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Abstract

Proportiona Hazard Models arise from a straightforward generalization of the simple
case of conditionally i.i.d., exponentialy distributed random variables and, in a sense, can be
considered as the idealized models in the statistical analysis of failure and survival data for
lifetimes. For these reasons, they have been extensively studied in the literature. Despite of the
richness of related contributions, there are still specia aspects of these models that are
worthwhile focusing. In this discussion paper we aim to present some contributions, in the frame
of aBayesian approach and by using some very basic notions of stochastic ordering.
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1. Introduction
Generally speaking, we consider here some specific aspects of the problem of
predictive inference for vectors of non-negative random variables T,,..., T, . We denote

by F(t,...t,) thejoint survival function of T,,...,T,, i.e. we put
F(ty.oty)=P(T,>t,..T, >t,).
Furthermore, we assume F to admit a regular joint density, to be denoted by
f (t,-..t,) . The random variables T,,...,T, can have the meaning of waiting times or

time-durations (of industrial components, living organisms, companies in a market, ...)
and we then think of applications to different fields such as Reliability, Survival
Analysis, Finance, Waiting Systems and so on. For our purposes, it will be convenient
however to use the special language of Reliability Theory. In the related statistical
analysis, onetypically encounters statistical observations of the form

D E{TJ]. =t1,TJ'2 =t2,...,Tjk =tk;-|—|1 > Sl,...,Timk > Sﬂ*k}’ (1)
whereO<k<n, 0<t;<...<t,, 0<g<..<s5_,. k is an observed number of
failures, t;,...,t, are the corresponding failure times, s,...,s,_, are ages or survival
times, and T, —s, ..., T, , —S, ae residual lifetimes. We admit that s, =0, for
some h=1,..,n-k; in this case the variable T, may not appear explicitly within the

event D.
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The term predictive inference conveys the idea that, putting ourselves in a
frame of Bayesian Statistics, we are interested in inference about residual lifetimes,
given observed data of the form (1). Namely we look at the joint conditional
distributionof T, —s;, ..., T, , —S,_« , given D. More precisely

a) we check stochastic comparisons, for a given D, between the margina conditional
distributions of T, —s. and of T, —s. respectively, for two different indexes
h h

1<h <h"<n-k;:

b) for a fixed index 1<h<n—k and for specia pairs of observations D' and D", we
establish stochastic comparisons between the conditional distributions of T, —s,,

given D" and D" respectively;

c) we compare stochastic dependence for the joint distributions of residual lifetimes,
conditionally on D" and D" respectively.

Of course, significant results in this direction can only be obtained by
specifying some relevant probability models, i.e. special forms of the joint survival

function If(tl,...,tn). In this paper we specifically consider the case of Proportional

Hazard Models (often shortened, in the following, with P.H.M.). In this respect, we
present some results that can be obtained in the afore-mentioned directions a), b) and c).
As it is well known, the class of P.H.M.'s is a very specia and interesting one,
characterized by remarkable properties of both probabilistic and statistical type. For
these reasons, they have been analyzed in the literature many times and from several
different points of view. In particular, due to their properties, they emerge in a natural
way in the statistical analysis of life-times data (see in particular [2, 15]). Actualy they
can be seen as very specia cases of Cox Models, which in turn, find a natura
generalization to the frailty models (see e.g. the recent review paper [28]). On the other
hand, P.H.M.'s are strictly related with the popular topic of Archimedean copulas (see
e.g. [20]). For apartia list of further relevant references see[1, 5, 18, 19].

In this paper we point out some unexplored aspects of Proportional Hazard
Models and highlight some interesting relations existing among different properties that
emerge in their statistical analysis. Such properties are related with concepts of risk and
of ageing. Some of our results had already been presented, under a more general form,
in [25, Ch. 5]. Notwithstanding this, and even though P.H.M.'s are very popular, still
our discussion can shed a new light on the interest and on the meaning of the
assumption that survival models are of this special type.

In order to recall the definition of P.H.M. we consider a n-tuple of non-
negative, exchangeable, random variables T,...,T,, to be thought of as lifetimes of

similar units U, ,...,U,,. Wetalk of P.H.M. when the joint survival function F(t,....t,)
has the form
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F(tyty) = j: exp{—ﬁz R(, )}dv(ﬁ), )
j=1

where R:[0,+00) —[0,4) is a strictly increasing function such that R(0)=0. In
other words, T,...,T,, are conditionally i.i.d. given a random parameter ®, taking
values on (0,+), and v can be seen, from a Bayesian view-point, as the a-priori

distribution of ® . These models arise as a straightforward generalization of the case of
conditionally i.i.d. exponential lifetimes, that is characterized by the position

R(t) =t, vt > 0. ©)

The latter case can be considered as the idealized model in the analysis of life-times, in
view of its, symmetry-related, properties. The latter properties can be seen as the
dtatistical counterparts of the memory-less property of the exponential distribution. In
our setting, they constitute the starting points whence natural questions arise,
concerning the case (2). The attempt to give responses to such questions leads us to our
developments here.

From a notational point of view notice that when, as in the present case, T,,..., T, are
exchangeable, it is not restrictive to give to (1) the simplified form

D E{Tl :tl,Tz :tz,,Tk :tk’Tk+l > Sl""*Tn—k > S]*k}’ (4)
with O<t; <...<t,, 0<5 <...<5 .

The plan of the paper is as follows. In the next Section we review basic features of
the P.H.M.'s that can be of greater interest for our purposes. Section 3 will start by
pointing out the afore-mentioned properties for the cases when (3) holds and
consequent questions concerning the more general P.H.M.'s. Then we present some
results concerning conditional distributions of residual lifetimes; a subsection will be
devoted to the special case defined by prior distributions of type gamma. A brief
discussion concerning such results, and relations among them, will conclude the paper
in Section 4.

Our language will require just a very basic knowledge of the fundamental
univariate notions of ageing, such as IFR, DFR, NBU, etc, and of stochastic orders,
such as the ordering in the usual stochastic sense, in the hazard rate and in the

likelihood ratio. The latter will be respectively denoted, as usual, by <, <, , <, . If
needed, the reader can refer e.g. to [22]; seeadso [25, Ch. 3].

2. Some Relevant Properties of P.H.M.’s

As mentioned, the Proportional Hazard Models manifest numerous specia
properties that can be seen under different viewpoints and described in terms of
different languages. In this Section we review those properties that have a major impact
on our discussion. It is shown by (2) that a P.H.M., once its dimension n has been fixed,
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is characterized by the pair (R,v). In the following we assume that the function R is

differentiable and let r(t) = dR(t)/dt. This assumption allows If(t1 ..... t,) to admit a
regular joint density function, expressed by

(tonty) :Hr(tj)j:en exp{—ez R(tj)}dv(ﬁ), )
i1 =1

and, given ®=6¢, T,..,T, are conditionally i.i.d. with an absolutely continuous
distribution, with Or(t) asthe univariate hazard rate function. The univariate marginal
density of T; (j=1...,n) isthen given by

g(t) =r(t) j:Hexp{—eR(t)}dv(e). ©)

In such an absolutely continuous case, we can easily deal with the conditional
(or posterior) distribution vy of ® given D, where D is the observation described in

(4). Asafunction of @, the likelihood of D is given by

k k n-k
L(8) =9kHr(tj)exp{—6’z R(tj)}exp{—az R(%)}. ©)
j=1 j=1 h=1

The latter equation has some important consequences that we list after the following
technical remark.

Remark 1: In the case when D contains some failure data, i.e. when k in (4) is greater
than 0O, the assumption that R is differentiable is important. In fact it allows us to
construct the posterior distribution v, simply by means of the common Bayes

Formula. On the contrary, if R is not differentiable and then the joint distribution of
T,.... T, does not admit a probability density function, more delicate probability tools

are needed in order to identify the conditional distribution of ® given D. When,
however, k=0 (i.e. when we only condition upon survival data), we can anyway
compute v by means of the common Bayes Formula even if the joint distribution of

T;....., T, does not admit a probability density function.

We come now back to listing the main consequences of (7). First of all, by
suitably applying the Bayes Formula, we get that the distribution v is expressed by

(0 HKHIj(:lr(tj)exp{—Hzl;le(tj)}exp{—QZE:R(%)}dv(&)
vp(0)=— — =
jo ekH'j‘:lr (t)) exp(-6 Tl R(, D exp{ -0 R(s,)}dv(0)
o exp{—aZ'j‘:1 R(, ) exp{-0> " R(s,)}dv(6)

'[: 0 expy -92';:1 R, exp(-0> " R(s,)dv(0)

Let us now consider the residual lifetimes T, ,..., T, , , defined by
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T =T =S Tok = Ta =Sk ©)
In view of conditional independence of T,,...,T,, given ®, we can write easily the
conditional density of T,,..,T, ., given D. In fact, T,,..., T, remain conditionally
independent as well, given®; marginaly, the conditional density of Tr;
(h=1..,n—k), givenboth ® and D is
gy (t160.D) =0r(t+ sy exp{-6[R(t+s,)-R(s,) },t =0, (10)

and, as mixing distribution of ®, we have the posterior v . The margina density of
T, (conditional on D, but unconditional w.r.t. @) isthen

0 (t1D) =r(t+s,)| ~ Oep{-0[R(t+s,)~R(s) }dvp (0). (11)
In the special case when s,...,5,_ =s>t, >..2t >0 (insuch acase D is
caled a history), T,,..,T, , are conditionally i.i.d., and then exchangeable. More

precisely, they give rise to a P.H.M. of dimension n' =n-k , characterized by the pair
(Ro.vp ) where Ry (t) = R(t+5) - R(s).

It clearly emerges from (7) and (8) that, whatever the prior distribution v, the
posterior distribution v, depends on D only through the pair (k,r) where k denotes
the observed number of failuresand 7 isthe statistics defined by

k n—k
7= R(t))+ Y R(,).
j=1 h=1

Also the conditional distribution, given D, of the residual lifetimes depends only on
(k,7). In other words the pair (k,7) is a sufficient statistics. It is a very remarkable

property of these models the fact that a sufficient statistics of fixed dimension exists
even for statistical observations that contain survival data. See the discussion in [2], see
also[25].

The condition that r(t) is monotonic reflects into remarkable properties of
univariate, and multivariate, ageing for a P.H.M.. When r(t) is decreasing, i.e. when
conditionally on ®, T,,...,T,, have a Decreasing Failure Rate (DFR) distribution, then
aso the marginal (i.e. predictive) distribution of T,,..., T, is DFR, since (see e.g. [2])
any mixture of DFR distributions is DFR. Furthermore, the vector (Ty,...,T,) is aso
DFR, according to different multivariate definitions of DFR. In particular the
corresponding joint survival function lf(tl, ...t,) is Schur-convex, which can be seen as
a property of multivariate DFR (see [25] and references cited therein). When r(t) is
increasing, Ty,...,T,, have an Increasing Failure Rate (IFR) distribution conditionally on

®. In this case we cannot ensure that the marginal (i.e. predictive) distribution of
Ty,.... T, isIFR as well since, asit is well-known, a mixture of IFR distributions is not
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necessarily IFR. We still have, however, that (T;,...,T,) has the multivariate IFR

property described by If(tl,...,tn) being Schur-concave. We will come back to this
multivariate ageing issue in Section 3.

In the study of qualitative properties of the conditional distribution of the
residual lifetimes, given observed data of the form (4), the analysis of dependence
properties of T,..., T, has clearly an important role. It is then an interesting issue
looking at the survival copula é(ul,...,un) of T,,..,T,. The latter (see e.g. [10, 20])
appropriately describes, in fact, the dependence properties of T,,...,T,, and is defined as

the function C: [0,1]n —[0,1] given by
CUy,nnnU) = ﬁ[é‘l(ul),...,é‘l(un)]

where G denotes the survival function of the univariate marginal distribution, whose
density has been given in (6). We notice that, by considering the Laplace transform

W(x) = jom exp{-0xdv(X),

we can write

Fty,...t,) :W[Z R(tj)J, (12)
j=1

whence
G(t) =W(R(@), G (u) = R [W’l(u)] 0<u<1t>0;

é(ul,...,un):VV[ W‘l(u1)+...+VV‘l(un)J.

We then see that, inaP.H.M., C is not affected by the form of the function R
and it is only determined by the distribution v, through its Laplace transform.

Furthermore, C is Archimedean and this can be seen as a further aspect of the special
structure of P.H.M.'s. In view of (12), the class of P.H.M.'s can then be seen as a subset
of the class of all the n-dimensional models characterized by survival functions of the
form

F(t,...t) :w[z R(tj)], (13)
j=1

where W :[0,+x) — (0,1] is any decreasing function such that F in (13) is abona-fide
n -dimensional surviva function (see in particular [16] for the analytic characterization
of such a condition). On its turn, the condition (13) characterizes the class of al the
continuous models with Archimedean survival copulas. Some of the arguments of this
paper can be extended to such a class of models. However, we concentrate our attention
on the case of P.H.M.'s (i.e. on the case of conditional i.i.d. lifetimes). Among all the
multivariate models of the form (13), the latter ones emerge for their properties of
positive dependence. Since, inaP.H.M., T;,..., T, are conditionally i.i.d. with respect to

the parameter ®, and each of them is stochatically decreasing in ®, one can
heuristically expect, in fact, that they must satisfy some, weaker or stronger, property of
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positive dependence. Several detailed results aong this direction have been obtained for
the more general case of conditionally independent (not necessarily identically
distributed) random variables and the related literature is well-known and very wide
(seein particular [23, 12]). For the case of the P.H.M.'s we point out in this respect an
important consequence of the fact that C is Archimedean: several properties of
positive dependence, that are generally different one another, collapse into only one
notion of positive dependence in the case of Archimedean copulas (see in particular
[17, 6, 25]). This means that weak conditions of positive dependence actually reveal to
be equivalent to much stronger ones.

3. Stochastic Comparisons for Residual Lifetimes Conditional on Total
Timeon Test Statistic

In order to introduce the topic of this Section we first consider the case of
conditionally i.i.d. exponentia lifetimes, which is characterized by joint survival
functions of the form (2) with R satisfying (3). These models manifest obvious, but very
remarkable, symmetry properties that can be briefly summarized as follows.

(@) Conditionally on any data D of the form in (4), the residua lifetimes
Teo1o-- T, defined by (9) are identically distributed, evenif s,...,s, , arenot
al equal.

(b) For any data D, a sufficient statistic is provided by the pair (k,7), where, this
time, 7 coincides with the Total Time on Test statistics defined by

T

Il
+
]
4

Let us now consider, for the same vector of lifetimes T,,...,T,, two different
setsof dataD and D : D asin (4), and
D ={T=t, T, =t Ty =te; Tisz > Streen T > Shicd (14)
with O0<t; <..<t,, 0<s§<..<s,,. For smplicity of notation we in particular,
assume the two vectors of survival timesto bethesamefor Dand D', i.e.
S = Spyeens Sk = Shoke

We compare the conditional distributions for the residual lifetimes T, ,...,T,

given D and D', respectively. Notice that we are assuming that both D and D' contain
the same number of failures, k. We also assume that the two Total Time on Test
statistics result in the same value, namely

k k
Dt :Z;‘t'j. (15)
j=

=1

For what it has been noticed above, we have that the conditional distributions
of residua lifetimes share the same conditional distribution, irrespective of having
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observed D or D', since we originaly assumed that T,,..., T, are conditionaly i.i.d.,
exponentialy distributed. Such a property is extremely important in the statistical
analysis of reliability data. Suppose for instance that we plan to collect some failure
data in order to evauate the reliability of a batch of similar components. Deciding the
size of the sample to be tested is obviously part of the sampling procedure. Depending
on different cost structures, sometimes we may want to collect in a short time a
sufficient amount of Total Time on Test on the purpose of getting enough confidence
about the quality. Some other times, concerning the same purpose, we have no problem
about saving time; rather we have alimited number of items available to be tested. Asa
remarkable consequence of the assumption of conditional exponentiality, we reach the
same state of information, and then of confidence about quality, from two different
experiments, provided that we observe the same number k of failures and collect the
same value 7 for the TTT satistics (and provided that stopping of observation is not
informative).

Of course we expect that the two conditional distributions of residual lifetimes,

given D or D' respectively, would on the contrary be different, should the assumption
of conditional exponentiaity be removed. What can we then say in such a case? A
general response is of course impossible, without specifying suitable properties for the
joint density of T,,...,T,,. Here we give some results under the condition that (5) holds

with suitable properties of the function R and suitable majorization relations between
the vectors (ty, ...t ), (tltk) To fix ideas, we assume that (t,.,...,t, ), is majorized

by (ti,...,t;(), namely (see [14])

k k
b2+ 2+, e b 2 Y = ) (16)
j=1 j=1

Proposition 2: Let (5) hold with R a convex function and v an arbitrary probability
distribution on [0,) . Then

(@ forany h=1,..,n-k,
ToID <, Ty D
(b) for1<h <h <n-k,
T.|D<, T.|D.

Proof: &) First we check that the posterior distributions v and v_. can be compared

D
in the sense of the <, stochastic ordering. On this purpose we consider the ratio
dvp (9)/d‘/o' (9). By taking into account the expression of the type (8), for the

distributions of ® conditional on D and on D', respectively, we readily obtain in this
respect that

dvp (6) k k.
=exp{ 0| Y R(t))- > R(t)) |t
dvyy (0) =t =t
In view of the hypothesis (15) and of convexity of R, we obtain that thisis an increasing
function of @, since
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k k

D R(t) <D _R().

j=1 j=1
The latter inequality can be seen e.g. by applying [14, Prop. 4.B.2]. We can now take
into account that the conditional density (10) of Tr; given1/® =7 isTP,, i.e

gt 17)9(t" [7")=a(t" [7)g'|7).
As adirect consequence of the basic compositions formula of Totally Positive functions
of order 2 (see [11]), we can conclude that the conditional densities of Tr; given D

and T, given D" are ordered in the likelihood ratio ordering, as well (see also [25,
Remark 3.16]).
b) For 1<h <h’ <n—k, wewant to prove that the ratio

F. (t|D)

isan increasing function of t. Werecall the position 0< s, <...<'s,_, . Now we have
jo exp(-0[ R(t+5,) - R(s,) }dvp (9) |
jo exp{~6[ Rt +5;) - R(5; ) Jdvp (6)

By setting, for notational convenience,

43(0) - ixp{—e[R(tw)—R(qqrf)]}dvD(e) |
jo exp(-6[ R(t +5,) - R(5; ) v (6)

p(t) =

and

Q) =R(t+s;)-R(s;)-R(t+s,)+R(s,), (17)
we can write p(t) =j:exp{—9Q(t)}d§(9) . Now v(8) is a probability distribution

over [0,00) and, in view of the convexity assumption on R, Q(t) is a decreasing
function; therefore p isincreasingint.

The just proven stochastic orders change their direction if R(t) is taken to be concave
instead of convex.

Remark 3: As explicitly said in the statement of Proposition 2, the validity of the two
stochastic comparisons proven there is guaranteed by a suitable condition on the
function R and is valid for any prior distribution v . In particular, as shown in the

proof, v does not appear in the expression of theratio dvp (‘9)/d"o’ (9).

The statement in b) of Proposition 2 can be strengthened by adding a suitable
condition on the derivative of R.
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Proposition 4: Let (5) hold with R convex, r log-concave and let v be an arbitrary
probability distribution on [0,) . Then, for 1<h <h’ <n-k,
T.|D<, T |D.
Proof: For 1<h <h’ <n-k wewant to prove that the
ratio

r(t+s, )L:w Hexp{—H[R(t +5,)-R(s; ):|}dVD @)
r(t+s, )J.;waexp{—H[R(t +5;) - R(s;) pdvp (0)

isanincreasing function of t. By setting

Oexp{-0 R(t+s, )~ R(s;) [tdvp (6)

pt) =

dv(0)=— ,
jo exp{-6[ R(t+s,) - R(s;) fdvp (6)
we can write
_r(t+s)) oo R
p(t)_r(Tsnu) o exp{-6Q(t)}dv (6)

where Q(t) was defined in (17). Then I:exp{—HQ(t)}dﬁ(H) isincreasing in t, since

Q(t) isdecreasingand r(t+s; )/r(t+sh~) isincreasingint, since r(t) islog-concave.
Therefore p(t) isincreasing too.

Remark 5: The statements in Proposition 2 and Proposition 4 are related to results
presented in [4, 25]. Here we gave, for the special case defined by (2), specific
statements and more direct proofs. In the case when r(t) is increasing, we have the

condition of Increasing Failure Rate for the lifetimes T,,...,T,,, conditional on the
parameter @ . In such a case we also have that the joint survival function F is Schur--
concave. When r(t) is decreasing, we have for T,,..., T, the condition of Decreasing
Failure Rate, conditional on the parameter ® and F is Schur-convex. The latter two

properties of F can respectively be seen as conditions of multivariate IFR and
multivariate DFR. Just as a rather immediate consequence of the definition of Schur-

concavity, we can claim that Th |D <4 Tr;' |D where D is as in the hypotheses of
Proposition 2 (see e.g. the discussion in [25, Ch. 4] and references cited therein). Part
b) of Proposition 2 achieved however the slightly stronger condition T, |[D <y, T, |D.
This result is made even stronger in Proposition 4.

In the following result we obtain conclusions that are of a same type, but
weaker than those in Proposition 2. On the other hand, we assume a condition on R that
is weaker than convexity, namely we assume that it is super-additive, namely
R(X)+ R(y) < R(x+y). Furthermore we alow the vectors of survival times to be

different, with a special relation between them; more precisely we take D of the
specific form.
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D ={T,=t, T =th,. Tt =t Ti1 > Sproeen Ty > S i} (18)
with §=0,..,5, =0, and §,,;,...S, , With the following property: for a suitable
partition A ={A,A,..., A,__,} of theset of indexes {1,2,...,n—k} we have

S = D5 (19)
heA

For simplicity of notation, we take the vectors of observed lifetimes equal in the two
histories.

Proposition 6: Let (5) hold with R a super-additive function and v an arbitrary
probability distribution on [0,) . Then
a)forany h=1,..,n-k,
Ty ID <, Ty |D;
b) for 1<h <v and v+1<h <n-k,
T.|D <, T |D.
Proof: @) Notice that, in view of (18), we can write

dVD (9) { [nk n—k , :l}
=expi—0| ) R(s))- ) R(sy) |-
dry (0) =P | &R
By recalling (19) and using super-additivity of R, we obtain that dv (9)/dva (0) is

an increasing function of @ . From this point on, we can repeat the line of the proof of
a) of Proposition 2.

b) We consider the ratio p(t) = F. (t| D')/IETVH (t| D) and proceed along the line of
h h
the proof of b) of Proposition 2.

We remark that, also for the statements of Proposition 6, one can repeat the
considerations contained in Remark 3. We also point out that the super-additive
condition on R means that the lifetimes are conditionaly NBU, given ©.
Correspondingly, in view of the condition (19), the conclusion in b) can be seen as a
sort of multivariate property of NBU, similarly to what was mentioned in Remark 5
about the cases of conditional IFR or conditional DFR.

In the next result, we come back to comparing two sets of dataD and D' for which, as
for Proposition 2, (t;,....t), (tltk) are different and (t;,...t;), is majorized

by (tl ol ) . Asto the survival times, we consider the case:
S = =S =8 ==S k=S (20)
We now look at the joint distributions of the residual lifetimes T, ,...,T, , conditional

on D and D' respectively. In view of (20), both such distributions are exchangeable.
Let us assume that R is convex. We then aso know, from Proposition 2, that the
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univariate distribution of Tr; in the case D is dominated stochastically by the one

corresponding to the case D'. We could wonder however which distribution may
manifest a stronger positive dependence. Some insight is provided by the following
Proposition 9, which will be obtained as a ssmple consequence of the lemma that we
present next. On this purpose, it is convenient to introduce the following notation. Let
7 be a given probability density on [0,+w) and let 7,z be two different densities of
the form
#(0) o« 0* exp{-0(a+1)}z(0), 7(0)oc 6% exp{-O(a+b+1)}7(0).
Let us consider, furthermore, the Laplace transforms
L) = jow 0* exp{ -0t} 2(0)d0, (1)
1

£(a)
1
L(a+b)

2@ = J':O 0" exp{-0(a+ 1)} z(0)do,

L) =

jom 0% exp{~0(a-+b+1)} £(6)do.

Notice that 7,7 can be seen as the posterior densities that we obtain for the
parameter ® in aP.H.M. when we start from the same prior density z(¢) , and observe

two different sets of data. Each set of data contains the same number k of failures but
possibly different vectors of failure times. However the following Lemma may be of a
more general interest.

Lemma 7: If b>0, then Zfl(Z(-)) is super-additive, i.e. for any x,yeR,,
A=l ~ A=l ~ ~-1 ~
L (LON+L (L)L (L(X+Y)).

Proof: For any xeR,, the equation Zil(Z(x)):t is satisfied by te R, such that
L(X)=L(),i.e

1
L(a+h)

1
L(a)

I:” 0F exp{6(a+b+t)}z(0)d6 = jomak exp{O(a+ X)) z(0)do.  (22)

We notice now that both £ and £ are strictly monotonic, as functions of the variable
t. In view of this property, we can equivalently find the solution of (22) by equating the
two integrands, i.e. by writing
1 1
C@rb) exp{-0(b+1)} @ exp{-0x}. (23)
In fact, if we can find at such that (23) is satisfied, it must be the only one t satisfying
(22). From (23) we then obtain

s PN § L(a+b)
t=L (L(X))=x-b elog( @) j (24)
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In view of the above equation, our thesis becomes

1 L(a+b) 1 L(a+b) 1 L(a+hb)
x—b—glog[ @ j+y+—b—glog(—£(a) Jsx+y+—b—glog( @ j

which is equivalent to

1Iog(mj+bz 0 or exp{llog(mj+b} >1.
0 L(a) 0 L(a)

By recalling (21), the last inequality amounts to
+o0 +oo
eplot} [ n* exp{-naa(n)dn 2 | 1 expl-n(a+ b ().

Such an inequality trivially holds in view of the inequality exp{—-b(6+7)} <1 and of
the monotonicity property of integrals.

Remark 8: In practice, as a main point of the previous proof, we just shown that

A=l ~

u(-):= £ (L£(-)) is an affine function, i.e. of the form u(t) =yt+5, with §=0.
Notice that an affine function u is neither concave nor convex. Furthermore, for any
a€[0,]] and x,ye R, , thefollowing equality holds:

au(X) + (1- a)u(y) = u(ax+(1L-a)y).

We now come back to comparing the conditional distributions of the residual

lifetimes, given the two histories D and D'. Heuristically, we can expect that the more
the probability distribution on the parameter @ is dispersed, the riskier is any decision
taken for the surviving units. On the other hand we can also guess that the more the
probability distribution on ® is dispersed, the stronger is the form of positive
dependence among the residual lifetimes. In this standpoint, we wonder whether it is
possible to order, according to some dependence ordering, the conditional distributions
of the residual lifetimes corresponding to the observations of different sets of failure-
data. Proposition 9 shows a simple result in this direction.

Let (X1, X5),(X{,X,) betwo bivariate random vectorsand let C' and C" be
their survival copulas. We can say that (X,, X,) is more positively dependent than
(X1, X5,), in the PQD sense, if C' and C" are ordered in the PQD sense (written
C' <pop C"), namely if, for any uy,u, €[0,1], C'(uy, u,) < C"(uy, Uy).

For pairs of Archimedean copulas C;, C, with generators ¢,y respectively,
the following result was proven in [1, Prop. 4]: the condition C; <pop C,, isequivalent
to the condition that 1 ~2(#(-)) is super-additive.

Let us come back now to considering the two histories D and D' as in (20)
and the posterior distributions on ® conditional on D and D', respectively vp and
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vy (see (8)). For simplicity of notation, let us suppose that the prior on ©, v, (and

therefore its posteriors) admits a density . The two densities 7, and 7,

respectively of v, and v, , aregivenby
0 exp(-0Y. " Rt} exp{-0(n- RS} (0)

[[ o ent-0Y R, (-0~ KRE(O)0.
0 epl-0Y. " Rt} exp{-0(n- KRS} r(0)

) j "ok exp{-&Z'_‘ R(t])}} exp{-0(n- K)R(s)} 7(8)d@ '
0 =1
For shortness sake, we put

k o0
Q9= Y R(t;)+(N-K)R(S), A(s):= IO 0% exp{-0Q(9)} 2(6)d8,
i=1

7 (0) =

7 (0)

~ k , ~ 0 -~
Q9)= ) RE)+(n-KR(S), AS):= [ 0" exp({-0Q(s)}x(0)d0,
j=1
o to write

7 (0)

_ 0 epl0QS)O) () 0 PO T(O)
A(s) P A(S)

We recall that Q(s) >Q(s) and A(s) < A(s) . We can write the Laplace transforms of
vp and v as

W () = A(s)j: % exp{-0[Q(9) +t]} 7(6)do,

W (1) = A(9) jo o exp{—H[é(s) +t]}7r(¢9)d0.
Wp and W, can also be seen as the marginal univariate distributions of T,

(h=1,...,n—k), conditional on D and D' respectively (and unconditional on ®).
Let us consider now the bivariate Archimedean copulas G, ~and G,  respectively

generated by W, and W, .

Proposition 9: Let (t,...,t, ) be mgjorized by (ti,...,t;().Then
Cw, <pPqD CWD,-
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Proof: We apply Lemma 7. By definition, we have A(s)=L(a) and A(s) =L(a+h).

k . k L
Furthermore, we can set a=Q(s) and b=z,-:1R(tj)—z,-:lR(ti)- This yields
Q(9)=a+band W, = £, W, = L.

Since b>0, the hypotheses of Lemma 7 are satisfied and hence W&l(VVD () is super-

additive. We can then conclude the proof by resorting to the mentioned result shown in
[1, Prop. 4], according to which the condition that W[;l(\ND(-)) is super-additive is

equivalent to Gy, <pgp Cu ., -
D

3.1 The Case of the Prior Distributions of Type Gamma

In adiscussion dealing with models satisfying (5) one cannot omit mentioning
the remarkable sub-class that is obtained by fixing the prior distribution v in the family
of gamma distributions. We devote this subsection to the discussion of some specia
aspects of this case. Let us then assume that the prior distribution v admits a gamma
density function with parameters «, S ; namely we consider survival models with joint

surviva function given by

C ;Ba ® o - ﬁa
F(tl,...,tn)zmjoé 1exp{—¢9[ﬂ+§R(tj)”d9=ﬁ. (25)
[/ﬂZR(t]—)]
j=1

The corresponding one-dimensional marginal survival functionis

—_— B ¢
G(t)_(ﬂ+R(t)) . (26)
Thejoint density function in (5) becomes
f(tl,...,tn)zl_[r(tj)r(ma) b ,
j=1

I'(a) (ﬂ . Z r;:l R, ))nm

and the univariate marginal density of T; (j =1...,n)is
g(t) = ar(t)ﬂ—aﬂ.
(B+RM)

By adapting the eguation (8), we easily see that the posterior distribution vy of @,

given the observation D described in (4), is still a gamma distribution with the new
parameters

d=—a+k & B :ﬂ+ZT:1R(t,.)+Z::R(sn).
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Concerning the residual lifetimes T,,.., T, , defined in (9), the margina density
(conditional on D, but unconditional w.r.t. ®) of Tr;, h=1,...,n-k, correspondingly
becomes

8"
I'(a')

0. (O =r(t+8) 0 [ 707 exp(-01 +(R(t+5,) - Ris,) o -

(8"

rit+s,)(a+k)

n-k

K a+k+l”
B+ RE)+ D, RS)+ R(t+sn)}
j=1

I=11%h

Taking into account that, for G as in (26), one has

Glu=R" {ﬂ( uyi—l ﬂ ’

it is readily seen from (25) that the survival copulais an n-dimensional Archimedean

~ -1
Clayton copula with parameter o , that is C(ul,...,un)=(1—n+u1‘“+...+u;“) ‘.

This shows explicitly that g and R(t) have no part in determining the form of C.We

remarked above that the particular choice of v has no influence on the results
considered in Propositions 2, 4 & 6. A different situation is on the contrary met for
what may concern the object of Proposition 9. Something interesting happens in this
respect under the specia choice of a gamma density. Let us consider in fact the joint

distribution  of the residual lifetimes T,,..T,, given a hisory

D={T,=t;,. T, =t, T,y > S with 0<t, <..<t <s. T,,..,T., are conditionaly
i.i.d, given @ =@, with the conditional density
g, (t16) = Or (t+s)exp{-O[R(t+5) - R(9) |
h
and the conditional distribution of ® given D is again gamma, with parameters
, . k
d =a+k, B = zjle(tj)+(n—k)R(s).
This means that the survival copula of the residual lifetimes remains Clayton with

parameter o , independently on the observed failure times t, <..<t, (asfar as k

remains fixed) and on the value of the survival time (of surviving components) s. Then,
the dependence structure of the vector of the residual lifetimes remains fixed and, in
particular, we do not have any phenomenon of extreme tail dependence. Such a
property, of truncation invariance, of Clayton copulas has been considered several
times in the recent years, especially in the frame of financial risk (seein particular [27,
21, 7, 8]). In a Bayesian standpoint, we can look at this property as a direct
consequence of the fact that the family of gamma distributions is conjugate to sampling
from proportional hazard models, as seen above. This property can also be seen as one
of a fixed-point type under the transformations given by time-truncation. Related with
this stand-point, one can state that, under appropriate conditions, the limit of a P.H.M.
conditional on survivalsat times, isjust amodel of the form (25).
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When v is not of a gamma type, vy generally depends on the observed
failure times t;,...,t, . It is then meaningful to wonder, among two different vectors of

observed failure times, whether one of the two gives rise to a stronger form of positive
dependence among the residua lifetimes, or to some form of tail dependence. A
responsein thisdirection is provided by Proposition 9.

4. Discussion and Concluding Remarks

In this section, we add some further remarks about the meaning of the results
presented above and about related aspects of the assumption of P.H.M. To this purpose,
we resort to the simple scheme of choices in a two-actions decision problem.

Suppose that, initially, we have n (apparently) identical units and let T,,..., T,
denote their lifetimes. T,,..., T, are jointly distributed according to a P.H.M. with
r(t) =R (t) monotonic. Relatively to each unit, we should choose one between two
different actions a and a,. Theloss corresponding to the decision g (i =1,2) for the
unit j depends on the lifetime T; and is quantified by L (Tj), for two given loss
functions L :(O,oo)—)]R. In the choice between the two actions we hinge on the
expected-loss minimization principle. Namely, we choose a, for the unit j if and only
if the inequality E(L,(T;))<E(L(T;)) holds. For simplicity sake we make the
assumption that L, (t) — L;(t) isadecreasing function of t. This entails that we can look
at a, as the more optimistic decision, namely the one to be preferred should we knew
that a unit life-time is large enough; & would be then the less optimistic decision.

Obviously, being T,,...,T,, exchangeable, and then in particular identically distributed,
the same action has to be chosen for all n units.

Suppose now that the initia state of information is too scarce and then taking
the decision is considered too risky, i.e. we judge min(E(Ll(Tj)),E(LZ(TJ-))) to be
too large. Thus we defer the decisions to the evidence provided by some life-testing
experiment (to be conducted according to some appropriate sample strategy) and we
then collect some life-time data. Let data D, of the form (4), be actually collected. At
this stage, k failures have been observed and the choice of decisionsis limited only to
the surviving units h=1,...,n—-k . We have to look at the distribution of the residua

lifetimes T,,..,T. ., which are not necessarily exchangeable, anymore. Which is the
rational decision to be taken for each of them? Denote by 1(D) the subset of the

indexes j for which the inequality E(Lz(l};) | D)SE(LI(T,;) | D) holds. We recall, to
fix ideas, that the survival times s,...,s, , are arranged in the non-decreasing order.
We analyzethe set | (D) and compareit with | (D’) for adifferent set of data D'.
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Assume the hypotheses of Proposition 2; in particular R(t) is convex (r(t) is
increasing). Then part a) of Proposition 2 saysthat | (D) < | (D), whereas part b) says
that 1 (D) , when it is not empty, must be of the form | (D) ={1,...,hy} , for some index
hy €{L,....n—k} . Similarly 1(D')={1...,h_} (with hy 2hp).

When, on the contrary, R is concave (namely a model of early failures is
taken), then it must be 1(D ) < I (D) . But, thistime, 1(D) and 1(D) must be of the
form {up,...,n-Kk}, {uy,...,n=K} with u; > up .

The above considerations lead us to conclude that, if we assume r(t) = R (t)
to be monotonic, the following situation must hold: no index j belonging to |(D’)
can exist such that j < j for every jeI(D). Suppose in other words that, once the
data D' have been observed, it is rational to take the decision a, for a surviving unit
with residual lifetime TJ-' and age s; . Then, it must exist some less aged surviving unit,
for which it would be rational to take a,, should the observation of D be taken.

We stress that the above conclusions are valid under the assumption that the
failure rate function is monotonic, irrespective of assuming a model of positive ageing
(r increasing) or of early failures (r decreasing).

Proposition 4 has mainly a technical purpose. By establishing a stronger form
of stochastic comparison (namely <, in place of <), it alows us to replace the

condition that L, — L, isdecreasing with the following wesker one: L —L, hasonly a
change of sign, namely there exist T such that [L,(t)— L (t)](t-t) <0 forany t= T
(see e.g. the considerationsin [25, Ch. 3].

Proposition 6 leads us to the same conclusion as Proposition 2; the difference
between the two statements dwells in the circumstance that a weaker condition on R is

required, and the two vectors of survival times, s and s , are different. But the relation
between s and s must be of a special form.

A rather different message is, on the contrary, contained in Proposition 9,
where we compare two histories containing different vectors of failure times. Such a
result shows that it is possible to compare (in the sense of PQD order) the strength of
positive dependence between pair of residual lifetimes, given the two different
histories.

All the above facts are in the general spirit of [9]; however they are specific of
the P.H.M.'s and point out the specia structure of such models. Indeed the inequalities
we proved are not generally guaranteed if we consider conditionaly i.i.d. IFR or
conditionally i.i.d. DFR variables, outside of the P.H.M.'s. One related aspect is that a
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same type of inequalities can be obtained for al the P.H.M.'s. with a same concavity-
convexity character of R(t) , irrespective of the prior distribution v (see Remark 1).

In more general cases of conditional independence given a parameter ®, on

the contrary, we cannot exclude some interactions between the prior distribution on ®
and ageing properties of the joint model.
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