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Abstract
Proportional Hazard Models arise from a straightforward generalization of the simple

case of conditionally i.i.d., exponentially distributed random variables and, in a sense, can be
considered as the idealized models in the statistical analysis of failure and survival data for
lifetimes. For these reasons, they have been extensively studied in the literature. Despite of the
richness of related contributions, there are still special aspects of these models that are
worthwhile focusing. In this discussion paper we aim to present some contributions, in the frame
of a Bayesian approach and by using some very basic notions of stochastic ordering.

Key words: Archimedean copulas, Conditional IFR and DFR, Hazard rate ordering,
Likelihood ratio, Majorization, More PQD, Stochastic ordering of posterior distributions, Two-
actions decision problems.

1. Introduction
Generally speaking, we consider here some specific aspects of the problem of

predictive inference for vectors of non-negative random variables 1,..., nT T . We denote

by  1,..., nF t t  the joint survival function of 1,..., nT T , i.e. we put

   1 1 1,..., : ,..., .n n nF t t P T t T t  

Furthermore, we assume F  to admit a regular joint density, to be denoted by

 1,..., nf t t . The random variables 1,..., nT T can have the meaning of waiting times or

time-durations (of industrial components, living organisms, companies in a market, ...)
and we then think of applications to different fields such as Reliability, Survival
Analysis, Finance, Waiting Systems and so on. For our purposes, it will be convenient
however to use the special language of Reliability Theory. In the related statistical
analysis, one typically encounters statistical observations of the form

1 2 11 2 1{ , ,..., ; ,..., },
k n kj j j k i i n kD T t T t T t T s T s

       (1)

where 0 k n  , 10 .... kt t   , 10 ... n ks s    . k  is an observed number of

failures, 1,..., kt t  are the corresponding failure times, 1,..., n ks s   are ages or survival

times, and
1 1iT s , ...,

n ki n kT s
   are residual lifetimes. We admit that 0hs  , for

some 1,...,h n k  ; in this case the variable
hi

T may not appear explicitly within the

event D.
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The term predictive inference conveys the idea that, putting ourselves in a
frame of Bayesian Statistics, we are interested in inference about residual lifetimes,
given observed data of the form (1). Namely we look at the joint conditional
distribution of

1 1iT s , ...,
n ki n kT s
   , given D. More precisely

a) we check stochastic comparisons, for a given D, between the marginal conditional
distributions of

h
i h

T s 

  and of

h
i h

T s 

  respectively, for two different indexes

1 h h n k     ;

b) for a fixed index 1 h n k    and for special pairs of observations D  and D , we
establish stochastic comparisons between the conditional distributions of

hi hT s ,

given D  and D respectively;

c) we compare stochastic dependence for the joint distributions of residual lifetimes,

conditionally on D  and D  respectively.

Of course, significant results in this direction can only be obtained by
specifying some relevant probability models, i.e. special forms of the joint survival
function  1,..., nF t t . In this paper we specifically consider the case of Proportional

Hazard Models (often shortened, in the following, with P.H.M.). In this respect, we
present some results that can be obtained in the afore-mentioned directions a), b) and c).
As it is well known, the class of P.H.M.'s is a very special and interesting one,
characterized by remarkable properties of both probabilistic and statistical type. For
these reasons, they have been analyzed in the literature many times and from several
different points of view. In particular, due to their properties, they emerge in a natural
way in the statistical analysis of life-times data (see in particular [2, 15]). Actually they
can be seen as very special cases of Cox Models, which in turn, find a natural
generalization to the frailty models (see e.g. the recent review paper [28]). On the other
hand, P.H.M.'s are strictly related with the popular topic of Archimedean copulas (see
e.g. [20]). For a partial list of further relevant references see [1, 5, 18, 19].

In this paper we point out some unexplored aspects of Proportional Hazard
Models and highlight some interesting relations existing among different properties that
emerge in their statistical analysis. Such properties are related with concepts of risk and
of ageing. Some of our results had already been presented, under a more general form,
in [25, Ch. 5]. Notwithstanding this, and even though P.H.M.'s are very popular, still
our discussion can shed a new light on the interest and on the meaning of the
assumption that survival models are of this special type.

In order to recall the definition of P.H.M. we consider a n-tuple of non-
negative, exchangeable, random variables 1,..., nT T , to be thought of as lifetimes of

similar units 1,..., nU U . We talk of P.H.M. when the joint survival function  1,..., nF t t

has the form
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 1
0

1

,..., exp ( ) ( ),
n

n j
j

F t t R t d  




    
  
                                  (2)

where : [0, ) [0, )R     is a strictly increasing function such that (0) 0R  . In

other words, 1,..., nT T  are conditionally i.i.d. given a random parameter , taking

values on  0, , and   can be seen, from a Bayesian view-point, as the a-priori

distribution of  . These models arise as a straightforward generalization of the case of
conditionally i.i.d. exponential lifetimes, that is characterized by the position

( ) , 0.R t t t                         (3)

The latter case can be considered as the idealized model in the analysis of life-times, in
view of its, symmetry-related, properties. The latter properties can be seen as the
statistical counterparts of the memory-less property of the exponential distribution. In
our setting, they constitute the starting points whence natural questions arise,
concerning the case (2). The attempt to give responses to such questions leads us to our
developments here.

From a notational point of view notice that when, as in the present case, 1,..., nT T  are

exchangeable, it is not restrictive to give to (1) the simplified form

1 1 2 2 1 1{ , ,..., ; ,..., },k k k n k n kD T t T t T t T s T s                  (4)

with 10 ... kt t   , 10 ... .n ks s   

The plan of the paper is as follows. In the next Section we review basic features of
the P.H.M.'s that can be of greater interest for our purposes. Section 3 will start by
pointing out the afore-mentioned properties for the cases when (3) holds and
consequent questions concerning the more general P.H.M.'s. Then we present some
results concerning conditional distributions of residual lifetimes; a subsection will be
devoted to the special case defined by prior distributions of type gamma. A brief
discussion concerning such results, and relations among them, will conclude the paper
in Section 4.

Our language will require just a very basic knowledge of the fundamental
univariate notions of ageing, such as IFR, DFR, NBU, etc, and of stochastic orders,
such as the ordering in the usual stochastic sense, in the hazard rate and in the

likelihood ratio. The latter will be respectively denoted, as usual, by , ,st hr  lr . If

needed, the reader can refer e.g. to [22]; see also [25, Ch. 3].

2. Some Relevant Properties of P.H.M.’s
As mentioned, the Proportional Hazard Models manifest numerous special

properties that can be seen under different viewpoints and described in terms of
different languages. In this Section we review those properties that have a major impact
on our discussion. It is shown by (2) that a P.H.M., once its dimension n has been fixed,
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is characterized by the pair  ,R  . In the following we assume that the function R is

differentiable and let ( ) : ( ) .r t dR t dt This assumption allows  1,..., nF t t  to admit a

regular joint density function, expressed by

 1
0

11

,..., ( ) exp ( ) ( ),
n n

n
n j j

jj

f t t r t R t d   




    
  
                  (5)

and, given   , 1,..., nT T  are conditionally i.i.d. with an absolutely continuous

distribution, with ( )r t  as the univariate hazard rate function. The univariate marginal

density of jT ( 1,...,j n ) is then given by

0
( ) ( ) exp{ ( )} ( ).g t r t R t d   


              (6)

In such an absolutely continuous case, we can easily deal with the conditional
(or posterior) distribution D  of   given D, where D is the observation described in

(4). As a function of  , the likelihood of D is given by

1 11

( ) ( ) exp ( ) exp ( ) .
k k n k

k
j j h

j hj

L r t R t R s   


 

           
     

        (7)

The latter equation has some important consequences that we list after the following
technical remark.

Remark 1: In the case when D contains some failure data, i.e. when k in (4) is greater
than 0, the assumption that R is differentiable is important. In fact it allows us to
construct the posterior distribution D  simply by means of the common Bayes

Formula. On the contrary, if R is not differentiable and then the joint distribution of

1,..., nT T  does not admit a probability density function, more delicate probability tools

are needed in order to identify the conditional distribution of   given D. When,
however, k=0 (i.e. when we only condition upon survival data), we can anyway
compute D  by means of the common Bayes Formula even if the joint distribution of

1,..., nT T  does not admit a probability density function.

We come now back to listing the main consequences of (7). First of all, by
suitably applying the Bayes Formula, we get that the distribution D  is expressed by

  1 11

1 110

( ) exp{ ( )}exp{ ( )} ( )

( ) exp{ ( )}exp{ ( )} ( )

k k n kk
j jj hj

D k k n kk
j jj hj

h

h

r t R t R s d
d

r t R t R s d

    
 

    



 
 

 

 
 

 

 
 

1 1

1 10

exp{ ( )}exp{ ( )} ( )

exp{ ( )}exp{ ( )} ( )

k n kk
jj h

k n kk

h

hjj h

R t R s d

R t R s d

    

    



 
 

 

 


 

 
 

  (8)

Let us now consider the residual lifetimes 1 ,..., n kT T 
 , defined by
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1 1 1,..., .k n k n n kT T s T T s 
                            (9)

In view of conditional independence of 1,..., nT T , given  , we can write easily the

conditional density of 1 ,..., n kT T 
 , given D. In fact, 1 ,..., n kT T 

  remain conditionally

independent as well, given ; marginally, the conditional density of hT 

 1,...,h n k  , given both   and D is

( | , ) ( ) exp{ ( ) ( ) }, 0,
h

h h hT
g t D r t s R t s R s t           (10)

and, as mixing distribution of  , we have the posterior D . The marginal density of

hT   (conditional on D, but unconditional w.r.t.  ) is then

0
( | ) ( ) exp{ ( ) ( ) } ( ).

h
h h h DT

g t D r t s R t s R s d


            (11)

In the special case when 1 1,..., ... 0n k ks s s t t       (in such a case D is

called a history), 1 ,..., n kT T 
  are conditionally i.i.d., and then exchangeable. More

precisely, they give rise to a P.H.M. of dimension n n k   , characterized by the pair

 ,D DR   where ( ) ( ) ( ).DR t R t s R s  

It clearly emerges from (7) and (8) that, whatever the prior distribution  , the

posterior distribution D depends on D only through the pair  ,k   where k denotes

the observed number of failures and   is the statistics defined by

1 1

( ) ( ).
k n k

j h
j h

R t R s


 

  
Also the conditional distribution, given D, of the residual lifetimes depends only on

 ,k  . In other words the pair  ,k   is a sufficient statistics. It is a very remarkable

property of these models the fact that a sufficient statistics of fixed dimension exists
even for statistical observations that contain survival data. See the discussion in [2], see
also [25].

The condition that ( )r t  is monotonic reflects into remarkable properties of

univariate, and multivariate, ageing for a P.H.M.. When ( )r t  is decreasing, i.e. when

conditionally on  , 1,..., nT T  have a Decreasing Failure Rate (DFR) distribution, then

also the marginal (i.e. predictive) distribution of 1,..., nT T  is DFR, since (see e.g. [2])

any mixture of DFR distributions is DFR. Furthermore, the vector 1( ,.. )., nT T  is also

DFR, according to different multivariate definitions of DFR. In particular the
corresponding joint survival function 1( ,..., )nF t t  is Schur-convex, which can be seen as

a property of multivariate DFR (see [25] and references cited therein). When ( )r t  is

increasing, 1,..., nT T  have an Increasing Failure Rate (IFR) distribution conditionally on

 . In this case we cannot ensure that the marginal (i.e. predictive) distribution of

1,..., nT T  is IFR as well since, as it is well-known, a mixture of IFR distributions is not
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necessarily IFR. We still have, however, that 1( ,.. )., nT T  has the multivariate IFR

property described by 1( ,..., )nF t t  being Schur-concave. We will come back to this

multivariate ageing issue in Section 3.

In the study of qualitative properties of the conditional distribution of the
residual lifetimes, given observed data of the form (4), the analysis of dependence
properties of 1,..., nT T  has clearly an important role. It is then an interesting issue

looking at the survival copula 1
ˆ ( ,..., )nC u u  of 1,..., nT T . The latter (see e.g. [10, 20])

appropriately describes, in fact, the dependence properties of 1,..., nT T  and is defined as

the function    ˆ : 0,1 0,1
n

C   given by

   1 1
1 1

ˆ ( ,..., ) ,..., ,n nC u u F G u G u    
where G  denotes the survival function of the univariate marginal distribution, whose
density has been given in (6). We notice that, by considering the Laplace transform

0
( ) : exp{ } ( ),W x x d x 


 

we can write

1
1

( ,..., ) ( ) ,
n

n j
j

F t t W R t


 
 
 
 
                    (12)

whence
1 1 1( ) ( ( )), ( ) ( ) , 0 1, 0;G t W R t G u R W u u t        

 

   1 1
1 1

ˆ ( ,..., ) ... .n nC u u W W u W u     
  

We then see that, in a P.H.M., Ĉ  is not affected by the form of the function R
and it is only determined by the distribution  , through its Laplace transform.

Furthermore, Ĉ  is Archimedean and this can be seen as a further aspect of the special
structure of P.H.M.'s. In view of (12), the class of P.H.M.'s can then be seen as a subset
of the class of all the n -dimensional models characterized by survival functions of the
form

1
1

( ,..., ) ( ) ,
n

n j
j

F t t W R t


 
 
 
 
                 (13)

where : [0, ) (0,1]W    is any decreasing function such that F in (13) is a bona-fide

n -dimensional survival function (see in particular [16] for the analytic characterization
of such a condition). On its turn, the condition (13) characterizes the class of all the
continuous models with Archimedean survival copulas. Some of the arguments of this
paper can be extended to such a class of models. However, we concentrate our attention
on the case of P.H.M.'s (i.e. on the case of conditional i.i.d. lifetimes). Among all the
multivariate models of the form (13), the latter ones emerge for their properties of
positive dependence. Since, in a P.H.M., 1,..., nT T  are conditionally i.i.d. with respect to

the parameter  , and each of them is stochastically decreasing in  , one can
heuristically expect, in fact, that they must satisfy some, weaker or stronger, property of
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positive dependence. Several detailed results along this direction have been obtained for
the more general case of conditionally independent (not necessarily identically
distributed) random variables and the related literature is well-known and very wide
(see in particular [23, 12]). For the case of the P.H.M.'s we point out in this respect an

important consequence of the fact that Ĉ  is Archimedean: several properties of
positive dependence, that are generally different one another, collapse into only one
notion of positive dependence in the case of Archimedean copulas (see in particular
[17, 6, 25]). This means that weak conditions of positive dependence actually reveal to
be equivalent to much stronger ones.

3. Stochastic Comparisons for Residual Lifetimes Conditional on Total
Time on Test Statistic

In order to introduce the topic of this Section we first consider the case of
conditionally i.i.d. exponential lifetimes, which is characterized by joint survival
functions of the form (2) with R satisfying (3). These models manifest obvious, but very
remarkable, symmetry properties that can be briefly summarized as follows.

(a) Conditionally on any data D of the form in (4), the residual lifetimes

1,...,k nT T 
  defined by (9) are identically distributed, even if 1,..., n ks s   are not

all equal.
(b) For any data D, a sufficient statistic is provided by the pair  ,k  , where, this

time,  coincides with the Total Time on Test statistics defined by

1 1

.
k n k

j h
j h

t s


 

  

Let us now consider, for the same vector of lifetimes 1,..., nT T , two different

sets of data D and D : D as in (4), and

1 1 2 2 1 1{ , ,..., ; ,..., }k k k n n kD T t T t T t T s T s     
               (14)

with 10 ... kt t    , 10 ... n ks s 
   . For simplicity of notation we in particular,

assume the two vectors of survival times to be the same for D and D , i.e.

1 1,..., .n k n ks s s s 
  

We compare the conditional distributions for the residual lifetimes 1 ,..., n kT T 


given D and D , respectively. Notice that we are assuming that both D and D  contain
the same number of failures, k . We also assume that the two Total Time on Test
statistics result in the same value, namely

1 1

.
k k

j j
j j

t t 

 

                (15)

For what it has been noticed above, we have that the conditional distributions
of residual lifetimes share the same conditional distribution, irrespective of having
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observed D or D , since we originally assumed that 1,..., nT T  are conditionally i.i.d.,

exponentially distributed. Such a property is extremely important in the statistical
analysis of reliability data. Suppose for instance that we plan to collect some failure
data in order to evaluate the reliability of a batch of similar components. Deciding the
size of the sample to be tested is obviously part of the sampling procedure. Depending
on different cost structures, sometimes we may want to collect in a short time a
sufficient amount of Total Time on Test on the purpose of getting enough confidence
about the quality. Some other times, concerning the same purpose, we have no problem
about saving time; rather we have a limited number of items available to be tested. As a
remarkable consequence of the assumption of conditional exponentiality, we reach the
same state of information, and then of confidence about quality, from two different
experiments, provided that we observe the same number k  of failures and collect the
same value   for the TTT statistics (and provided that stopping of observation is not
informative).

Of course we expect that the two conditional distributions of residual lifetimes,

given D or D respectively, would on the contrary be different, should the assumption
of conditional exponentiality be removed. What can we then say in such a case? A
general response is of course impossible, without specifying suitable properties for the
joint density of 1,..., nT T . Here we give some results under the condition that (5) holds

with suitable properties of the function R and suitable majorization relations between

the vectors  1,..., ,kt t  1,..., kt t  . To fix ideas, we assume that  1,..., ,kt t  is majorized

by  1,..., kt t  , namely (see [14])

1 1 1 2 1 2 1 1 1 1
1 1

, , ..., ... ... ,
k k

n n j j
j j

t t t t t t t t t t t t     
 

 

           .          (16)

Proposition 2: Let (5) hold with R a convex function and   an arbitrary probability
distribution on [0, ) . Then

(a) for any 1,...,h n k  ,

| | ;h lr hT D T D  

(b) for 1 h h n k     ,

| | .hrh h
T D T D 
 

Proof: a) First we check that the posterior distributions D  and
D

   can be compared

in the sense of the lr  stochastic ordering. On this purpose we consider the ratio

   .D D
d d    By taking into account the expression of the type (8), for the

distributions of   conditional on D and on D , respectively, we readily obtain in this
respect that

 
  1 1

exp ( ) ( ) .
k k

D
j j

j jD

d
R t R t

d

 


 



 

       
    
 

In view of the hypothesis (15) and of convexity of R, we obtain that this is an increasing
function of  , since
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1 1

( ) ( ).
k k

j j
j j

R t R t 

 

 
 The latter inequality can be seen e.g. by applying [14, Prop. 4.B.2]. We can now take

into account that the conditional density (10) of hT  given 1/    is TP 2 , i.e.

( | ) ( | ) ( | ) ( | ).g t g t g t g t          
As a direct consequence of the basic compositions formula of Totally Positive functions

of order 2  (see [11]), we can conclude that the conditional densities of hT   given D

and hT  given D  are ordered in the likelihood ratio ordering, as well (see also [25,

Remark 3.16]).

b) For 1 h h n k     , we want to prove that the ratio

( | )
( ) :

( | )
h

h

T

T

F t D
t

F t D










is an increasing function of t. We recall the position 10 ... n ks s    . Now we have

0

0

exp{ ( ) ( ) } ( )
( ) .

exp{ ( ) ( ) } ( )

Dh h

Dh h

R t s R s d
t

R t s R s d

  


  

 

 





    


    




By setting, for notational convenience,

 
0

exp{ ( ) ( ) } ( )
ˆ ,

exp{ ( ) ( ) } ( )

Dh h

Dh h

R t s R s d
d

R t s R s d

  
 

  

 

 



    
    

and
( ) : ( ) ( ) ( ) ( ),

h h h h
Q t R t s R s R t s R s                       (17)

we can write  
0

ˆ( ) exp{ ( )}t Q t d   


  .  Now  ̂   is a probability distribution

over [0, )  and, in view of the convexity assumption on R, ( )Q t  is a decreasing

function; therefore   is increasing in t.

The just proven stochastic orders change their direction if ( )R t  is taken to be concave

instead of convex.

Remark 3: As explicitly said in the statement of Proposition 2, the validity of the two
stochastic comparisons proven there is guaranteed by a suitable condition on the
function R and is valid for any prior distribution  . In particular, as shown in the

proof,   does not appear in the expression of the ratio    .D D
d d   

The statement in b) of Proposition 2 can be strengthened by adding a suitable
condition on the derivative of R.
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Proposition 4: Let (5) hold with R convex, r log-concave and let  be an arbitrary

probability distribution on [0, ) . Then, for 1 h h n k     ,

| | .lrh h
T D T D 
 

Proof: For 1 h h n k      we want to prove that the
ratio

0

0

( ) exp{ ( ) ( ) } ( )
( ) :

( ) exp{ ( ) ( ) } ( )

Dh h h

Dh h h

r t s R t s R s d
t

r t s R t s R s d

   


   

  

  





     


     




is an increasing function of t. By setting

 
0

exp{ ( ) ( ) } ( )
ˆ ,

exp{ ( ) ( ) } ( )

Dh h

Dh h

R t s R s d
d

R t s R s d

   
 

   

 

 



    
    

we can write

 
0

( )
ˆ( ) exp{ ( )}

( )
h

h

r t s
t Q t d

r t s
   






 

 
where ( )Q t  was defined in (17). Then  

0
ˆexp{ ( )}Q t d  


  is increasing in t, since

( )Q t is decreasing and ( ) ( )
h h

r t s r t s    is increasing in t, since ( )r t  is log-concave.

Therefore ( )t  is increasing too.

Remark 5: The statements in Proposition 2 and Proposition 4 are related to results
presented in [4, 25]. Here we gave, for the special case defined by (2), specific
statements and more direct proofs. In the case when ( )r t  is increasing, we have the

condition of Increasing Failure Rate for the lifetimes 1,..., nT T , conditional on the

parameter  . In such a case we also have that the joint survival function F  is Schur--
concave. When ( )r t  is decreasing, we have for 1,..., nT T  the condition of Decreasing

Failure Rate, conditional on the parameter   and F  is Schur-convex. The latter two

properties of F  can respectively be seen as conditions of multivariate IFR and
multivariate DFR. Just as a rather immediate consequence of the definition of Schur-

concavity, we can claim that | |sth h
T D T D 
  where D is as in the hypotheses of

Proposition 2 (see e.g. the discussion in [25, Ch. 4] and references cited therein). Part

b) of Proposition 2 achieved however the slightly stronger condition | |hrh h
T D T D 
  .

This result is made even stronger in Proposition 4.

In the following result we obtain conclusions that are of a same type, but
weaker than those in Proposition 2. On the other hand, we assume a condition on R that
is weaker than convexity, namely we assume that it is super-additive, namely

( ) ( ) ( ).R x R y R x y   Furthermore we allow the vectors of survival times to be

different, with a special relation between them; more precisely we take D  of the
specific form.
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1 1 2 2 1 1{ , ,..., ; ,..., }k k k n n kD T t T t T t T s T s  
           (18)

with 1 0,..., 0vs s   , and 1,...,v n ks s 
   with the following property: for a suitable

partition 1 2{ , ,..., }n k vA A A   of the set of indexes {1,2,..., }n k  we have

.
i

v i h
h A

s s




        (19)

For simplicity of notation, we take the vectors of observed lifetimes equal in the two
histories.

Proposition 6: Let (5) hold with R a super-additive function and  an arbitrary
probability distribution on [0, ) . Then

a) for any 1,...,h n k  ,

| | ;h lr hT D T D  

b) for 1 h v   and 1v h n k    ,

| | .hrh h
T D T D 
   

Proof: a) Notice that, in view of (18), we can write

 
  1

exp ( ) ( ) .
n k n k

D
h h

h h vD

d
R s R s

d

 


 

 


 

       
    
 

By recalling (19) and using super-additivity of R, we obtain that    D D
d d     is

an increasing function of  . From this point on, we can repeat the line of the proof of
a) of Proposition 2.

b) We consider the ratio ( ) : ( | ) ( | )
h h

T T
t F t D F t D  

 

  and proceed along the line of

the proof of b) of Proposition 2.

We remark that, also for the statements of Proposition 6, one can repeat the
considerations contained in Remark 3. We also point out that the super-additive
condition on R means that the lifetimes are conditionally NBU, given  .
Correspondingly, in view of the condition (19), the conclusion in b) can be seen as a
sort of multivariate property of NBU, similarly to what was mentioned in Remark 5
about the cases of conditional IFR or conditional DFR.

In the next result, we come back to comparing two sets of data D and D  for which, as

for Proposition 2,  1,..., ,kt t  1,..., kt t  are different and  1,..., ,kt t  is majorized

by  1,..., kt t  . As to the survival times, we consider the case:

1 1... ... .n k n ks s s s s 
                               (20)

We now look at the joint distributions of the residual lifetimes 1 ,..., n kT T 
  conditional

on D and D respectively. In view of (20), both such distributions are exchangeable.
Let us assume that R is convex. We then also know, from Proposition 2, that the
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univariate distribution of hT   in the case D is dominated stochastically by the one

corresponding to the case D . We could wonder however which distribution may
manifest a stronger positive dependence. Some insight is provided by the following
Proposition 9, which will be obtained as a simple consequence of the lemma that we
present next. On this purpose, it is convenient to introduce the following notation. Let
  be a given probability density on [0, ) and let ˆ,   be two different densities of

the form

   ˆexp{ ( )} ( ), exp{ ( )} ( ).k ka t a b t                 
Let us consider, furthermore, the Laplace transforms

0
( ) exp{ } ( ) ,kt t d    


             (21)

0

1
( ) exp{ ( )} ( ) ,

( )
kt a t d

a
    


  



0

1
( ) exp{ ( )} ( ) .

( )
kt a b t d

a b
    


   

 


Notice that ˆ,   can be seen as the posterior densities that we obtain for the

parameter   in a P.H.M. when we start from the same prior density ( )  , and observe

two different sets of data. Each set of data contains the same number k of failures but
possibly different vectors of failure times. However the following Lemma may be of a
more general interest.

Lemma 7: If b>0, then  1
( (·))


   is super-additive, i.e. for any ,x y  ,

     1 1 1
( ( )) ( ( )) ( ( )).x y x y

  
       

Proof: For any x  , the equation  1
( ( ))x t


   is satisfied by t   such that

 ( ) ( )x t  , i.e.

0 0

1 1
exp{ ( )} ( ) exp{ ( )} ( ) .

( ) ( )
k ka b t d a x d

a b a
         

 
   

   
       (22)

We notice now that both   and  are strictly monotonic, as functions of the variable
t. In view of this property, we can equivalently find the solution of (22) by equating the
two integrands, i.e. by writing

1 1
exp{ ( )} exp{ }.

( ) ( )
b t x

a b a
    

 
            (23)

In fact, if we can find a t such that (23) is satisfied, it must be the only one t satisfying
(22). From (23) we then obtain

 1 1 ( )
( ( )) log .

( )

a b
t x x b

a
  

     
 

 
 


            (24)
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In view of the above equation, our thesis becomes

1 ( ) 1 ( ) 1 ( )
log log log ,

( ) ( ) ( )

a b a b a b
x b y b x y b

a a a  
       

               
     

  
  

which is equivalent to

1 ( )
log 0

( )

a b
b

a
 

  
 




or
1 ( )

exp log 1.
( )

a b
b

a
      
   




By recalling (21), the last inequality amounts to

0 0
exp{ } exp{ } ( ) exp{ ( )} ( ) .k kb a d a b d          

 
    

Such an inequality trivially holds in view of the inequality exp{ ( )} 1b      and of

the monotonicity property of integrals.

Remark 8: In practice, as a main point of the previous proof, we just shown that

(·) :u   1
( (·))


   is an affine function, i.e. of the form ( )u t t   , with 0  .

Notice that an affine function u is neither concave nor convex. Furthermore, for any
[0,1]   and ,x y  , the following equality holds:

( ) (1 ) ( ) ( (1 ) ).u x u y u x y       

We now come back to comparing the conditional distributions of the residual

lifetimes, given the two histories D and D . Heuristically, we can expect that the more
the probability distribution on the parameter   is dispersed, the riskier is any decision
taken for the surviving units. On the other hand we can also guess that the more the
probability distribution on   is dispersed, the stronger is the form of positive
dependence among the residual lifetimes. In this standpoint, we wonder whether it is
possible to order, according to some dependence ordering, the conditional distributions
of the residual lifetimes corresponding to the observations of different sets of failure-
data. Proposition 9 shows a simple result in this direction.

Let 1 2 1 2( , ), ( , )X X X X     be two bivariate random vectors and let C  and C  be

their survival copulas. We can say that 1 2( , )X X  is more positively dependent than

1 2( , )X X  , in the PQD sense, if C  and C  are ordered in the PQD sense (written

PQDC C  ), namely if, for any 1 2, [0,1],u u  1 2 1 2( , ) ( , ).C u u C u u 

For pairs of Archimedean copulas C , C  with generators ,   respectively,

the following result was proven in [1, Prop. 4]: the condition PQDC C   is equivalent

to the condition that 1( (·))   is super-additive.

Let us come back now to considering the two histories D and D  as in (20)

and the posterior distributions on   conditional on D and D , respectively D  and
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D
   (see (8)). For simplicity of notation, let us suppose that the prior on  ,  , (and

therefore its posteriors) admits a density  . The two densities D  and
D

  ,

respectively of D  and
D

  ,  are given by

  1

10

exp{ ( )}exp{ ( ) ( )} ( )
,

exp{ ( )}exp{ ( ) ( )} ( )

kk
jj

D kk
jj

R t n k R s

R t n k R s d

    
 

     






  


  




  1

10

exp{ ( )}exp{ ( ) ( )} ( )
.

exp{ ( )}}exp{ ( ) ( )} ( )

kk
jj

D kk
jj

R t n k R s

R t n k R s d





 


  


  




    
 

     

For shortness sake, we put

0
1

( ) : ( ) ( ) ( ), ( ) : exp{ ( )} ( ) ,
k

k
j

j

Q s R t n k R s A s Q s d    




     

0
1

ˆ ˆ ˆ( ) : ( ) ( ) ( ), ( ) : exp{ ( )} ( ) ,
k

k

j

Q s R t n k R s A s Q s d    




     
so to write

  exp{ ( )} ( )
,

( )

k

D
Q s

A s

     
  

ˆexp{ ( )} ( )
.ˆ( )

k

D

Q s

A s

    




We recall that ˆ ( ) ( )Q s Q s  and ˆ( ) ( )A s A s . We can write the Laplace transforms of

D  and
D

   as

 
0

( ) ( ) exp{ ( ) } ( ) ,k
DW t A s Q s t d    


  

0

ˆ ˆ( ) ( ) exp{ ( ) } ( ) .k
D

W t A s Q s t d    


    

DW  and
D

W   can also be seen as the marginal univariate distributions of hT

( 1, ,h n k   ), conditional on D and D  respectively (and unconditional on  ).

Let us consider now the bivariate Archimedean copulas
DWC  and

D
WC


respectively

generated by DW  and
D

W  .

Proposition 9: Let  1,..., kt t  be majorized by  1,..., kt t  . Then

.
D D

W PQD WC C
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Proof: We apply Lemma 7. By definition, we have ( ) ( )A s a   and ˆ( ) ( )A s a b  .

Furthermore, we can set ( )a Q s  and
1 1

( ) ( )
k k

j jj j
b R t R t

 
   . This yields

ˆ ( )Q s a b  and , .D D
W W   

Since b>0, the hypotheses of Lemma 7 are satisfied and hence 1( (·))DD
W W

  is super-

additive. We can then conclude the proof by resorting to the mentioned result shown in

[1, Prop. 4], according to which the condition that 1( (·))DD
W W

  is super-additive is

equivalent to
D D

W PQD WC C


 .

3.1 The Case of the Prior Distributions of Type Gamma
In a discussion dealing with models satisfying (5) one cannot omit mentioning

the remarkable sub-class that is obtained by fixing the prior distribution   in the family
of gamma distributions. We devote this subsection to the discussion of some special
aspects of this case. Let us then assume that the prior distribution   admits a gamma
density function with parameters ,  ; namely we consider survival models with joint

survival function given by

  1
1

0
1

1

,..., exp ( ) .
( )

( )

n

n j
nj

j
j

F t t R t d

R t

 



    




 





        
         

 
 




     (25)

The corresponding one-dimensional marginal survival function is

( ) .
( )

G t
R t





 

   
                    (26)

The joint density function in (5) becomes

 1
1

1

( )
,..., ( ) ,

( )
( )

n

n j nn
j

jj

n
f t t r t

R t




 









 


   
 




and the univariate marginal density of jT  ( 1,...,j n ) is

  1
( ) ( ) .

( )
g t r t

R t






 




By adapting the equation (8), we easily see that the posterior distribution D  of  ,

given the observation D described in (4), is still a gamma distribution with the new
parameters

1 1
( ) ( )&

k n k

jj hh
k R t R s   

 
 

      .
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Concerning the residual lifetimes 1 ,..., n kT T 
 defined in (9), the marginal density

(conditional on D, but unconditional w.r.t.  ) of hT  , 1,...,h n k  , correspondingly

becomes

 
0

( )
( ) ( ) exp{ [ ( ) ( ) ]}

( )h
h h hT

g t r t s R t s R s d




  
      

 


    


1

1 1,

( )
( )( ) .

( ) ( ) ( )

k

h k
k n k

j l h
j l l h

r t s k

R t R s R t s










 


  


 

 
    
  
 

Taking into account that, for G as  in (26), one has

1 1
1/ 1

1
( ) ,G u R

u  


     
  

it is readily seen from (25) that the survival copula is an n -dimensional Archimedean

Clayton copula with parameter  , that is   1/

1 1
ˆ ( ,..., ) 1 ... .n nC u u n u u

       

This shows explicitly that   and ( )R t  have no part in determining the form of Ĉ . We

remarked above that the particular choice of  has no influence on the results
considered in Propositions 2, 4 & 6. A different situation is on the contrary met for
what may concern the object of Proposition 9. Something interesting happens in this
respect under the special choice of a gamma density. Let us consider in fact the joint

distribution of the residual lifetimes 1 ,..., n kT T 
  given a history

1 1 1{ ,..., , }k k kD T t T t T s   with 10 ... kt t s    . 1 ,..., n kT T 
  are conditionally

i.i.d, given   , with the conditional density

 ( | ) ( ) exp{ ( ) ( ) }
hT

g t r t s R t s R s       

and the conditional distribution of   given D is again gamma, with parameters

1
, ( ) ( ) ( ).

k

jj
k R t n k R s   


    

This means that the survival copula of the residual lifetimes remains Clayton with

parameter   , independently on the observed failure times 1 ... kt t   (as far as k

remains fixed) and on the value of the survival time (of surviving components) s. Then,
the dependence structure of the vector of the residual lifetimes remains fixed and, in
particular, we do not have any phenomenon of extreme tail dependence. Such a
property, of truncation invariance, of Clayton copulas has been considered several
times in the recent years, especially in the frame of financial risk (see in particular [27,
21, 7, 8]). In a Bayesian standpoint, we can look at this property as a direct
consequence of the fact that the family of gamma distributions is conjugate to sampling
from proportional hazard models, as seen above. This property can also be seen as one
of a fixed-point type under the transformations given by time-truncation. Related with
this stand-point, one can state that, under appropriate conditions, the limit of a P.H.M.
conditional on survivals at time s, is just a model of the form (25).
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When   is not of a gamma type, D  generally depends on the observed

failure times 1,..., kt t . It is then meaningful to wonder, among two different vectors of

observed failure times, whether one of the two gives rise to a stronger form of positive
dependence among the residual lifetimes, or to some form of tail dependence. A
response in this direction is provided by Proposition 9.

4. Discussion and Concluding Remarks
In this section, we add some further remarks about the meaning of the results

presented above and about related aspects of the assumption of P.H.M. To this purpose,
we resort to the simple scheme of choices in a two-actions decision problem.

Suppose that, initially, we have n (apparently) identical units and let 1,..., nT T

denote their lifetimes. 1,..., nT T  are jointly distributed according to a P.H.M. with

( ) ( )r t R t  monotonic. Relatively to each unit, we should choose one between two

different actions 1a  and 2a . The loss corresponding to the decision ia  ( 1, 2i  ) for the

unit j depends on the lifetime jT  and is quantified by  i jL T , for two given loss

functions  : 0,iL    . In the choice between the two actions we hinge on the

expected-loss minimization principle. Namely, we choose 2a  for the unit j if and only

if the inequality    2 1( ) ( )j jL T L T  holds. For simplicity sake we make the

assumption that 2 1( ) ( )L t L t is a decreasing function of t. This entails that we can look

at 2a  as the more optimistic decision, namely the one to be preferred should we knew

that a unit life-time is large enough; 1a  would be then the less optimistic decision.

Obviously, being 1,..., nT T exchangeable, and then in particular identically distributed,

the same action has to be chosen for all n units.

Suppose now that the initial state of information is too scarce and then taking

the decision is considered too risky, i.e. we judge     1 2)min ( , ( )j jL T L T   to be

too large. Thus we defer the decisions to the evidence provided by some life-testing
experiment (to be conducted according to some appropriate sample strategy) and we
then collect some life-time data. Let data D, of the form (4), be actually collected. At
this stage, k failures have been observed and the choice of decisions is limited only to
the surviving units 1,...,h n k  . We have to look at the distribution of the residual

lifetimes 1 ,.., n kT T 
 , which are not necessarily exchangeable, anymore. Which is the

rational decision to be taken for each of them? Denote by ( )I D  the subset of the

indexes j for which the inequality    2 1( | ( |) )h hL T D L T D    holds. We recall, to

fix ideas, that the survival times 1,..., n ks s   are arranged in the non-decreasing order.

We analyze the set ( )I D  and compare it with ( )I D  for a different set of data D .
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Assume the hypotheses of Proposition 2; in particular ( )R t  is convex ( ( )r t is

increasing). Then part a) of Proposition 2 says that ( ) ( )I D I D , whereas part b) says

that ( )I D , when it is not empty, must be of the form ( ) {1, , }DI D h  , for some index

{1,..., }Dh n k  . Similarly ( ) {1, , }
D

I D h 
    (with DD

h h  ).

When, on the contrary, R is concave (namely a model of early failures is

taken), then it must be ( ) ( )I D I D  . But, this time, ( )I D and ( )I D  must be of the

form { , , }Du n k  , { , , }
D

u n k    with
D

u   Du  .

The above considerations lead us to conclude that, if we assume ( ) ( )r t R t

to be monotonic, the following situation must hold: no index j  belonging to ( )I D

can exist such that j j   for every ( )j I D . Suppose in other words that, once the

data D  have been observed, it is rational to take the decision 2a  for a surviving unit

with residual lifetime jT   and age js . Then, it must exist some less aged surviving unit,

for which it would be rational to take 2a , should the observation of D be taken.

We stress that the above conclusions are valid under the assumption that the
failure rate function is monotonic, irrespective of assuming a model of positive ageing
(r increasing) or of early failures (r decreasing).

Proposition 4 has mainly a technical purpose. By establishing a stronger form
of stochastic comparison (namely lr  in place of hr ), it allows us to replace the

condition that 2 1L L  is decreasing with the following weaker one: 1 2L L  has only a

change of sign, namely there exist t such that  2 1( ) ( ) ( ) 0L t L t t t   for any t  t

(see e.g. the considerations in [25, Ch. 3].

Proposition 6 leads us to the same conclusion as Proposition 2; the difference
between the two statements dwells in the circumstance that a weaker condition on R is

required, and the two vectors of survival times, s  and s , are different. But the relation

between s  and s must be of a special form.

A rather different message is, on the contrary, contained in Proposition 9,
where we compare two histories containing different vectors of failure times. Such a
result shows that it is possible to compare (in the sense of PQD order) the strength of
positive dependence between pair of residual lifetimes, given the two different
histories.

All the above facts are in the general spirit of [9]; however they are specific of
the P.H.M.'s and point out the special structure of such models. Indeed the inequalities
we proved are not generally guaranteed if we consider conditionally i.i.d. IFR or
conditionally i.i.d. DFR variables, outside of the P.H.M.'s. One related aspect is that a
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same type of inequalities can be obtained for all the P.H.M.'s. with a same concavity-
convexity character of ( )R t , irrespective of the prior distribution   (see Remark 1).

In more general cases of conditional independence given a parameter  , on
the contrary, we cannot exclude some interactions between the prior distribution on 
and ageing properties of the joint model.
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