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Abstract

Background: Existing sequence alignment algorithms use heuristic scoring schemes based on biological expertise, which
cannot be used as objective distance metrics. As a result one relies on crude measures, like the p- or log-det distances, or
makes explicit, and often too simplistic, a priori assumptions about sequence evolution. Information theory provides an
alternative, in the form of mutual information (MI). MI is, in principle, an objective and model independent similarity
measure, but it is not widely used in this context and no algorithm for extracting MI from a given alignment (without
assuming an evolutionary model) is known. MI can be estimated without alignments, by concatenating and zipping
sequences, but so far this has only produced estimates with uncontrolled errors, despite the fact that the normalized
compression distance based on it has shown promising results.

Results: We describe a simple approach to get robust estimates of MI from global pairwise alignments. Our main result uses
algorithmic (Kolmogorov) information theory, but we show that similar results can also be obtained from Shannon theory.
For animal mitochondrial DNA our approach uses the alignments made by popular global alignment algorithms to produce
MI estimates that are strikingly close to estimates obtained from the alignment free methods mentioned above. We point
out that, due to the fact that it is not additive, normalized compression distance is not an optimal metric for phylogenetics
but we propose a simple modification that overcomes the issue of additivity. We test several versions of our MI based
distance measures on a large number of randomly chosen quartets and demonstrate that they all perform better than
traditional measures like the Kimura or log-det (resp. paralinear) distances.

Conclusions: Several versions of MI based distances outperform conventional distances in distance-based phylogeny. Even
a simplified version based on single letter Shannon entropies, which can be easily incorporated in existing software
packages, gave superior results throughout the entire animal kingdom. But we see the main virtue of our approach in a
more general way. For example, it can also help to judge the relative merits of different alignment algorithms, by estimating
the significance of specific alignments. It strongly suggests that information theory concepts can be exploited further in
sequence analysis.
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Introduction

Sequence alignment achieves many purposes and comes in

several different varieties [1]: Local versus global (and even

‘‘glocal’’: [2]), pairwise versus multiple, and DNA/RNA versus

proteins. Rather than listing all applications, we cite just two

numbers: According to Google Scholar the two original papers on

the BLAST algorithm for local alignment by [3] and on one of its

improvements [4] have been cited more than 30,000 times each,

and the number of daily file uploads to the NCBI server providing

BLAST is &140,000 [5]. A partial list of alignment tools in

the public domain can be found in http://pbil.univ-lyon1.fr/

alignment.html.

In global alignment, which we focus on here, two sequences of

comparable length are placed one below the other. The algorithm

inserts blanks in each of the sequences such that the number of

positions at which the two sequences agree is maximized. More

precisely, a scoring scheme is used. Each position at which the two

sequences agree is rewarded by a positive score, while each

disagreement (‘‘mutation’’) and each insertion of a blank (‘‘gap’’) is

punished by a negative one. The best alignment is that with the

highest total score. In local alignment, one aligns only subsequences

against each other and looks for the highest scores between any

pairs of subsequences. Regions that cannot be well-aligned are

simply ignored. Existing algorithms use either heuristic scoring

schemes or scores derived from explicit probabilistic models [6].

Similarities between DNA sequences, e.g. for distance-based

phylogenetic tree construction, are typically not based on

alignment scores. Instead they use explicit evolutionary assump-

tions (e.g. the Kimura two-parameter model [7]) or are simply

obtained by counting the number of nucleotide substitutions (like

the p-distance or the Poisson corrected p-distance [7]). An
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important property of a similarity measure, from the point of view

of phylogeny, is that distances should grow linearly with evolution

time. This results in a measure satisfying the so-called four point

condition [8], which in turn makes the measure useful for neighbor

joining, the most popular distance based algorithm for inferring

phylogenetic trees [9]. The most important metrics developed

from this view point are the closely related paralinear [10] and log-det

[11] distances. In this paper we refer to both as ‘‘log-det’’, for

simplicity’s sake.

In the above mentioned distances, distinct rates of different

substitution types are either taken into account using a model, or

are not taken into account at all. This fact stands in stark contrast

with mutual information (MI), which takes the amount of information

shared between two objects as a measure of their similarity [12].

For instance, more frequent substitutions can be encoded more

efficiently, and should thus be a weaker indicator for dissimilarity

than rare, and thus ‘‘surprising’’, substitutions. The crucial point to

note is that the frequency of substitutions and indels and their

correlations can be counted directly from the alignment, and no

model is required. As a consequence, MI is, in principle, a model-

free, universal, and objective similarity measure, in stark contrast

to all metrics discussed above.

Indeed, there are two variants of information theory: The more

traditional Shannon theory, based on a probabilistic interpreta-

tion of the sequences, and the less well known Kolmogorov

(or algorithmic) ‘‘complexity’’ theory [12]. In this paper we use

Kolmogorov information as our main vehicle, but we also show

that Shannon theory gives comparable results.

Roughly, in algorithmic information theory the complexity K(A)
of a sequence A is the minimal amount of information (measured

in bits) needed to specify A uniquely, on a given computer, with a

given operating system. Numerical results depend on the latter,

but this dependence will, in general, be weak and is ignored in this

paper. For two sequences A and B, the conditional complexity (or

conditional information) K(ADB) is the information needed to

specify A, if B is already known (i.e., either it or its specification

was already input before). If A and B are similar, this information

might consist of a short list of changes needed to go from B to A,

and K(ADB) is small. If, on the other hand, A and B have nothing

in common, then knowing B is useless and K(ADB)~K(A).
Finally, the mutual information (MI) is defined as the difference

I(A; B)~K(A){K(ADB): It is the amount of information which is

common to A and B, and is also equal to the amount of

information in B which is useful for describing A, and vice versa.

Indeed, it can be shown that, up to correction terms that become

negligible for long sequences (see [12]): (a) I(A; B)§0; (b)

I(A; B)~0 if and only if A and B are completely independent;

(c) I(A; A)~K(A); and (d) I(A; B)~I(B; A). Moreover, the

probability (in the Bayesian sense) that I(A; B)§d is smaller than

2{d , if A and B are independent (see Theorem 2 of [13]). Hence,

the similarity is significant and not by chance when I(A; B) is

large.

The fundamental difference between Shannon theory and

Algorithmic Information theory is that Shannon theory makes no

attempt to quantify the minimum information required to specify a

any particular sequence. Instead Shannon theory assumes that a

sequence can be treated as though it was generated as a ‘‘typical’’

case of a probabilistic process. As a result of this assumption,

Shannon information has no dependence on hardware. However,

the main drawback is that it cannot, strictly speaking, deal with

individual sequences and it needs an assumption on the probability

distribution. Any numerical result obtained from individual

sequences implies the assumption that the specific sequences are

‘typical’ of the underlying probabilistic process. As a result it

involves statistical inference, even if the result does not strongly

depend on this inference. In particular, the assumption of

independence of letters in a sequence (used also below) will lead

to over-estimation of Shannon entropy, and thus implies no risk of

overfitting.

The fact that alignment and information theory are closely

related has been realized repeatedly. However, most work in this

direction has focused on aligning images rather than sequences

[14]. Conceptually, these two problems are closely related, but

technically, they are not. The effects of sequence randomness on

the significance of alignments has also been studied in [15].

Finally, attempts to extend the notion of edit distance [1] to more

general editing operations have been made. In this case the

similarity of two sequences is quantified by the complexity of the

edit string, see [16]. Indeed, the aims of [16] are similar to ours,

but their approach differs in several key respects and leads to

markedly different results.

Methods

Translation Strings
At the heart of our approach is the concept of a translation string.

The translation string TBDA contains the minimal information

necessary to recover the sequence B from another sequence A.

Similarly, TADB contains the information needed to obtain A from

B. Here we focus on DNA sequences, consisting of the letters

A,C,G and T, and corresponding to complete mitochondrial

genomes. But the approach is more general and can be applied to

protein sequences without further effort. We refer to the ith

element of sequence X as Xi, and denote the length of X as nX .

Any global alignment algorithm, when applied to A and B,

outputs a pair of sequences (A’,B’) of equal length n§

maxfnA,nBg. The sequences A’ and B’ are obtained from A
and B by inserting hyphens (‘‘gaps’’) such that the total score is

maximized. The strings TBDA and TADB also have length n, and are

composed from an alphabet of nine characters. For each i, the

letter TBDA,i is a function of A’i and B’i only. An example of this

process is found in Figure 1; the rules to create TBDA are as follows:

N if A’i~B’i, then TBDA,i~0;

N if A’i is a hyphen (gap), then TBDA,i has to specify explicitly

what is in B; hence TBDA,i~B’i[fA,C,G,Tg;
N if B’i is a hyphen (gap), then TBDA,i has to indicate that something

is deleted from A’, but there is no need to specify what. Hence

TBDA,i~B’i~{;

N if A’i?B’i is a transition, i.e. a substitution A<G or C<T, then

TBDA,i~1;

N if A’i?B’i is a transversion A<C or T<G, then TBDA,i~2;

N if A’i?B’i is a transversion A<T or G<C, then TBDA,i~3.

TBDA is defined such that B’ (and thus also B) is obtained

uniquely from A’. But A’ can be obtained from A using TBDA. Thus

TBDA does exactly what it is intended to do: it allows one to recover

B from A. It does not, however, allow one to recover A from B.

Due to the second and third bullet points above, TBDA is not the

same as TADB. This distinguishes our approach from typical edit

string methods.

Algorithmic Information Theory: Mutual Information
An estimate of the conditional complexity K(BDA) is obtained

by compressing TBDA using any general purpose compression

algorithm such as zip, gzip, bzip2, etc. In the results shown here

we use lpaq1 [17] (see also this reference for a survey of public

domain lossless compression algorithms). Denoting by comp(A)

Alignment & Mutual Information
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the compressed version of A and by len½A� the length of A in bits,

gives an exact upper bound

K(BDA)ƒK0(BDA):len½comp(TBDA)�: ð1Þ

If there were no correlations between sequence A and the

translation string, TBDA, this would also be the best possible upper

bound. However, in general we must expect that such correlations

exist, although we find them to be weak (see the second figure in

Material S1). Thus Eq. (1) is still a good estimate, but the best one

is obtained by compressing conditionally on A,

K(BjA)ƒlen½comp(TBjAjA)�:len½comp(A TBjA)�

{len½comp(A)�ƒK0(BjA):
ð2Þ

More precisely, one can show that K0(BDA){K(BDA)&
I(A; TBDA).

In order to obtain an estimate of MI, we have to subtract

K(BDA) from K(B), which is also estimated via compression.

Unlike TBDA, B is a DNA string. Since general purpose com-

pression algorithms are known to be inferior for DNA [18,19] we

could use an efficient DNA compressor like, e.g., ‘GeneCompress’’

or ‘‘XM’’ [18,19] (as we shall do in Eq. (4) below). To avoid any

question of consistency, we shall not do this. Instead, the

compression is carried out using a general purpose compression

algorithm, to get

I(A; B)&I(A; B)align~len½comp(B)�{len½comp(TBjAjA)�

~len½comp(A)�zlen½comp(B)�

{len½comp(A TBjA)�:

ð3Þ

This is to be compared to the general definition of algorithmic MI,

based entirely on concatenation and compression [12,20] without

using any alignment. This estimate is obtained by comparing the

size of the compressed concatenation AB to the sum of the sizes of

the compressed individual files,

I(A; B)compr~len½comp(A)�zlen½comp(B)�{len½comp(AB)�:
ð4Þ

At first sight it might seem paradoxical that I(A; B)align can

even be positive. Not only does TBDA involve a larger alphabet than

B, but, in general, it is also a longer string. Thus one could expect

that TBDA would not typically compress to a shorter size than B.

The reason why this first impression is wrong is clear from

Figure 1: If A and B are similar, then TBDA consists mostly of zeroes

and compresses readily. In practical alignment schemes, the scores

for mismatches are carefully chosen such that more frequent

substitutions are punished less than unlikely substitutions. In

contrast, coding each mismatch simply by a letter in TBDA seems to

ignore this issue. However, more frequent mismatches will give

letters occurring with higher frequency, and general purpose

compression algorithms utilize frequency differences to achieve

higher compression.

Conceptually our approach is similar to encoding generalized

edit strings in [16]. However, there are several pivotal differences

between that work and ours. First, the authors in [16] did not

compress their edit strings and as a result the conclusions they

were able to draw from a quantitative analysis were much weaker

than ours. Second, our approach utilizes an alignment algorithm

to achieve an efficient encoding of TBDA. In addition to producing a

better estimate of K(BDA), this allows us to make quantitative

evaluations of the alignment algorithm itself. An additional

difference between our approach and the traditional edit methods

used in approximate string matching [21] is that our translation

strings do not give both translations A?B and B?A from the

same string. This asymmetry is crucial to establish the relations to

conditional and mutual information.

For long strings, I(A; B) should be symmetric in its arguments.

In general, the estimates satisfy I(A; B)align&I(B; A)align (see the

third figure in Material S1). Indeed, the translation strings TBDA
and TADB can differ substantially, resulting in different estimates for

K(BDA) and K(ADB) via Eq. (2). This difference is mostly canceled

by differences between len½comp(B)� and len½comp(A)�. Take, for

instance, the case where B is much shorter than A. Then TBDA
consists mostly of hyphens and is highly compressible. On the

other hand, TADB is similar to A, since most letters have to be

inserted when translating B to A. Thus both I(A; B)align and

I(B; A)align are small compared to K(A), but for different reasons.

Further details are given in Material S1.

Shannon Theory
Compared to algorithmic information, Shannon theory is the

more widely known version of information theory [12]. The basic

concept of Shannon theory is that of a block or word probability

pn(s1 . . . snDA). It gives the probability that the ‘word’ s1 . . . sn of n

consecutive letters (such as A,C,G or T for DNA) appears at any

random position in the string A. Here we assume stationarity, but

we do not assume absence of correlations. The entropy (analogous

to the complexity in algorithmic information theory) of a string

comprised of letters from an alphabet A is defined as h(A)~
limn??hn(A) with

hn(A)~{
X

fs1...sng[An

pn(s1 . . . snDA) log pn(s1 . . . snDA): ð5Þ

From this, MI is defined as in algorithmic theory: I(A; B)~
h(A)zh(B){h(A,B) [12]. If entropy is measured in bits, then the

logarithm is to base 2. In practice, the limit n?? is rarely feasible,

and one usually approximates h(A) by the single-letter entropy

h(A)&h1(A):{
X
s[A

p(s) log p(s) ð6Þ

Figure 1. Example of an alignment and of the two translation strings TADB and TBDA. Colors indicate sites with mutations (red), gaps (blue),
and conservation (green).
doi:10.1371/journal.pone.0014373.g001

Alignment & Mutual Information

PLoS ONE | www.plosone.org 3 January 2011 | Volume 6 | Issue 1 | e14373



or, at most, by the pair approximation based on the probabilities

for words of length two.

Eq. (6) is valid under the assumption that correlations between

consecutive letters in the string can be neglected. Similarly, h(A,B)
for two sequences of equal length is estimated by assuming that

consecutive letter pairs (si,ti) with si[A and ti[B are independent.

If we make this assumption, there are still two ways to estimate the

MI of two strings. In the first we use the fact that (A’,B’) carries the

same information as (A,B) to employ a five-letter alphabet

A~fA,C,G,T ,{g. This has the drawback that indels are usually

correlated. In the second we thus neglect all indels and reduce the

alphabet to A~f0,1,2,3g. In the following we shall mostly use the

latter to compare with other pairwise distance metrics, but we

stress that we do this only for simplicity and convenience (and

since it is sufficient to make our point). However, the more

interesting MI estimate remains the one obtained from algorithmic

theory, due to the fact it takes into account both indels and all

possible correlations within each string and between them.

Distances, Trees and Quartets
The value of the MI itself is useful for many purposes:

Estimating similarities between different pairs (and thus of finding

closest neighbors of a given sequence in a large data set);

comparing the qualities of alignments obtained by different

algorithms; or assessing the significance of an alignment (i.e.,

verifying that it is better than an alignment between two unrelated

sequences). But in the case of phylogeny, one wants more. Ideally,

one wants an additive metric distance, i.e. a non-negative symmetric

pairwise function dAB for which dAA~0 and which satisfies both

the triangle inequality

dACƒdABzdBC ð7Þ

for any triple, and the four-point condition [22]

dABzdCDƒ maxfdACzdBD,dADzdBCg: ð8Þ

for any quartet. The latter is a necessary and sufficient condition

for all pairwise distances between N sequences to be representable

as distance sums over links in a tree [8] with the N sequences

represented by the leaves. Thus distances satisfying Eq. (8) are also

called ‘tree metrics’.

Several potential metrics can be derived from MI [20,23,24].

According to [20,24], the preferred one is the normalized compression

distance

d
(NCD)
AB ~

maxfK(ADB),K(BDA)g
maxfK(A),K(B)g ~1{

Ialgor(A; B)

maxfK(A),K(B)g ; ð9Þ

where Ialgor can be either Ialign or Icompr, depending on the way it

is estimated. For Shannon theory we can use the same construct

with K(A) replaced by h(A) [25]. Since it would be confusing to

use the word ‘‘compression’’ for this metric, we have to use

another name. We call it the normalized Shannon distance

d
(NSD)
AB ~1{

IShannon(A; B)

maxfh(A),h(B)g : ð10Þ

Although d(NCD) has been used to produce meaningful

phylogenetic trees [20,23–25], it has one important drawback

for phylogenetic applications: It is not additive. Indeed, for two

completely unrelated sequences (corresponding to infinite evolu-

tionary distance), both d
(NCD)
AB and d

(NSD)
AB do not go to infinity, but

rather to 1. They are not linear but convex functions of

evolutionary distance. Such metrics are well known to lead to

long branch attraction (or the ‘Felsenstein phenomenon’ [26]).

If evolution is assumed to be a Markov process, then the data

processing inequality [12] guarantees that MI decreases with

evolutionary distance. A natural assumption – following from the

dominance of a single maximal eigenvalue of the Markov matrix –

is that it decreases exponentially to zero. In this case the log-MI

‘‘distance’’

d
(log{MI)
AB ~{ log

Ialgor(A; B)

maxfK(A),K(B)g

� �

resp: { log
IShannon(A; B)

maxfh(A),h(B)g

� � ð11Þ

would increase linearly with evolution and would be thus additive.

Unfortunately, d
(log{MI)
AB is not a proper metric, as it does not even

satisfy the triangle inequality. This can be seen from the following

example: Take three sequences over an alphabet of four letters (like

DNA) where each letter is represented by two bits (purine/

pyrimidine, double/triple hydrogen bonds). Sequence B is random,

sequence A is obtained from B by replacing randomly the first bit

but conserving the second, and C is obtained by replacing the

second but conserving the first. Then I(A; B) and I(B; C) are non-

zero, while I(A; C)~0. At the same time, all single sequence

complexities (and entropies) are the same, thus d
(log{MI)
AC ~? while

d
(log{MI)
AB and d

(log{MI)
BC are finite, clearly violating Eq. (7).

Fortunately, real evolution is most likely not as extreme as this

counter example, and the triangle inequality is not really required

for distance based phylogeny. In particular, the relationship

between trees and metric additivity is not restricted to metrics

satisfying the triangle inequality, as seen from the proof in [8].

Also, the neighbor joining algorithm [9] does not require the

triangle inequality. Thus we claim that d (log{MI) is an a priori

better distance measure for phylogeny than d (NCD) or d(NSD),

although a final evaluation can only be made through detailed

tests on real biological sequences.

Such tests are presented in the results section, with the log-det

(or, more precisely, the paralinear) distance [10,11] and two

distances based on Kimura’s model [7] (see the supplementary

information) as other competitors. In the latter, one assumes

different rates a for transitions (A< G, C<T) and b for

transversions (all others).

Assume that for two aligned sequences, A and B, one first

eliminates all positions with indels. Thus, at each site one sees one

of the 16 possibilities (i,k) with i,k[fA,C,G,Tg. Denote the

measured frequencies for these possibilities fAB(i,k). The single-

sequence (‘marginal’) frequencies are gA(i)~
P

k fAB(i,k) and

gB(k)~
P

i fAB(i,k). We introduce matrices FAB with matrix

elements (FAB)ik~fAB(i,k), GA with (GA)ik~gA(i)dik, and

(GB)ik~gB(i)dik (here, dik is the Kronecker delta, i.e. GA and

GB are diagonal matrices). The log-det distance is then defined as

d
(log{det)
AB ~{ log det½G{1=2

A FABG
{1=2
B �: ð12Þ

In [10], this is called paralinear distance; in [11] the name log-det

is used either for this or for simplified versions where the matrices

GA and GB are omitted. This difference is irrelevant for additivity

and for use in the neighbor joining algorithm. It can be shown that

d
(log{det)
AB is additive under rather general evolutionary models,

although not when evolutionary speed is site dependent.

Alignment & Mutual Information

PLoS ONE | www.plosone.org 4 January 2011 | Volume 6 | Issue 1 | e14373



Before moving on, we should point out that the data required to

compute the log-det distance are precisely the same as those needed

to compute the two MI-based distances d
(NSD)
AB and d

(log{MI)
AB ,

provided one uses for the latter the single-letter Shannon formulas

with indels deleted. In that case,

I(A; B)Shannon~
X
i,k

fAB(i,k) log
fAB(i,k)

gA(i)gB(k)
ð13Þ

and

h(A)~{
X

i

gA(i)

M
log

gA(i)

M
ð14Þ

where M~
P

i gA(i)~
P

k gB(k), and is the number of sites in the

alignment. This is the main reason we will later compare these

three distances in detail.

Tools
We utilized the MAVID [27] and Kalign [28] global sequence

alignment programs available for download at [29] and [30]. We

also experimented with STRETCHER [31], lagan [32] and

CLUSTALW 2 [33], and observed similar results. We made no

effort to optimize the scoring parameters of the algorithms and

only used the default values.

To evaluate I(A; B)compr we utilized the expert model (XM) DNA

compression algorithm [19]. To evaluate I(A; B)align we used

lpaq1 [17]. Using lpaq1 was not crucial, with the standard LINUX

tools gzip and bzip2 producing similar results. For DNA we also

explored GenCompress [23] and bzip2. Both showed markedly

inferior results to XM (see supplementary information), although

their ability to compress single sequences is not so much inferior to

XM [19]. Presumably this is due to the fact that XM is more

efficient in finding and exploiting approximate repeats, which is

crucial in compressing concatenated strings.

The complete mtDNA sequences used in our analysis were

downloaded from [34]. We paid special attention to eliminate

incomplete sequences and sequences with too many wild cards.

We also took care to circularly shift the sequences (mtDNA forms

in most cases a closed ring) in order to improve the alignments. We

used different subsets of sequences for different plots. In a few cases

we also flipped the strands, if this led to much better alignments.

Overall, we used nearly 1800 sequences.

Results

Alignment based mutual informations versus
compression based mutual informations

Our first results concern the agreement between the two

estimates Ialign and Icompr. In Figure 2 we compare estimates Icompr

obtained with XM to estimates Ialign obtained with the MAVID

alignment tool [29] and with subsequent compression using lpaq1.

It is well known that DNA and amino acid sequences are hard to

compress [18,19], thus one might expect that Icompr depends

strongly on the compression algorithm used. This is indeed the

case, as seen from the first figure in Material S1, where we

compare values of Icompr obtained with three different compres-

sion algorithms: The general purpose compressor lpaq1 [17] and

the two special DNA compressors GeneCompress [18] and XM

[19]. From this figure it is clear that XM is far better the other two.

Note that it is very likely that an imperfect compression algorithm

underestimates rather than overestimates MI – although we do not

know a rigorous theorem to this effect.

In view of this, it is not obvious that the estimates produced by

XM are realistic either. It is thus highly significant that the two

estimates shown in Figure 2 are approximately equal, despite the

fact that alignment algorithms and compression algorithms follow

drastically different routes. The slight downward shift from the

diagonal, particularly visible for large MI pairs, is due to an off-set

of &50 bytes in the XM algorithm. Points above the diagonal

indicate that concatenation and compression – using the XM

algorithm – produce a better estimate of MI, while points below

indicate that MAVID alignment followed by compression of its

translation string produced a better estimate. The invertebrate-

invertebrate pairs far above the diagonal in Figure 2 correspond to

pairs of species where the individual genes are similar, but their

ordering is changed (this refers in particular to all pairs with

Ialign&0 and Icomprw0:3 Kbyte). In that case a compression

algorithm is superior to a global alignment algorithm, since it is not

affected by shuffling open reading frames (ORFs). Most negative

estimates for MI seen in Figure 2 represent cases where shuffling

the ORFs prevented reasonable global alignments. Particularly

interesting are pairs of mammals with IcomprwIalign. We checked

that all of them involve a subspecies of sikka deer (Cervus nippon

taiouanus, GenBank accession number DQ985076), in which a

single gene (NADH6) is supposedly on the opposite strand

compared to all other mammals.

Agreement between Icompr and Ialign could have been improved

presumably in many cases by masking part of the genome, but we

have not tried this. In any case, the occasional disagreements are

of particular interest, since they indicate where one of the two

approaches encountered particular difficulty. Generally speaking

Figure 2 suggests that DNA compression can still be improved

slightly, as seen from pairs with I between 1 and 2 Kbyte

(corresponding roughly to species in different families but the same

orders). On the other hand, purely compression based MI

estimates give non-trivial (at least positive) results even across

different classes.

 

 

 

 

 

     

Figure 2. Scatter plot of MI estimates for complete mitochon-
drial DNA between pairs of species: Icompr using XM [19] vs. Ialign

using MAVID [27] followed by compression with lpaq1. Note
that the two estimates generally agree and fall on the diagonal, while in
some cases one method does better than the other as explained in the
text. Here and in Figure 3 ‘‘vertebrata’’ means non-mammalian
vertebrata. This plot contains roughly 36,000 pairs, about 16,000 of
which contain two mammals, the other 20,000 covering equally the
other combinations. Ialign is the average between the values obtained
from TBDA and TADB.
doi:10.1371/journal.pone.0014373.g002
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Comparison between different alignment algorithms
MI estimates obtained using other global alignment algorithms

are similar to those obtained with MAVID; an example is shown

in Figure 3. In this figure we see that MAVID produced slightly,

but systematically better alignments. However, because neither

algorithm’s scoring scheme was optimized, we do not consider this

figure to indicate which of the two alignment algorithms is better.

Rather, it represents a proof of principle that our method can be

used to identify strengths and weakness of different alignment

algorithms and evaluate objectively the sequence similarity in any

given alignment.

Correlations within single translation strings: Shannon
informations

In Figure 4 we show compression based conditional complexity

estimates for animal mtDNA translation strings plotted against the

corresponding single letter Shannon entropies h1. In the latter, we

have not eliminated indels, i.e. they are based on the nine letter

alphabet f0,1,2,3,A,C,G,T ,{g. Thus the difference between

K(TBDA) and h1(TBDA) is entirely based on correlations, detected by

the compression algorithm (in this case lpaq1).

As K(TBDA) goes to zero, the two estimates agree, up to a small

initialization cost for lpaq1 of &30 bytes. The estimates agree

because the translation string is mostly composed of zeros, with the

few substitutions being far apart and weakly correlated. For

increasing K(TBDA), however, the compression algorithm often

gives significantly lower estimates, thus indicating strong correla-

tions within the translation string. More detailed analysis of

pairwise correlations (unpublished) suggests that these are mostly

correlations between letters A,C,G,T ,{ (i.e., inserts and gaps

rather than substitutions). The fact that indels occur strongly

correlated is well known [1], and is also assumed in most

alignment scoring schemes.

Therefore, if the information encoded in gaps is to be taken into

account, it is necessary to go beyond the single letter approxima-

tion when estimating realistic and absolute sequence similarities.

Furthermore, taking into account only pairwise letter correlations

would not be sufficient either. This, of course, is not completely

new, and the most common way to deal with this problem is to

simply ignore indels [7]. Indeed there seems to exist a wide spread

opinion that indels are not very informative and useful. Whether

this is true or whether it just reflects an inability to deal with this

information efficiently is an open question. In any case, the most

straightforward way to deal with it would be based on algorithms

using data compression.

Comparison with p-distances: The effect of indels
A very simple but popular distance measure between sequences

(both DNA and amino acids) is p-distance. It is defined by first

removing all indel positions and then counting the number of

positions where the two sequences disagree [7],

d(p)~
msubstit

M
, ð15Þ

where msubstit is the number of observed substitutions and M is the

total number of (non-indel) sites. Since this quantity saturates with

increasing evolutionary distance, a slightly more sophisticated

version is the Poisson corrected (PC) p-distance [7], d(p,PC)~

{ log (1{d (p)). We note that neither d(p) nor d (p,PC) take into

account the type of substitutions, any information contained in

indels, or any information contained in internal correlations within

the translation strings.

Our main interest here is to see which of these three neglected

aspects (type of substitution, indels, correlations) has the biggest

effect. In Figure 5 we show a scatter plot of the normalized

compression distance d
(NCD)
AB , estimated via Ialign, against d

(p)
AB, for

&105 pairs (A,B) taken from all over the animal kingdom. In

order to avoid meaningless alignments, we took in each pair only

members in the same (sub-) phylum (hexapoda, mollusca,

crustacea, chelicerata, cnidaria, porifera, platyhelminthes, echino-

dermata) or in the same (super-) class (mammals, sauropsida,

amphibia, actinopterygii). We also eliminated pairs with

msubstitzmconservv0:9 minfNA,NBg, as we would have otherwise

too many biologically meaningless alignments. Here, NA, NB are

 

 

 

 

 

     

Figure 3. Scatter plot comparing alignment based MI esti-
mates: Kalign [28] vs. MAVID [27]. The number of pairs here is
about half of that shown in Figure 2. Points on the diagonal indicate
agreement between the two estimates. These data were generated
using the default scoring parameters. Therefore, the plot represents a
proof of principle for using MI to evaluate alignments rather than a
definitive statement about the quality of the two alignment algorithms
shown.
doi:10.1371/journal.pone.0014373.g003

 

 

 

 

 

      

Figure 4. Scatter plot comparing K(TBDA) estimated using
compression, to the single letter Shannon information
h1(TBDA). The diagonal, X~Y , is a guide for the eye. Points falling
below the diagonal indicate cases where TBDA is not independent and
identically distributed, and some letters show strong correlations. The
fact that K(TBDA) is slightly larger than h1(TBDA) for low entropy
translation strings corresponds to the initiation cost for lpaq1
compression, which is &30 byte independently of the sequence. The
plot shows &30,000 pairs taken from all over the animal kingdom.
doi:10.1371/journal.pone.0014373.g004

Alignment & Mutual Information

PLoS ONE | www.plosone.org 6 January 2011 | Volume 6 | Issue 1 | e14373



the sequence lengths; this criterion guarantees that there are not

too many insertions into the longer sequence, and not too many

deletions from the shorter. We found that there is a roughly

monotonic relationship between d(NCD) and d(p), with occasional,

strong, deviations. By far the strongest factor leading to these

deviations is the difference in length of the paired raw (i.e.

unaligned) sequences. Nearly all gross outliers in Figure 5

correspond to pairs in which one member has a very long

mitochondrial genome, leading to a large number of indels.

As we had pointed out in the previous subsection, it is widely

believed that indels are not very informative. We plan to check this

more carefully in a future publication, using a methodology based

on a large number of quartets for sequences similar to the one

described in the next section.

Comparison with log-det distances: The effect of
substitution types

Finally, we want to compare our distance metrics d (NSD) and

d (log{MI) to the log-det distance d(log{det) given in Eq. (12). In

order to simplify the discussion and to use exactly the same input

for all three metrics, we use the same alignment algorithm

(MAVID) for each pair and delete all indels. As mentioned above,

d (log{MI) does not, in general, satisfy the triangle inequality. But

this does not preclude it from being satisfied in all ‘‘typical cases’’.

To test this we first check whether the triangle inequality is

actually violated or not in 105 randomly chosen triplets, drawn

from the entire animal kingdom, with the same selection criteria as

in the previous subsection. Note that due to the omission of indels

none of these ‘‘distances’’ actually have to satisfy the triangle

inequality. Indeed, we found 11 violations for the log-det distance,

and none for either of the MI-based distances.

Next we tried to check whether d(log{MI) is at least

approximately additive. Since we do not have the true evolution-

ary distances, we take d(log{det) as a proxy. In Figure 6 we plot

d
(log{MI)
AB against d

(log{det)
AB for 50,000 random pairs. We see that:

N Roughly, the dependence is linear. Thus, to the extent that

d (log{det) is linear, d (log{MI) is too. Thus it should not be

affected by long branch attraction. This is in contrast to d(NSD)

which – when plotted against d(log{det) – is strongly non-linear

(data not shown).

N On a finer scale, one sees several deviations. The most

conspicuous, perhaps, is that insects (hexapods) are systemat-

ically above the main curve. This is due to the strong

compositional bias in most insects, where C/G is underrep-

resented compared to A/T. This reduces the entropies of

individual sequences. At the same time, however, substitution

rates involving C and G are not as suppressed. As a

consequence, the ratio I=K is enhanced compared to other

phyla, and d(log{MI) is increased. This is a desirable effect. It is

well known [35] that similar compositional bias can make two

sequences look more closely related, even if they are not closely

related evolutionarily. While this applies fully to d(log{det), the

effect is at least smaller for d(log{MI).

N For intermediate distances (0:2vd (log{det)
v0:5), many mam-

mals are below the main line. In particular, consider the two

pairs well below it at d (log{det)&0:35. Both involve the

spectacled bear (Tremarctos ornatus) and another Ursinae

species. For whatever reasons, these two translation strings

contain an unusually large ratio of transitions to transversions

that would otherwise only be typical for much more closely

related species. This reduces the information content when

compared to unbiased substitutions with the same total

frequencies. At the same time, the individual sequences are

not very strongly biased. Thus d(log{MI) is reduced, but

d (log{det) is not – since it is only weakly dependent on the

detailed substitution rates. Again we claim that this favors

d (log{MI) over d (log{det).

A clear decision whether this is indeed true can only be made by

detailed comparison of phylogenies predicted on the basis of these

metrics with the true phylogenies. Since the latter are of course

unknown, we take inferences made in the literature as proxies.

Our detailed strategy is the following:

1. We first choose 107 random quadruples from all over the

animal kingdom. We use the same taxonometric restrictions, to

avoid too many pairs which cannot be meaningfully aligned.

Thus each quadruple (or ‘‘quartet’’) contains only species from

the same (sub-)phylum or the same (super-)class, respectively.

 
 

Figure 5. Scatter plot comparing p-distances d(p)
AB to normalized

compression distances d(NCD)
AB obtained from Ialign. The figure is

based on &105 mtDNA pairs, selected according to criteria discussed in
the main text. Different symbols correspond to different length
differences d~DNA{NB D, where NA and NB are the original (non-
aligned) sequence lengths.
doi:10.1371/journal.pone.0014373.g005

 

 

  

Figure 6. Scatter plot comparing d(log{MI)
AB (based on single

letter Shannon entropies) to d(log{det)
AB , for 5|104 randomly

chosen pairs of species.
doi:10.1371/journal.pone.0014373.g006
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We also used the same cut on the number of indels, in order to

eliminate false alignments.

2. For each quartet, we find the topologies suggested by each of

the three metrics, and count the number of cases where two

metrics disagree. This gave 185543 quartets (1.9%) where

d (log{MI) and d(NSD) disagree, 429386 quartets (4.3%) where

d (NSD) and d (log{det) disagree, and 380487 quartets (3.8%)

where d(log{MI) and d (log{det) disagree.

3. For each quartet we compute a significance S with which the

suggested topology is actually preferred. This significance is

explained in detail in the supplementary information. It

involves both the amount by which the four-point condition

is violated, and the relative length of the central edge, if the

data are approximated by an additive tree. For each pair of

metrics we then pick the quartets for which the metrics disagree

most significantly (as measured by the sum of the two

significances). Actually, we do not strictly choose the worst

disagreements, as they would cluster within a few taxa and we

want our results to represent as much of the entire animal

kingdom as possible. As such, we take relatively more quartets

in taxa which are underrepresented in GenBank, and we reject

quartets (not entirely systematically) if three of the four species

had already appeared in many selected quartets.

4. In this way we selected 129 ‘‘worst’’ disagreements between

d (log{MI) and d(log{det), and 129 ‘‘worst’’ disagreements

between d(NSD) and d(log{MI). For reasons that will become

clear later, we did not select worst disagreements between

d (log{det) and d (NSD), except for a few cases. For each of these

worst cases we searched the literature and established the

‘‘correct’’ topology. Details are again given in the tables found

in the Material S1.

The final results of this are summarized in Table 1. They clearly

indicate that the log-MI metric is vastly superior the log-det

distance, in spite of the latter’s superior theoretical foundations.

This is at odds with the fact that the log-MI metric is not a proper

distance, and does not, in any reasonable model, satisfy the four-

point condition (Eq. (8)). The reason obviously is that d (log{MI)

takes into account, in an optimal model-independent manner,

compositional details that d (log{det) does not. The comparison

between d (log{MI) and d (NSD) is much less clear. One might have

expected that the strong non-additivity of d(NSD) makes it

unsuitable for this sort of phylogenetic application. But this is

not so clear; d (log{MI) is only marginally better. This seems

surprising, but a possible reason for it will be given in the

discussion.

Before moving on we highlight a few notable observations about

our quartet analysis. Previously, we pointed out that the spectacled

bear (T. ornatus) is anomalous either in d (log{det) or in d(log{MI).

Indeed, it appears twice in the first table of the supplementary, and

both times d (log{MI) gives the correct grouping. A similar anomaly

is seen in Figure 6 for fish (actinopterygii) at d(log{det)&0:77. Most

of these correspond to Albula glossodonta (GenBank AP002973)

paired with other fish. The second table of Material S1 shows that

for most of these pairs the log-MI distance gives a better estimate.

We find that discrepancies between d(log{det) and d (log{MI) are

very unevenly distributed over the taxa. While we found no

disagreements in the chaetognatha, there are a large number in

the nematods, most favoring d (log{MI). Indeed, it seems that the

nematod phylogenetic tree constructed using d(log{det) would be

systematically different from the tree constructed using d(log{MI) and

other analyses.

It is well known [10,11] that the log-det distance is additive only

when the evolutionary rate is constant over all sites. One can argue

that an analysis that does not distinguish sites with different

evolutionary speeds is not fair to d(log{det). In response we put

forth the following three points: (i) The main problem with

d (log{det) does not seem to be a lack of additivity, but rather

insufficient attention to the specific types of substitution; (ii)

Inhomogeneities in the evolutionary speed should affect not only

the log-det distance, but most other distance measures as well.

Specifically we cannot see why it should not negatively affect

d (log{MI) too; (iii) Similarly, analyzing sites with different speeds

separately should improve the results for any distance measure – as

long as it can be done unambiguously, without too much effort,

and without reducing the amount of usable data excessively. In

view of the last three caveats we believe that ‘‘naive’’ analyses, such

as the one presented above, have and will continue to have their

merits.

The full picture: Comparison of several distance metrics
So far we have only compared in detail quartet classifications

based on log-det distances and on single letter Shannon MI. We

have used Shannon MI because its estimation is less ambiguous

than compression based MI estimation, and because it uses exactly

the same input — the base substitution frequency matrix after

removing indels — as the log-det distance. But our tenet is, of

course, that compression based estimates should be superior as

long as they use the information about indels efficiently. In

addition to the log-det distance, there are several measures that are

often used. In this subsection we make several pairwise

comparisons similar to the one made in the previous subsection.

But we restrict ourselves to mammals, as these have the best

understood phylogeny, and we expect the least numbers of errors

in the literature classification.

In this subsection we compare MI based distances with the log-

det and with both versions of the Kimura distance (Eqs. (S8,S9))

discussed in Material S1. We do not present all possible

combinations, as this would produce a huge matrix. Instead, we

focus on a subset of the distance measure pairs, but we claim that

this subset is large enough to present a clear overall picture.

Results are shown in Table 2. As mentioned above, we analyzed

only mammals for this, but we looked at all possible quartets. Our

criteria for identifying the ‘‘worst’’ disagreements is the same as in

the previous subsection. Each comparison is based on at least 60

disagreeing quartets. In this table, ‘‘Kimura1’’ and ‘‘Kimura2’’

refer to Eqs. (S8) and (S9) in Material S1, respectively; ‘‘Shannon

nolog-MI’’ stands for d(NSD) (Eq. (10)), ‘‘Shannon log-MI’’ stands

Table 1. Number of quartets for which each pairwise metric
produces a topology that agrees better with that found in the
literature.

d (log{MI)

versus d(log{det)

d(log{MI)

versus d (NSD)

first agrees 106 57

second agrees 17 42

neither 3 24

undecided 3 6

The quartets examined are among those for which the disagreement between
the two metrics is quantitatively the worst. We note that, when compared to
d(log{det) , d (log{MI) produces a topology that agrees with literature much more
often. ‘‘Neither’’ indicates the case where neither metric produces a topology
that agrees with the current literature. ‘‘Undecided’’ indicates that it is not
possible to establish a ‘correct’ topology on the basis of current literature.
doi:10.1371/journal.pone.0014373.t001

Alignment & Mutual Information

PLoS ONE | www.plosone.org 8 January 2011 | Volume 6 | Issue 1 | e14373



for the logarithmic version of the Shannon distance (Eq. (11), right

hand side), ‘‘transl. string, nolog’’ stands for d (NCD) (Eq.(9) with the

MI estimated via alignment), ‘‘transl. string, log’’ stands for its

logarithmic version (Eq.(11), left hand side), ‘‘XM compression,

nolog’’ stands for d (NCD) with the MI estimated via concatenation

and compression with XM, and ‘‘XM compression, log’’ stands for

its logarithmic version.

In the present paper we have not presented any detailed

application to a specific open phylogenetic problem. We also have

not considered larger phylogenetic trees, in view of the

imperfections of all existing distance based tree reconstruction

algorithms. Instead, we have concentrated on quartets, since there

we can obtain high statistics and the inference of the tree from a

given distance matrix is trivial. Also, for the most detailed

numerical comparison we have concentrated on Shannon

information based methods, rather than on compression based

methods for estimating MI. The reason is simply that we desired a

comparison with other methods (mainly the log-det distance)

which is as straightforward and unambiguous as possible. Indeed,

it is trivial to replace Eq. (12) by Eqs. (10), (13), (14). In this way we

hope to have the best chance to convince even skeptical readers

that mutual information based distance measures are useful in

sequence analysis.

We have also presented similar – but less complete – analyses

based on large numbers of random quartets for (at least partially)

compression based algorithms and have demonstrated that

distances based on data compression give even better phylogenies.

Indeed, from Table 2 we can draw a number of conclusions:

N All versions based on MI are better than any version not based

on MI.

N Kimura1 (based directly on the log-likelihood of the data with

respect to the Kimura model) seems better than the

conventional Kimura2, which just estimates the total number

of substitutions. This supports our suspicion that counting

transitions and transversions with the same weight is not a

good strategy.

N Nevertheless, d (Kimura1) does worse than d(NSD), as expected:

As we point out in Material S1, the log-likelihood for the

Kimura model is essentially a coarse grained MI, where

different substitutions are lumped together (resp., the proba-

bilities predicted by the model replace the true observed

probabilities). It would be hard to see why this should give

superior results, given the ease and robustness with which

single letter Shannon entropies can be estimated.

N Within the class of MI based distances, those which do not

neglect indels seem systematically better.

N Among the latter, distances based on Icompr do better than

those based on Ialign. This is surprising, as we saw that Ialign is

for mammals systematically larger (and thus supposedly better)

than Icompr.

N Logarithmic transformation of MI based distances seems to

give mixed results. It improves the distances slightly for

Shannon MI and for Ialign, but it has very negative effects

when used with Icompr based on XM. We conjecture that this

reflects two sides of the logarithmic transformation for distantly

related pairs. On the one hand, it largely eliminates systematic

errors due to deviations from metric additivity (the Felsenstein

phenomenon). On the other hand it amplifies noise. To

illustrate this, we discuss in Material S1 a quartet where both

the original Shannon MI based distances and their log-

transformed versions give wrong results, but for opposite

reasons. We speculate that the detrimental effect dominates for

Icompr, because MI estimation by compression is more noisy

(due to the less systematic way that present state-of-the-art

compression algorithms work) than Ialign.

Thus, contrary to wide spread opinion, information about indels

can be directly used for phylogenetics, even without any detailed

model for how they were generated. A more detailed presentation

of these data and their implications will be given elsewhere.

We believe that so far we have only scratched the true potential of

(algorithmic) information theory for sequence analysis. Several

generalizations and improvements are feasible and are listed below:

(1) Use more efficient encodings of the translation string. For

instance, we only used the letters A’i and TBDA,i to reconstruct

B’i, but one could also use in addition A’i{1,B’i{1, and/or

TBDA,i{1.

(2) Use local alignments instead of global ones. In a local

alignment between sequences A and B, large parts of B are

Table 2. Pairwise comparisons between different distance measures for complete mammalian mtDNA.

type1 : type2 first : second : neither : undecided

Shannon log-MI : log-det 64 : 2 : 0 : 4

Shannon log-MI : Kimura1 33 : 24 : 4 : 1

Shannon log-MI : Kimura2 51 : 6 : 4 : 0

Kimura1 : Kimura2 48 : 7 : 3 : 3

transl. string, nolog : Shannon log-MI 40 : 14 : 6 : 1

XM compression, nolog : Shannon log-MI 40 : 13 : 0 : 2

XM compression, nolog : transl. string, nolog 52 : 12 : 0 : 1

Shannon nolog-MI : Shannon log-MI 53 : 29 : 11 : 7

transl. string, nolog : transl. string, log 23 : 35 : 2 : 3

XM compression, nolog : XM compression, log 54 : 3 : 2 : 1

Compared are the abilities of d(type) to correctly classify a large number of quartets. First, the topologies of the quartet trees obtained with two distances d (type1) and
d(type2 ) are computed. The quartets with ‘‘worst’’ disagreements are then looked up in the literature. Based on the literature consensus it is decided which of the two
topologies is correct – unless both are wrong, or no consensus can be arrived at due to non-existent or conflicting literature. The four numbers in the columns 3 to 6 are
the number of cases in which (1) the distance measure d (type1) predicted the correct topology, (2) d (type2 ) predicted the correct topology, (3) none of them did, and (4) no
decision is possible.
doi:10.1371/journal.pone.0014373.t002
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not aligned with A at all and are encoded without reference to

A. Only the aligned parts give information from A that can be

used to recover B. Before making the jump from global to

local alignments, an intermediate step would be a ‘‘glocal’’

alignment tool such as shuffle-lagan (‘‘slagan’’) of [2].

(3) Construct objective measures based on information theory for

the quality of multiple alignments. A straightforward measure

is the information about sequence C obtained from aligning it

simultaneously with A and B. Assume e.g. that the sequences

A and B are much more similar to each other than either A
and C or B and C (as for human, chimpanzee, and chicken).

In order to measure the MI between chicken and the

primates, one could first align A and B and then align, in a

second step, C to the fixed alignment (A,B).

Conclusions
At present, biological sequence analysis is heavily based on the

concept of alignment. There exist proposals for alignment-free

approaches, and it has been suggested that they will become more

and more important as more sequence data become available [36].

To us it seems an open question whether alignment-free algorithms

for sequence comparison will become widely used, whether they

will eventually displace alignment-based algorithms, or whether

both approaches will merge into a unified approach. We hope that

we have shown with the present work that an amalgamation of both

methods (alignment-based and alignment-free) is possible. More

precisely, by showing that mutual informations between two

sequences can be easily estimated from global alignments, we have

established a direct link between sequence alignment, Shannon

information theory, and methods based on data compression and

Kolmogorov information theory. Technically, we have dealt only

with pairwise global alignment, but at least the basic concepts

should have much wider applicability.

From another point of view, the present paper deals with the

basic notion of parsimony. In bioinformatics (and in phylogeny in

particular) maximal parsimony in dealing with several objects is

often taken as synonymous to minimal number of changes needed

to go from the description of one object to the description of

another. This is most clearly formulated in the so-called

‘‘maximum parsimony method’’ of distance-free phylogenetic tree

construction [7], but it also underlies the concepts of p- and log-det

distances. However, the invention of the Morse alphabet in the

nineteenth century, and the theoretical works by Shannon,

Kolmogorov, and others in the middle of the last century might

cast some doubt on it. It is Rissanen’s minimum description length

principle [37,38], however, that makes this view obsolete today.

Instead of paying attention to the number of changes, one should

pay attention to the information needed to encode these changes.

We call this ‘‘true parsimony’’. In this sense, the maximum

parsimony method does not really aim for maximal true

parsimony. On the other hand, likelihood based and Bayesian

methods do aim for true parsimony, but at the cost of depending

on explicit models. One goal of the present paper is to show how

true parsimony can be measured in less model dependent ways

and how maximum true parsimony can be achieved to various

degrees of approximation. Moreover, even the crudest approxi-

mation – based on MI obtained via single-letter Shannon

entropies, with all information about indels discarded – can lead

to important practical improvements.

Supporting Information

Material S1 Additional figures, tables and discussion.

Found at: doi:10.1371/journal.pone.0014373.s001 (2.82 MB

PDF)
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