptotic distribution is extremely slow (Perline,
2005), so that the difference may be very small, at the extent that they are often practically
indistinguishable for any finite sample size.

A similar conclusion is reached by recalling that a continuous random variable (r.v.) is
in the domain of attraction of the Fréchet if and only if its density is a regularly varying
function (Embrechts, Kliippelberg and Mikosch, 1997, pp. 131-132). Although the Pareto
density is regularly varying and the lognormal is not, Malevergne, Pisarenko and Sornette
(2009) point out that, when the variance is large, the lognormal probability density function
(pdf) can be rewritten in a form similar to the Pareto pdf, the only difference being that the
exponent of the lognormal, unlike the Pareto one, varies with x. However, the lognormal
exponent is almost constant with respect to x, so that in practice, unless the sample size is
huge and/or the variance is very small, discriminating between a constant and an “almost
constant” exponent is problematic.

Given these difficulties, several tests have been proposed, in an attempt to find the one
that guarantees the best performance. We mention here, and employ in the following, the
Uniformly Most Powerful Unbiased (UMPU) test based on the clipped sample coefficient of
variation developed by del Castillo and Puig (1999) and used by Malevergne, Pisarenko and
Sornette (2009), the Maximum Entropy (ME) test by Bee, Riccaboni and Schiavo (2011) and
a test recently proposed by Gabaix and Ibragimov (Gabaix, 2009; Gabaix and Ibragimov,
2011; Rozenfeld et al., 2011) (GI henceforth).

The UMPU test is uniformly most powerful, but only in the class of unbiased tests. A

more serious drawback is that it is a test of the null of power-law against the alternative



of lognormal, and rejects the null hypothesis for small values of the coefficient of variation
c. TImplicitly, this implies that it works well (i.e., its power is high) in cases such as the
lognormal-Pareto mixture, namely when the data generating process is such that ¢ > 1 above
the threshold that separates the lognormal and the Pareto and ¢ < 1 below the threshold
(Bee, Riccaboni and Schiavo, 2011). However, if the distribution below the threshold is not
power-law but nonetheless has ¢ > 1, as happens, for example, for the Weibull with shape
parameter equal to 1, UMPU is completely unreliable. A case that illustrates this point is
the aggregate city size distribution studied below (see Sect. 3).

The ME approach entails maximizing the Shannon’s information entropy under k mo-
ment constraints ' = fi* (i = 1,...,k), where y* = E[T(2)"] and g = &3 T(x;)" are
the i-th theoretical and sample moments and n is the number of observations. This can be
solved by introducing k + 1 Lagrange multipliers A; (i = 0,..., k), so that the solution (that
is, the ME density) takes the form f(z) = e~ i MT(@)' The Pareto distribution is an ME
density with k = 1, whereas the lognormal is ME with k = 2.

A log-likelihood ratio (llr) test of the null hypothesis k = k* against k = k* + 1 is given
by

E* 41 k*
lIr = —2n (Z Nifth — ZX@I‘) ,
i=0 i=0
where n is the population size. From standard limiting theory the llr test is asymptotically
x? and is optimal (Cox and Hinkley, 1974; Wu, 2003).

When the whole distribution is of interest, the method can be used for fitting the best
approximating density, with the optimal & found by the log likelihood ratio (llr) criterion.
The procedure is based on the following steps: (1) estimate sequentially the ME density
with k = 1,2,...; (2) perform the test for each value of k; (3) stop at the first value of k
(ko, say) such that the hypothesis k = ky cannot be rejected and conclude that k* = kq. If
the aim consists in testing a power-law against a lognormal tail, we just test k = 1 against
k=27

When ME tests for the optimal value of k, it is computed iteratively starting from k£ =1
and stopping only when the p-value is sufficiently small. When the true distribution might
be neither Pareto nor lognormal, the test should be carried out for some values of k larger
than 2, even though the p-value for & = 2 against £ = 1 may be relatively small. Typically, a
very small p-value will be obtained for the optimal value of k, which is expected to be larger
than 2. In other words, in such a case it may be worth to use a rather high level «, such as
10%, in order to avoid accepting the null hypothesis when k = 2. Tt is also recommended
to look at the graphs of the ME densities for various values of k > 2, superimposed on the
histogram of the data, in order to ascertain whether the rejection of k = 2 was the correct

decision.

TThe routines for the ME test are available at https://sites.google.com/site/sschiavo7788/home/sof tware.



Finally, the GI test is based on the following intuition. Estimate by OLS the regression

1
log (r - 5) = constant — & log(z,.) + q[log(z,) — )%,

where £ is the Parcto shape parameter, ¢ is the quadratic deviation from a Parcto, r is the
rank, and z, is the r-th order statistic. Asymptotically, for the Pareto distribution, ¢ = 0,
so that a large value of |g| points towards rejection of the null hypothesis of power-law.
Gabaix and Tbragimov (2011) show that, under the null of a Pareto, the statistic v/2ng,, /&2
converges to a standard normal distribution, which can therefore be used to find the critical

points of the test.

2.2 Data description

Trade data are taken from the COMTRADE database maintained by the United Nations.
This collects data on bilateral trade flows among 157 reporting countries (sources) and
230 destinations. The finest disaggregation is the 6-digit level of the Harmonized System
classification, which consists of roughly 5000 products. Data are then aggregated up to
total trade for each country-pair. In the analysis we focus on year 2007, which results in
6002 617 non-null disaggregate bilateral flows, adding up to 20 767 country pairs exchanges.
Data are expressed in thousands of US dollars (USD), and display a lower cutoff at 1,000
USD.

The firm size distribution is investigated by means of a unique longitudinal database
that records sales figures of 340,560 products commercialized by 5721 firms in 28 coun-
tries from 1994 to 2004, covering the whole size distribution for products and firms, and
monitoring the flows of entry and exit at both levels. Data cover the worldwide pharma-
ceutical industry (Fu et al., 2005; Buldyrev et al., 2007). The pharmaceutical industry
offers a unique context for empirical investigation relevant to our model, because it consists
of many independent submarkets corresponding to different therapeutic groups within the
industry (Sutton, 1997). Information is available both at the disaggregate level of product
sales, as well as reaggregated by assigning each product to the firm that sells it. Data are
in thousands pounds (GBP) with a lower cutoff at 1,000 GBP.

Information on the population of US cities is derived from the 2010 Census Data collected
by the US Census Bureau. The elementary unit of analysis, corresponding to disaggregate
data, is the population of each city block: we have data for 6 127 259 blocks. These figures are
then aggregated into administrative units that represent populated places. As in Eeckhout
(2004) we take populated places as the unit of analysis at the aggregate level.® Rozenfeld
et al. (2011) have recently claimed that the way cities are defined (i.e. the way elementary

units are aggregated) is not neutral with respect to the shape of the resulting city size

8In the rest of the paper the terms city and populated place are used interchangeably.



distribution. At present we are unable to replicate the aggregation using the clustering
algorithm proposed in that paper and therefore rely on the administrative definition of
cities. We do, however, perform our analysis on the clusters identified by Rozenfeld et al.

(2011), which are available on one of the authors’ website.’

3 Empirical Results

We start the empirical analysis by fitting the maximum entropy density to the empirical
distributions of both aggregate P(S) and disaggregate P(s) data. Results are displayed
in Figure 1. Small observations are characterized by jumps and discontinuities that make
estimation problematic, thus we have to truncate the distributions below a certain threshold.
This is particularly true in the case of city size data at the disaggregate level, where we
exclude all blocks with a population smaller than 54 (4 in natural logs). The fit with the
ME distribution reveals that k& > 2 for all the distributions, thus the best fit for the whole

distributions is significantly different from Pareto & = 1 and Lognormal k = 2.

3.1 Test results

We first look at disaggregated data, i.e. commodities traded by country pairs, products
sold by pharmaceutical companies in the world and block sizes in the US. Table 1 reports
results for the three tests (UMPU, ME, GI) at the 5 and 1 percent level. Since the big
picture is unaffected, in what follows we concentrate on the 5 percent level and only discuss
other results when they convey further information. The table reports the highest numerical
values of the rank associated with rejection of the null hypothesis of a power-law tail, as
well as the associated percentile in parentheses. This means that the figures in the table
represent the length of the Pareto tail in terms of number of observations (and in percentage
of the sample size). We report the rank at which the tests start staying in the critical region
and never go back to the acceptance region, so that we disregard instances where a test goes
in the critical region but then is unable to reject the null hypothesis once we increase the
sample size. In so doing we are giving more chances to the null hypothesis, which implies a
possible overestimation of the length of the power-law tail.

In all three domains the power-law tail appears to be limited to the very top of the
distribution, and all tests show good agreement on this. The main difference can be found
in the case of firms, where the UMPU and GI tests find almost no evidence of a power-law
tail (the length is limited to the top 100 and top 15 observations respectively), whereas
the ME test manages to definitely reject the null hypothesis only at rank 8300. This still
represents just 1.5 percent of the sample and, as we show in Figure 2, the p-value of the ME

test is often below the 5 percent threshold for ranks ranging between 100 and 8300.

9http://lev.ccny.cuny.edu/ hmakse/soft_data.html.
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Figure 1: Maximum entropy estimates of empirical distributions for aggregate and disaggre-
gate data. The sample sizes reported above the panels stands for the number of observations
used to fit the ME distribution and generate the plots (k value into parentheses).



Table 1: Test results on disaggregate data.

Trade Firms Cities

(n = 5152700) (n = 536577) (n = 1547203)
5 percent 1 percent 5 percent 1 percent 5 percent 1 percent
ME 2212 2354 8300F 85007 3600 3800
(0.04) (0.04) (1.55) (1.58) (0.06) (0.06)
UMPU 1276 1637 100 200 3600 3800
(0.02) (0.03) (0.02) (0.04) (0.06) (0.06)
GI 482 1573 15 18 1870 2953
(< 0.01) (0.03) (< 0.01) (< 0.01) (0.03) (0.05)

Rank (percentile) after which the power-law hypothesis is rejected.
1 Between rank 100 and rank 8300 ME p-value is close to 5 percent.
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Figure 2: Log of p-value of the UMPU (dashed line) and ME (solid line) tests on disaggregate
firm data. The horizontal lines represent the 5 and 1 percent significance thresholds.
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Moving to aggregate data at the level of countries, firms or cities, we see that the length of
the Pareto tail significantly increases in terms of percentile. Again, there is good agreement,
among the three tests, with the notable exception of the GI test, which in the case of firms
rejects the null of a power-law for ranks larger than 14 at the 1 percent significance level.'”
In any case, the three domains display a different behavior. The length of the power-law
tail remains rather small in the case of aggregate trade flows, comprising only the top 107
or 110 observations for the UMPU and GI tests, or the top 676 according to ME, which
corresponds to 3.26 percent of the sample. Firm size on the contrary displays a rather long
power-law tail: even the most conservative estimate (provided by the UMPU test) suggests
it spans 15.73 percent of the sample, reaching 23.6 percent according to ME. Cities lie
somewhat in between: moving from disaggregate to aggregate data does imply a marked
difference, but the power-law tail here is limited to the top 1000 (ME and UMPU) or 1700
(GI) cities. These correspond to a population of about 39500 and 24 300 inhabitants and
represent between 3.4 and 6.1 percent of the whole sample. Moreover, they are in line with
previous findings by Malevergne, Pisarenko and Sornette (2009) and Rozenfeld et al. (2011).

Table 2: Test results on aggregate data.

Trade Firms Cities
(n = 20687) (n = 5139) (n = 28916)

5 percent 1 percent 5 percent 1 percent 5 percent 1 percent

ME 676 772 1350 1400 1030 1250
(3.26) (3.72) (23.60) (24.47) (3.56) (4.32)

UMPU 110 419 900 1100 990 1050
(0.53) (2.02) (15.73) (19.23) (3.42) (3.63)

GI 107 165 14 12121 1759 2159
(0.51) (0.80) (< 0.01) (21.19) (6.08) (7.47)

Rank (percentile) after which the power-law hypothesis is rejected.
1 The test rejects the power-law hypothesis for ranks between 17 and 512 as well.

Taken together, Tables 1 and 2 provide evidence that in all the three domains under
consideration here, the level of aggregation at which economic phenomena are studied plays
an important role in determining the results and, in particular, the findings about the shape
of the upper tail of the empirical distributions. In what follows we explore three different
mechanisms through which such a behavior may emerge in the data, that cut across different
domains and are not specific to the way international trade, firm size, or city growth evolve:
one has to do with sample size and the associated power of the tests, the second with the
shape of the aggregation function, and the third with the correlation between the size and

the number of elementary units that compose aggregate entities.

10At the 1 percent level the test identifies a power-law only for ranks between 562 and 1212, rejecting the
null both before and after.
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3.2 Estimates of the shape parameter

Before moving to discuss the mechanisms that drive the change in the tail behavior upon
aggregation, we take a look at the estimates of the shape parameter of the power-law portions
of the distributions. Its magnitude has played an important part in the debate, especially
with respect to cities, since Gabaix’s model implies a shape parameter equal to 1 (Zipf’s
law). This prediction finds empirical support both in Gabaix (1999) and more recently in
Rozenfeld et al. (2011); on the other hand, Eeckhout (2004) finds that the value of shape
parameter changes significantly at different cutoffs, inferring from this that the distribution
cannot be truly power-law. Finally, Malevergne, Pisarenko and Sornette (2009) report a

coefficient significantly larger than 1.

Table 3: Estimates of the shape parameter

Aggregate data

Trade Firms Cities
5 percent 1 percent 5 percent 1 percent 5 percent 1 percent
ME 1.40 1.40 0.50 0.53 1.30 1.27
UMPU 1.34 1.05 0.57 0.54 1.32 1.30
GI 1.82 1.82 1.74 0.59 0.92 0.94

Table 3 reports the estimates of the shape parameter obtained using the methodologies
associated with the three tests. The estimation is performed at the cutoff identified by each
of the tests. In particular, the estimate of the shape parameter is a byproduct of both the
ME and GI testing procedures, whereas in the case of UMPU we rely on the Hill estimator
as done by Malevergne, Pisarenko and Sornette (2009). From the last two columns of the
table we can see that the various estimates are in line with results presented by Malevergne,
Pisarenko and Sornette (2009): the shape parameter takes values around 1.3. Different tests
yield different estimates, with ME and UMPU being rather close to each other, whereas the
GI result is more in line with the findings in Rozenfeld et al. (2011).

3.3 Emergence of a power-law upon aggregation

We investigate three candidate mechanisms that could explain the length of the power-
law tail upon aggregation: the sample size, the shape of the aggregation function (i.e.
the number of elementary units of which aggregate entities are made), and the correlation
between the number of elementary units comprised in each aggregate element and their

average size.

3.3.1 Sampling

To verify the impact of sample size on the results, for each of the three domains we run the

tests on a sample of the same size of the aggregate datasets, obtained by simple random
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sampling from disaggregate data. So, for instance, in the case of trade we randomly select
20 687 observations among the 5152 700 ones that constitute our disaggregate sample. Since
detecting the difference between a lognormal and a Pareto tail is difficult and the tests have
low power, in particular when n is small, the tests might well suffer the smaller sample size
associated with more aggregate datasets and therefore have more troubles rejecting the null
Pareto hypothesis. Our sampling exercise aims precisely at investigating the impact of such

an effect.

Table 4: Test results on synthetic datasets obtained by random sampling from disaggregate
data with the size of aggregate ones.

Trade Firms Cities
(n = 20687) (n = 5139) (n = 28916)

5 percent 1 percent 5 percent 1 percent 5 percent 1 percent

ME 690 790 610 630 3000 3200
(3.34) (3.82) (10.66) (11.01) (10.37) (11.07)

UMPU 110 430 430 610 3000 3200
(0.53) (2.08) (7.52) (10.66) (10.37) (11.07)

GI 105 165 690 855 655 885
(0.51) (0.80) (12.06) (14.94) (2.27) (3.06)

Rank (percentile) after which the power-law hypothesis is rejected.

In the case of trade, sampling does not modify the results reported in Table 2 above.
Indeed, once we reduce the sample size of disaggregate data, the length of the Pareto tail
grows as large as for aggregate data, but remains confined to the top 0.5 percent (UMPU
and GI) or the top 3 percent (ME) of the distribution.

For what concerns firm size, the length of the power-law tail in sampled data, though
longer than what observed in disaggregate data, is much smaller than the one displayed in
Table 2. This implies that even if sample size does play a role in determining the length of
the power-law tail, its effect is unable to fully account for the difference we observe when
moving from disaggregate to aggregate data.

The situation is reversed in the case of city size, where sampled data display —at least
according to the UMPU and ME tests— a much longer power-law tail than the one found
for actual aggregate observations. Indeed, as reported in Table 4, these two tests identify
a power-law tail spanning roughly 3000 observations, i.e. more than 10 percent of the
sample. This seems to imply that the reduction in the power of the tests associated with
smaller sample size accounts for most of the power-law tail observed in city size data. Such
a conclusion is partially tempered by results of the GI test, which finds a power-law tail
limited to the top 655 observations in the sampled dataset. Table 4 suggests that in the
case of cities, the impact of sample size could be substantial and explain a great deal of the
length of the power-law tail found in the data. In this respect, the debate appears far from
being closed, as claimed elsewhere (Malevergne, Pisarenko and Sornette, 2009) and a test

on a larger sample of world cities should be performed.
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To further investigate the issue we replicate the sampling exercise using, as reference
point for aggregate data, the 17569 clusters identified by Rozenfeld et al. (2011) as a better
definition of cities with respect to the administrative definition of populated places. Table 5
reports test results for both the actual cluster data and a sample of the same size obtained by
randomly selecting observations among the disaggregate data on block population. First, we
note that the UMPU test displays a rather odd behavior as it identifies a power-law spanning
75 percent of the sample (13110 observations). Results for ME and GI on the contrary
are in line with those obtained using populated places (see Table 2 above): according to
them the power-law tail starts at ranks 800 and 1990 (about 21 500 and 10 700 inhabitants)
respectively. Second, when we perform the tests on the random samples, we find almost
the same results as for actual data: the beginning of the Pareto tail is set at ranks 810
(ME), 13130 (UMPU), 2002 (GI). Once again, this evidence suggests that sample size plays
a relevant role in determining the power-law tail that is found in the distribution of city
size. If possible, this conclusion is even stronger than before, as now all three tests point in

the same direction.

Table 5: Test results on data for population clusters, actual and sampled.

actual data sampled data

(n =17569) (n = 17569)
5 percent 1 percent 5 percent 1 percent
ME 800 950 810 970
(4.55) (5.41) (4.61) (5.52)
UMPU 13110 13310 13130 13230
(74.62) (75.76) (74.73) (75.30)
GI 1990 2320 2002 2322
(11.33) (13.21) (11.40) (13.22)

Rank (percentile) after which the power-law hypothesis is rejected.

The difference between the results obtained with UMPU and the other two tests are
macroscopic. To further investigate this behavior, in Figure 3 (left panel) we plot the com-
plementary cumulative distribution function in double log scale, along with the thresholds
identified by different tests. As a power-law should result in a straight line, we also plot a
reference line with slope equal to the shape parameter estimated by the ME method (0.884).
The graph shows a marked departure from linearity for population values well above the
threshold found by UMPU. To better illustrate this finding, the right panel of Figure 3
shows the histogram of the logs of city cluster (CCA) corresponding to the power-law tail
found by UMPU (rank 13 130) together with the optimal ME density (k = 6), the exponen-
tial (log of Pareto) and the truncated normal (log of lognormal). The last two are almost
indistinguishable and fit the data rather poorly, whereas the optimal ME provides a very
good fit. The sample coefficient of variation ¢ of the largest 13 110 observations is equal to

0.983 (and is even larger for larger thresholds): hence, being only based on ¢, the UMPU
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test overestimates the length of the power-law tail.!* Graphically, in a complementary CDF
log-log plot such as the left panel of Fig. 3, this means that UMPU rejects the null of
power-law for departures from linearity below the straight line, but not for those above.

This example is a clear illustration of the possible UMPU pitfall described in Sect. 2.1.
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Figure 3: Left panel: Complementary cumulative distribution of cluster size, double log-
arithmic scale. The vertical lines mark the power-law cutoffs identified by the tests. The
dotted reference line has slope equal to the shape parameter as estimated by the ME pro-
cedure (o = 0.884). Right panel: histogram of the cluster data with superimposed fitted
curves for Pareto, lognormal and ME(6) distributions.

3.3.2 Aggregation rule

By noting that aggregates are obtained by summing the size of the elementary units associ-
ated with each aggregate element, it is fairly easy to conclude that a very simple mechanism
giving rise to a power-law tail upon aggregation is the shape of the aggregating function.
Indeed, calling K; the number of disaggregate elements (say products) comprised in ag-
gregate object 4 (say firm), then a power-law distribution for K gives rise to a power-law
distribution of aggregate sizes, if disaggregate units are (approximately) of the same size.
Denoting aggregate size with S; we have that S; = K; X §; where §; is the average size of the
elementary units of aggregate i. If K; is Pareto, and § is independent of K; for sufficiently
large K, S; will also be Pareto, and this holds true even if the sizes of elementary units are
not themselves Pareto distributed (see Growiec et al., 2008, for a detailed explanation).
Figure 4 shows the complementary cumulative distribution (CCDF) of the number of
elementary units associated with each aggregate element, in each of the three domains under
investigation (in double logarithmic scale). We can see the number of products sold by each
pharmaceutical firms and the number of blocks in each city are approximately Pareto in the
tail, whereas the distribution of commodities traded by country-pairs is far less skewed.
Table 6 reports the results of the tests applied to the distribution of K. The intuition

coming from the visual inspection of the CCDF's is confirmed: trade data display almost no

1 Recall from Section 2.1 that UMPU rejects the null of power-law for values of ¢ smaller than 1.
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Figure 4: Complementary cumulative distribution of the number of elementary units in each
aggregate element (number of commodities traded by country pairs, number of products by
firm, number of blocks by city). Double logarithmic scale.

power-law behavior, whereas a Pareto tail is present for both firms and cities (although in

the former case the GI test does not fully agree with the others).!?

Table 6: Test results on the aggregation function, P(K).

Trade Firms Cities
(n =20687) (n = 5139) (n =28916)

5 percent 1 percent 5 percent 1 percent 5 percent 1 percent

ME 330 370 1070 1270 2350 2600
(1.60) (1.79) (20.82) (24.71) (8.12) (8.99)

UMPU 50 70 630 810 1300 1650
(0.24) (0.34) (12.26) (15.76) (4.49) (5.70)

GI 41 55 26 3391 1890 2900
(0.20) (0.27) (0.51) (6.60) (6.53) (10.02)

Rank (percentile) after which the power-law hypothesis is rejected.
1 The test rejects the power-law hypothesis for ranks between 29 and 158 as well.

12This behavior of the GI test could be caused by the presence of a finite-size cutoff in the upper tail of
the firm size distribution (Buldyrev et al., 2007). Since this cut-off has been repeatedly observed in many
samples (see also Figure 4 for firms), it has been recently argued (Fujimoto and Watanabe, 2011) that both
an upper and a lower threshold should be imposed before testing for a power-law.
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However, § is neither constant nor independent of K, so that the presence of a power-law
aggregation rule is not sufficient to generate a power-law in aggregate data. When looking
at the relationship between the number of elementary units (K') and their average size (3),
we find they are positively correlated in all the three domains.

A positive correlation between the number of elementary units assigned to each aggregate
element and their average size (which makes the ‘identity’ of units relevant) may result from
a very skewed distribution for disaggregate data: this makes convergence to the central limit
theorem rather slow upon aggregation. This correlation may end up stretching the upper
tail of the aggregate distribution as it is more probable that aggregate elements made up of

a larger number of units (large K'), sum units of larger (average) size.

3.3.3 Correlation

To clean this effect from the data, we run the usual tests on three synthetic datasets obtained
by aggregating elementary units according to a random rule. This means that in aggregating,
say, firm data, we still allocate 536 577 products to 5139 firms, but instead of assigning the
actual products to each firms, we do it randomly under the condition that each firm receives
the correct number of products. In so doing we do not modify the distribution of the number

of products, just their sizes.

Table 7: Test results on synthetic datasets obtained by reshuffling data.

Trade Firms Cities
(n = 20687) (n = 5139) (n = 28916)

5 percent 1 percent 5 percent 1 percent 5 percent 1 percent

ME 655 720 508 698 2231 2227
(3.17) (3.48) (9.89) (13.58) (7.72) (7.70)

UMPU 618 619 189 192 1361 1354
(2.99) (2.99) (3.68) (3.74) (4.71) (4.68)

GI 1052 1172 5 102 1278 1278
(5.09) (5.67) (< 0.01) (1.98) (4.42) (4.42)

Rank (percentile) after which the power-law hypothesis is rejected.

Table 7 shows the average length of the power-law tail detected in 100 synthetic samples
obtained by reshuffling the disaggregate data (e.g. products) before assigning them to the
aggregate elements (e.g. firms). Comparing these results with those reported in Table 2 we
can see that for trade and cities the power-law tends to be longer after reshuffling than in
the original aggregate datasets, whereas it is much shorter for firms. More in details, for
trade ME finds results in line with the original dataset, while both UMPU and especially
GI find much heavier tails; as for cities, ME and UMPU report longer power-law tails in
the synthetic data, whereas GI reports a shorter one. For what concerns firms instead, the
length of the power-law tail tends to be much shorter according to all tests (bar GI at the
1 percent level, due to the peculiar behavior of the test in the original aggregate dataset,

where it rejects the null of power-law for all ranks), so that washing out the correlation
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among elementary units greatly affects the results.

The overall message we derive from this exercise is that for trade and city data, very
large aggregate elements are rarer than one would expected following a purely random
assignment of elementary units (given the number of units assigned to each aggregate). So,
for instance, if blocks were randomly assigned to cities, we should find more large cities than
we actually see. One possible way to rationalize these results is by means of agglomeration
diseconomies or congestion effects. More plainly, not all the blocks of a city are made up of
densely populated skyscrapers.

On the contrary, a random allocation of products across firms would result in fewer very
large firms than we find in the data. This can be explained by means of scale and scope
economies, reputation effects, or positive spillovers within the firm (for instance in R&D,
which is particularly important in the case of the pharmaceutical firms studied here).

The above results suggest that, first, the sample size plays a relevant role in determining
the length of the power-law tail attributed to data on US cities and, second, that the
correlation among the size and the number of elementary units explains almost half of the
power-law tail characterizing the size distribution of firms. How is it possible to explain the
different aggregate behavior of the two domains given the similar shape of the aggregation
rule depicted in Figure 47

Given the dependence of s on K, we conjecture that to find a significant Pareto tail in
the aggregate data, we need both a power-law aggregation rule and a power-law relationship

between 5 on A.'2 To investigate the point we have run a series of regression of the type
log(s:) = Bo + B log(K;) + p2(log(K;))?

on the largest N observations in the three domains, with N = 100,...,2000. A significant
quadratic term (82 > 0) implies the rejection of the hypothesis of a power-law relationship.
Figure 5 reports the p-value of a t-test on [2: we see that in the case of trade the null of
a linear relationship (in double logs) is quickly rejected, whereas for both firms and cities
the picture is different. In particular, for what concerns firms, there is a linear, power-law
relationship between the two variables, that spans the largest 1800 observations. Similarly,
Luttmer (2010) finds a power-law relationship between the number of establishments and
the size of US firms. Data on cities on the contrary reject linearity well before, suggesting
that the relationship between 5 and K is not power-law even for the largest observations.!

All in all, the Pareto tail of the firm size distribution is due to (i) a Pareto tail in the

13 A series of simulations confirms this idea: given a power-law distribution for K;, when §; independent
of K; or when the dependence follows a power-law (§; = K 2), then aggregate size S; is Pareto, whereas if
the dependence is, say, exponential (s; = ¢/¢) this is no longer the case.

MWe have also estimated a semi-log version of the regression log(s;) = 8o+ 81 K; + BzKiz: in this case the
null of hypothesis of linearity represents an exponential relationship. This null is always rejected for trade
and firms, whereas it cannot be rejected using the largest 1000 observations for cities.
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Figure 5: p-values of the quadratic term in the regression of the (log of the) average size of
elementary units on the number of elements and its square term (in logs). The p-value for
the regression on trade data drops to very small magnitudes at rank 300 and is therefore
truncated.

distribution of the number of units by firm, P(K) and (ii) a power-law positive relationship

between the number of the units and size, at least for large firms.

4 Discussion and Conclusion

The exact shape of the size distribution of economic aggregates is of crucial importance and
it has been largely investigated both theoretically and empirically for wealth, income as well
as city and firm sizes. However, despite it has been recognized that it is extremely difficult
to discriminate between lognormal and Pareto extreme values, most of the literature so
far has focused on a single aspect at a time and applied a single testing strategy, typically
assumed to be the best one. In this paper we take a broader perspective considering (i) mul-
tiple economic distributions; (ii) alternative tests and (iii) different levels of aggregation of
economic systems. We analyze the shape of distributions spanning three different domains,
namely international trade flows, firm size and city size at different levels of aggregation.

We find that the tail behavior of the three distributions changes upon aggregation, with the
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emergence of a power-law upper tail. However, the extent to which this happens is different:
the power-law tail remains almost negligible in the case of trade, becomes longer in the case
of cities and much longer in the case of firms.

More in general, despite the Pareto distribution has some nice properties that have
made it a natural building block for economic modeling, by cross-checking our findings with
multiple and rigorous statistical methods, we discover that the existence of the Pareto tail is
limited to some rather peculiar circumstances, satisfied only in a limited number of empirical
domains. If one adopted the restrictive criterion that there is a Pareto tail only when all
tests agree, and the same tests do not find a Pareto tail for a lognormal distribution of the
same size, then there would be no clear-cut evidence supporting the presence of a Pareto
tail in any of the three domains under investigation.

Even if we do not follow this route, a number of considerations are still in order. First,
it is worth noticing that when testing lognormal versus Pareto we are deliberately excluding
possible alternative distributions both for the tail and for the whole distribution. Second, the
validity of the results is severely constrained by sample size. This is particularly important
whenever the variance of the distribution is large. Based on this consideration, we cast
new doubts as for the existence of a genuine Pareto tail in the case of the US city size
distribution and conclude that further analysis should be performed on a larger sample of
world cities. Third, since a Pareto tail emerges upon aggregation in all the three domains
we analyze, we argue that the shape of the aggregation function is critically important.
This has been recently stressed by Rozenfeld et al. (2011), who use a clustering algorithm
to define cities, instead of the standard administrative definition. In particular, when the
aggregation function is Pareto and the size of the elementary units is independent from their
number in each aggregate entity, the shape of the aggregate size distribution is essentially
the same as the shape of the distribution of the number of units. As for trade, since the
intensive margin is not Pareto, aggregate trade data do not display a (significant) Pareto
tail. Conversely, city and firm sizes are composed by a number of units that is Pareto
distributed, at least in the upper tail. In case of no relationship between the number of
elementary units and their average size, this would be sufficient to generate a power-law tail
in aggregate data. However, we find evidence of a sizable relationship between the number
and size of constituent parts of aggregate entities. In such a case, the functional relationship
between the two matters.

Even if it is difficult to derive analytical results for the distribution of the sum of de-
pendent heavy-tailed distributed random variables,'® numerical experiments suggest that
when the size of the units is a power-law function of the number of elements of which an
aggregate entity is composed and the number of units is Pareto distributed, the size of ag-

gregate entities is also Pareto distributed. This is the case of firm size, for which a power-law

15See Asmussen and Rojas-Nandayapa (2008) for some asymptotic results in the special case of lognormal
random variables with dependence structure given by the Gaussian copula.
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relationship exists for the top 30 percent of the distribution; on the contrary, for cities, we
reject the null of a power-law relationship already at the top 2 percent.

All in all, Pareto distributions emerge upon aggregation. When the size of the units
is approximately independent from their number, the shape of the aggregation function is
crucial, as already noticed by Gabaix (1999) and Gabaix and Ibragimov (2011). On the
contrary if the size and number of units are interdependent such as in the case of firms,
the relationship between the two should also be power-law for the aggregate distribution to
display a Pareto tail (Luttmer, 2010). The dependence of the size of elementary units on
their number deserves further scrutiny, as it may signal the presence of non-constant returns
to scale which, only under specific conditions, give rise to a power-law distribution.'® Our
empirical analysis suggests that the presence of increasing returns is crucial for the existence
of the observed Pareto tail in firm data, and may not hold across all sectors of the economy.

The level at which the various phenomena are investigated has a great influence on
results, that is on the length of the power-law tail found in the data. Theoretical models
that aim at explaining the shape of the distribution should devote more attention to this
aspect. Our results suggest that to adequately explain the emergence of a power-law tail
one should focus on the factors that determine the shape of P(K), i.e. on what is know as
the extensive margin in international trade, namely the number of products exported, or
the number of blocks or activities of a city, or the number of products or establishments of
a firm, or, in general, the number of elementary units in each aggregate. When the main
cause of a Pareto tail at the aggregate level is the skewed shape of the aggregation rule, the
usual argument that assumes idiosyncratic shocks to cancel out upon aggregation breaks
down. Hence, the aggregate distribution is still skewed. Along the same line, Gabaix (2011)
shows that, if idiosyncratic shocks come from an heavy-tailed distribution, the central limit
theorem does not hold, with the consequence that idiosyncratic shocks at the micro-level

matter for aggregate fluctuations.
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