

RA Computer Science and Applications

A Uniform Definition of
Stochastic Process Calculi

Rocco De Nicola
Diego Latella
Michele Loreti
Mieke Massink

IMT LUCCA CSA TECHNICAL

REPORT SERIES 01
July 2012

Updated on November 2012

#01
2012

IMT LUCCA CSA TECHNICAL REPORT SERIES #01/2012

© IMT Institute for Advanced Studies Lucca
Piazza San Ponziano 6, 55100 Lucca

Research Area

Computer science and applications

A Uniform Definition of
Stochastic Process Calculi

Rocco De Nicola
IMT Institute for Advanced Studies Lucca

Diego Latella
CNR - Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, Pisa

Michele Loreti
Università di Firenze - Dipartimento di Sistemi e Informatica

Mieke Massink
CNR - Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, Pisa

A Uniform Definition of Stochastic Process Calculi

ROCCO DE NICOLA
IMT - Institute for Advanced Studies, Lucca
DIEGO LATELLA
CNR - Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, Pisa
MICHELE LORETI
Università di Firenze - Dipartimento di Sistemi e Informatica, Firenze
and
MIEKE MASSINK
CNR - Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, Pisa

We introduce a unifying framework to provide the semantics of process algebras, including their
quantitative variants useful for modeling quantitative aspects of behaviors. The unifying frame-

work is then used to describe some of the most representative stochastic process algebras. This
provides a general and clear support for an understanding of their similarities and differences.

The framework is based on State to Function Labeled Transition Systems, FuTSs for short, that

are state-transition structures where each transition is a triple of the form (s, α,P). The first and
the second components are the source state, s, and the label, α, of the transition, while the third

component is the continuation function, P, associating a value of a suitable type to each state s′.
For example, in the case of stochastic process algebras the value of the continuation function on
s′ represents the rate of the negative exponential distribution characterizing the duration/delay of

the action performed to reach state s′ from s. We first provide the semantics of a simple formalism

used to describe Continuous-Time Markov Chains, then we model a number of process algebras
that permit parallel composition of models according to the two main interaction paradigms (mul-

tiparty and one-to-one synchronization). Finally, we deal with formalisms where actions and rates

are kept separate and address the issues related to the co-existence of stochastic, probabilistic, and
non-deterministic behaviors. For each formalism, we establish the formal correspondence between

the FuTSs semantics and its original semantics.

Categories and Subject Descriptors: F.1.1 [COMPUTATION BY ABSTRACT DEVICES]: Models of Compu-
tation; G.3 [PROBABILITY AND STATISTICS]: ; G.2.1 [SOFTWARE ENGINEERING]: Requirements/Spe-
cifications

General Terms: Languages, Performance, Theory, Verification

Additional Key Words and Phrases: Continuous Time Markov Chains, Stochastic Process Calculi,

Structured Operational Semantics

Corresponding Author’s address: Rocco De Nicola, IMT - Institute for Advanced Studies, Lucca I-55100 - Lucca
ITALY; email: rocco.denicola@imtlucca.it. This work has been partially funded by EU Collaborative project n.
257414 ASCENS, and Project TRACE-IT - PAR FAS 2007-2013 - Regione Toscana
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 2012 ACM 0000-0000/2012/0000-0001 $5.00

ACM Computing Surveys - In Press, Vol. , No. , November 2012, Pages 1–56.

2 · De Nicola et Al.

1. INTRODUCTION

Distributed computing has become a ubiquitous technology, mainly thanks to the infras-
tructure of the global Internet. Open-ended, highly parallel, massively distributed systems
will soon span over millions of nodes showing complex interactions and behaviors. This
will make it increasingly difficult to develop, deploy, and manage such systems, and may
lead to increasing management costs and use of resources. It is thus of paramount impor-
tance to find ways that guarantee such systems behave reliably and predictably. Formal
models for describing systems, and for reasoning about their behavior in open-ended, non-
deterministic environments, offer a well-established approach for such guarantees.

Process Algebras (see [Bergstra et al. 2001] and the references therein) have been suc-
cessfully used over the last thirty years to model and analyze the behavior of concurrent
distributed systems. They are based on mathematically rigorous process description lan-
guages with well-defined semantics that provide models of processes, regarded as agents
that perform actions (act) and communicate (interact) with similar agents and with their
environment.

To define a process description language at the base of a process algebra, one starts
with a setA of uninterpreted action names (that might represent communication channels,
synchronization actions, etc.) and with a set of elementary processes that, together with
the actions, are the basic building blocks for forming new processes from existing ones.
The basic operators are: action prefix, (a. - modeling execution of a generic action a,
followed by the remaining behavior), non-deterministic choice (+ - modeling abstract
conditional branches) and parallel composition (|| - modeling concurrent execution).
There is a set of axioms and inference rules for each operator, which form the basis for
defining the behavior of a composite system in terms of the behavior of its components,
assembled by using the given operator. This is the core of a compositional definition of the
semantics of a language. In this way, a labeled graph can be associated to each term of the
language whose states are the terms themselves and whose labels are the actions that can
be performed from each state. This particular class of labeled graphs is known as Labeled
Transition Systems (LTSs).

Process Description Languages (PDLs) often come equipped with observational mech-
anisms that permit equating (through behavioral equivalences) those systems that cannot
be distinguished by external observations in order to have the possibility of replacing a
system with an equivalent one whenever needed. LTSs, possibly corresponding to process
terms describing systems at different levels of abstraction, are then compared according to
a behavioral relation [van Glabbeek 2001], giving rise to so-called Process Calculi (PCs).
In some cases, the behavioral relations also have complete axiomatizations, in forms of
equations, that exactly capture the relevant equivalences induced by the abstract opera-
tional semantics; then PCs are also called Process Algebras (PAs). Nowadays, PA, PC and
PDL are often used interchangeably. In the context of the present paper, we will use the
acronym ‘PC’.

Initially, process calculi were mainly designed to model functional (extensional) system
behavior. However, it was soon recognized that, in order to capture other important features
of concurrent systems, variants were needed to take quantitative features into account.
This led to the development of timed process calculi, probabilistic process calculi, and
stochastic(ally timed) process calculi. The latter have proven to be particularly suitable for
capturing important properties related to performance and quality of service, and even for
ACM Computing Surveys - In Press, Vol. , No. , November 2012.

A Uniform Definition of Stochastic Process Calculi · 3

the modeling of biological systems.
Terms of Stochastic Process Calculi (SPCs) can be used to generate Continuous-Time

Markov Chains (CTMCs), or Interactive Markov Chains (IMCs), that permit quantitative
system analyses. Both CTMCs and IMCs consider delays as Random Variables (RVs) with
negative exponential distributions; each of them is thus characterized by its unique parame-
ter, the rate λ > 0, and has expected value λ−1. CTMC-based proposals associate time with
actions, annotating them with rates. IMCs have instantaneous actions and an additional
transition relation, specifically introduced to model the passage of time. CTMCs model
fully stochastic behavior of systems, i.e. they choose between possible futures by relying
exclusively on the concept of race condition, while IMCs describe stochastic behaviors
intertwined with explicitly modeled non-deterministic choices. The approach leading to
CTMCs is employed by the vast majority of the proposals in the literature. In this ap-
proach rates are associated with actions by means of a rated action prefix 〈a, λ〉.P, with λ
being the rate associated with a. In IML [Hermanns 2002], the calculus for IMCs, non-
determinism is, instead, not banned and rates are used to characterize process delays, by
using rate prefix λ.P.

Finally, in Markov Automata, each action is followed by a discrete probability (sub-
)distribution over processes, rather than by a single process, while delays are modeled by
exponentially distributed RVs, as usual. Thus, a third dimension, namely process proba-
bility distributions, is introduced besides non-determinism and stochastic continuous time
(see e.g. [Eisentraut et al. 2010]). However, even if one restricts the focus of attention to
fully stochastic calculi leading to CTMCs (i.e. those calculi where non-deterministic be-
havior is completely replaced by a probabilistic one, thanks to stochastic time), the models
underlying their definition are significantly different in many respects. Some differences
are conceptual. For instance, multi-party process synchronization is used in most SPCs, al-
though there are notable examples of one-to-one process synchronization use, like stochas-
tic π-calculus [Priami 1995] and stochastic CCS [Klin and Sassone 2008].

Other differences, instead, are purely technical, in the sense that they stem from different
approaches to addressing the same concept. A prominent example of such a technical
difference is the modeling of the race condition principle and its relationship to the issue
of transition multiplicity. This principle implies that, for a generic process P, an expression
like 〈a, λ〉.P + 〈a, λ〉.P is intended to model the same behavior as 〈a, 2λ〉.P, as the exit rate
of the (random) sojourn time in state 〈a, λ〉.P + 〈a, λ〉.P is 2 ·λ. Unfortunately, if one takes
a standard LTS interpretation, it holds that 〈a, λ〉.P + 〈a, λ〉.P and 〈a, λ〉.P yield the very
same systems. This problem has implicated the need to take transition multiplicity into
account and accordingly several, significantly different, approaches have been proposed
for handling it. They range from the use of multi-relations [Hillston 1996; Hermanns
2002] to proved transition systems [Priami 1995; Gotz et al. 1993] and from LTSs with
numbered transitions [Hermanns et al. 2002] to unique rate names [De Nicola et al. 2005;
De Nicola et al. 2006], to mention just a few1. The feature that unites them all is that
they require two steps to obtain the ‘right’ rate: first an enriched LTS is built and then it is
manipulated to properly add up rates.

In order to provide a uniform account of different fully stochastic calculi, in [De Nicola

1It should, however, be noticed that, due to a minor technical imprecision (multi-relations are defined as the
least multi-relation satisfying a set of SOS axioms and rules) both [Hillston 1996] and [Hermanns 2002] obtain
relations, and not the intended multi-relations, thus failing to model transition multiplicity.

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

4 · De Nicola et Al.

et al. 2009c], we have proposed a variant of LTSs, namely Rate Transition Systems (RTSs).
This model is inspired by the approach taken when modeling probabilistic systems via
probabilistic automata, where operators derived from those of the process calculi are ap-
plied to probability distributions, as e.g. in [Deng et al. 2007]. In LTSs, a transition is a
triple (P, α, P′) where P is the source state, α is the label of the transition, and P′ is the
target state reached from P via α. On the other hand, in RTSs a transition is a triple of
the form (P, α,P), whose first and second component are again the source state and the
transition label, but the third component P is the continuation function that associates a
real non-negative value with each state P′. A non-zero value represents the rate of the
exponential distribution characterizing the time needed for the execution of the action rep-
resented by α, necessary to reach P′ from P via the transition. Whenever P(P′) = 0, P′

is not reachable from P via α. RTS continuation functions are equipped with a rich set of
operations which provide a simple and clean solution to the transition multiplicity prob-
lem. Moreover, they make RTSs particularly suitable as a framework for the compositional
definition of fully stochastic calculi. Indeed, the transition system with the ‘right’ rates is
built directly rather than relying on the two steps mentioned above. Finally, it must also be
noticed that continuation functions provide the minimal amount of information needed to
characterize the underlying CTMC. In fact, the exit rate of a state P as well as the prob-
ability of jumping to a state P′ can be easily computed with continuation functions. For
instance, assuming that for each P and α there is a unique transition (P, α,P), as will be
shown to be the case for all major SPCs, the α-exit-rate from state P is just

∑
P′ (P P′)

while the probability of reaching a process Q after a α is simply P(Q)∑
P′ (P P′) , if the α-exit-rate

is positive. The total exit rate for P is then
∑
α

∑
P′ (Pα P′) where, for given P, Pα is the

unique continuation function such that (P, α,Pα).
RTSs are similar to Rated Transition Systems (Rated TSs), introduced by Klin and Sas-

sone [2008]. A Rated TS is induced by a Stochastic Generalized SOS (SGSOS) specifica-
tion2 and is characterized by a function ρ such that ρ(P, α, P′) ∈ R≥0 is the rate associated
to the α−transition from P to P′, when positive. This is obviously equivalent to having a
function ρ(P, α, ·) which associates a real, non negative, number to each P′, which in turn
means that Rated TSs are a form of “rate-deterministic” RTSs in the sense that for each P
and α there exists exactly one transition (P, α,P).

In the present paper, we introduce State to Function Labeled Transition Systems, FuTSs
for short, a generalization of RTSs [De Nicola et al. 2009c] based on a simple generaliza-
tion of the co-domain of the continuation functions, which enables us to consider a richer
class of models in addition to being able to take non-deterministic systems into account.
FuTSs have generic commutative semi-rings, and not just the set of non-negative reals, as
co-domain of continuation functions. Furthermore, in the general case, we let the third
component of a transition be an element of a disjoint union of sets of continuation func-
tions, with different co-domains, so that different ‘kinds’ of transitions can be modeled.
The semi-ring structure of the co-domain preserves basic properties of primitive opera-
tions like sum and multiplication, which prove very useful when modeling composition of
rates resulting from (parallel, non-deterministic, sequential) process compositions. Con-
tinuation functions are equipped with a rich set of (generic) operations, making FuTSs
very well suited as a semantic domain for the compositional definition of the operational
semantics of process calculi. Such operations induce an algebraic structure on the set of

2SGSOS are essentially the analogous, in the context of SPCs, of GSOS [Aceto et al. 2001].

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

A Uniform Definition of Stochastic Process Calculi · 5

continuation functions, which we systematically exploit for the compositional definition of
the FuTS semantics of SPCs. FuTSs thus support a uniform and systematic understanding
of similarities and differences of the many stochastic calculi proposed in the literature.

In the remainder of this article, while we address most of the calculi mentioned above,
we will focus on fragments which are relevant for their stochastic features. Our selection
of calculi has been guided by the aim to provide a survey of most of the notions that have
been considered thus far. We first consider a simple language for CTMCs, then we will
consider different calculi that permit parallel composition of models according to the two
main communication paradigms (multi-party and one-to-one synchronization). Finally,
we will consider languages where actions and rates are kept separate, then addressing the
issues related to non-determinism and discrete probabilities by showing how IMCs and
Markov Automata can be represented by FuTSs.

We would like to remark that, in the present article, we do not aim at presenting a system-
atic study of, and comparison between, all of the stochastic calculi that have been proposed
in the literature (the interested reader is referred to, e.g. [Aldini et al. 2010; Hermanns et al.
2002; Brinksma and Hermanns 2001]), nor do we attempt to investigate the pros and cons
of the various approaches regarding the definition of the rates of synchronizing actions and
related pragmatics (see, e.g. [Hillston 1994; Bernardo 2010]). Rather, we aim at showing
how the main techniques used to describe their semantics can be accommodated within a
common simple unifying framework that offers the reader a uniform account of the many
stochastic calculi proposed in the literature. This facilitates the appreciation of similari-
ties and differences between the many formalisms and can guide the choice of appropriate
stochastic modeling tools.

The paper is organized as follows: in Sect. 2 some preliminary notions and definitions
are recalled and FuTSs are introduced; examples of how other structures like CTMCs, Dis-
crete Time Markov Chains (DTMCs), RTSs and Weighted Transition Systems [Fahrenberg
et al. 2011] can be represented using FuTSs are presented as well. In Sect. 3 the process
operators which will be used in subsequent sections for the specific stochastic calculi are
presented and briefly discussed. Sect. 4 introduces the FuTS semantics of a simple lan-
guage for CTMCs. Sect. 5 addresses the issue of introducing parallel composition in the
FuTS framework, thus paving the way for the next sections. Sect. 6 shows the FuTS se-
mantics of significant fragments of CSP-like calculi based on the multi-party interaction
paradigm. The FuTS semantics of CCS-like calculi is presented in Sect. 7. The issue of co-
existing stochastic, probabilistic and non-deterministic behaviors in the FuTS framework
is addressed in Sect. 8. Related work is discussed in Sect. 9 while in Sect. 10 we draw
some concluding remarks. The original SOS definition of the relevant calculi as well as
detailed proofs are reported in the appendices.

2. PRELIMINARIES

In this section we first recall the notions of continuous time Markov chain and of labelled
transition system, then we introduce commutative semi-rings and state to function labelled
transition systems.

2.1 Continuous Time Markov Chains

A CTMC is characterized by a set of states and by a rate matrix. The latter identifies
system transitions in terms of a set of exponentially distributed Random Variables (RVs).

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

6 · De Nicola et Al.

Definition 2.1. A real valued RV D has a negative exponential distribution with rate
λ ∈ R>0 iff the probability that D ≤ t ∈ R (�{D ≤ t}) is 1 − e−λ·t for t > 0, is 0 otherwise.•

The expected value of an exponentially distributed RV with rate λ is λ−1 while its
variance is λ−2. Given the exponentially distributed independent RVs D1, . . . ,Dn with
rates λ1, . . . , λn respectively, the RV min{D1, . . . ,Dn} is exponentially distributed with rate
λ = λ1 + . . . + λn, while �{D j = min{D1, . . . ,Dn}} =

λ j

λ1+...+λn
.

Definition 2.2. A continuous time Markov chain (CTMC) is a tuple (S ,R) where S is a
countable non-empty set of states, and R : S → S → R≥0 is the rate matrix, where for all
s ∈ S :

∑
s′∈S R s s′ < ∞. •

We will often use the matrix notation R[s, s′] for R s s′. R[s, s′] > 0 means that a
transition from s to s′ can be taken, while no transition from s to s′ exists if R[s, s′] = 0.
The sojourn time at state s before taking a transition is an exponentially distributed RV with
rate

∑
s′∈S R[s, s′] and the probability that the transition from s to s′ is taken is R[s,s′]∑

s′′∈S R[s,s′′] .
Notice that the above definition allows R[s, s] > 0, i.e. CTMCs may have self-loops.

This is different from the, more traditional, characterization of CTMCs by their infinitesi-
mal generator matrix, which is only unique up to self-loops, meaning that CTMCs which
differ only in self-loops will have the same generator matrix, and the same probability dis-
tributions at both transient and steady state. Thus, the above, more liberal definition of
CTMCs does not affect their meaning as long as traditional measures like transient and
steady state probabilities are concerned (see [De Nicola et al. 2009b] for details).

2.2 Labelled Transition Systems

Formal semantics of SPCs are traditionally defined by means of Structured Operational
Semantics (SOS) that lead to Labelled Transition Systems (LTSs), i.e. structures of the
form (S , A, −→), where S is a set of states, A a set of labels and −→ ⊆ S × A × S is the
transition relation [Plotkin 2004].

The states of the LTS are the terms of the language, while the actual transition relation
is defined by means of a logical deduction system as shortly sketched in the following.
The rules of the deduction system are statements of the form P a

−−→Q, where P and Q are
placeholders for generic terms of the language generated by a BNF-like grammar. The
transition relation is defined by inducing on such grammar, using rules of the form

Premise1, . . . ,Premisen

Conclusion
meaning that ‘Conclusion’ can be drawn from the premises ‘Premise1’ to ‘Premisen’. Rules
without premises are axioms. Normally, there are one or more rules for each operator of the
language that have the latter as top-level constructor on the left hand side component in the
conclusion; the definition of the semantics is thus directed by the syntax of the language.

Consider, for example, the simple language with only action prefix, choice and the null
process defined by the grammar below, where a ∈ A for some action setA:

P ::= nil | a.P | P + P

The SOS of the above language is composed of one axiom (for action prefix) and two rules
(for choice), as in Fig. 1. The axiom (AP) states that a.P performs a and then behaves like
P, while rules (CH1) and (CH2) state that P + Q may behave either like P or like Q. Using
the rules of Fig. 1, one can deduce, for example, that the transitions of the LTS for term
ACM Computing Surveys - In Press, Vol. , No. , November 2012.

A Uniform Definition of Stochastic Process Calculi · 7

(AP)
a.P a−−→ P

(CH1) P a−−→ P′

P + Q a−−→ P′
(CH2)

Q a−−→ Q′

P + Q a−−→ Q′

Fig. 1. Semantics Rules for a simple language

a.(b.nil + c.nil), are the following: a.(b.nil + c.nil) a
−−→ (b.nil + c.nil), (b.nil + c.nil) b

−−→nil,
(b.nil + c.nil) c

−−→ nil.
In SPCs, transitions are usually labelled by rates λ, and/or action labels. Sometimes,

actions may also be associated with weights for capturing probability distributions. In
this case, the associated transitions are labelled by actions and weights ω. In some cases,
the transition relation −→ is required to be a multi-set, in which case the LTS is called a
Labelled Multi-transition System.

Henceforth, we let rt(P1, P2), rta(P1, P2), and wta(P1, P2) denote the cumulative rate
over all transitions from P1 to P2 and the cumulative rate and weight, respectively, over
all a-labelled transitions, from P1 to P2. Formally: rt(P1, P2) =def

∑
{| λ|P1

λ
−−→ P2|},

rta(P1, P2) =def
∑
{| λ|P1

a,λ
−−−→ P2|}, and wta(P1, P2) =def

∑
{|ω|P1

a,∗ω−−−−→ P2|} where {| |}
denotes a multi-set,

∑
{||} =def 0 and λ

−−→ , a,λ
−−−→ and a,∗ω−−−−→ identify a generic transition,

an a-labelled transition with rate λ, an a-labelled transition with weight ω, respectively.
In the context of stochastic extensions of CCS-like languages, proved transitions are

used instead of transition multi-relations. Such transitions have an additional label en-
coding the derivation that provides a proof of the transition in a SOS deduction sys-
tem and uniquely identifies the transition within the set of those coming out of a state.
Letting θ, θ′ be proof encodings, and A and Ā be the sets of actions and co-actions
respectively, for a ∈ A ∪ Ā, we define rta(P1, P2) =def

∑
{λ | P1

θa,λ
−−−−→ P2}, and

rt〈a || ā〉(P1, P2) =def
∑
{λ | P1

〈θa,θ′ā〉,λ
−−−−−−−−→ P2}.

2.3 Semirings: Notation and basic definitions

We let R≥0 denote the set of real, non-negative numbers and, similarly, R>0 and N>0 denote
the sets of positive real and natural numbers. B denotes the set of booleans. For any set S
we let ℘ S denote its power-set and ℘fin S the set of its finite subsets.

Many of the notions and definitions which we will use in the present paper are based on
the concept of commutative semi-ring:

Definition 2.3. A semi-ring is a set S equipped with two binary operations, +S, called
sum, and ·S, called multiplication, such that: (S,+S) is a commutative monoid with neutral
element 0S ∈ S and (S, ·S) is a monoid with neutral element 1S ∈ S. It is also assumed that
multiplication distributes over sum and that 0S annihilates S with respect to multiplication.
A semi-ring S is said to be commutative whenever s1 ·S s2 = s2 ·S s1. Finally, we say that
binary operation /S is the inverse of ·S if s3 = s1/

Ss2 if and only if s1 = s2 ·S s3, for s2 , 0S.
Whenever clear from the context we will omit annotation S from operators. •

Sets B, with disjunction and conjunction, and R, N, with sum and products, are exam-
ples of (commutative) semi-rings. In R, division is the inverse of product. In the sequel we
let C,C′,C1, . . . denote commutative semi-rings. For generic non-empty set S and commu-
tative semi-ring C, we let TF(S ,C) denote the set of total functions from S to C, and we
let P ,Q,R, . . . range over it. We let FTF(S ,C) denote the subset of TF(S ,C) containing
only those functions with finite support. P is an element of FTF(S ,C) if and only if there

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

8 · De Nicola et Al.

exist {s1, . . . , sm} ⊆ S , the support of P , such that P s j , 0C for j = 1 . . .m and P s = 0C
for all s ∈ S \ {s1, . . . , sm}. We equip FTF(S ,C) with the operators defined below. The
resulting algebraic structure of the set of finite support functions will be crucial for the
compositional features of our approach.

Definition 2.4 Basic operators in FTF(S ,C). If s, s1, . . . , sm ∈ S , with si , s j for i , j,
γ1, . . . , γm ∈ C, P and Q in FTF(S ,C), and S ′ ⊆ S then:

(1) [s1 7→ γ1, . . . , sm 7→ γm]C denotes the following function:

[s1 7→ γ1, . . . , sm 7→ γm]C s =def

{
γ j if s = s j ∈ {s1, . . . , sm},
0C otherwise.

the 0C constant function in FTF(S ,C) is denoted by []C;

(2) function + is defined as (P + Q) s =def (P s) +C (Q s);

(3) function � is defined as �P S ′ =def
∑
Cs∈S ′

(P s) where
∑
C denotes the n-ary exten-

sion of +C. We let ⊕P be defined as ⊕P =def �P S •

Notice that all the above summations are over finite sets, due to the definition of FTF(S ,C).

2.4 State to Function Labelled Transition Systems

In this section we introduce the notion of Simple State to Function Labelled Transition Sys-
tems, simple FuTSs for short, which is sufficient as underlying model for all fully Marko-
vian SPCs presented in the paper. General FuTSs will be defined in Sect. 8.

Definition 2.5. A simple state to function A-labelled transition system (simple FuTS)
over C is a tuple (S , A,C,�) where S is a countable, non-empty, set of states, A is a
countable, non-empty, set of transition labels, C is a commutative semi-ring, and �⊆
S × A × TF(S ,C) is the A-labelled transition relation. •

As usual, we let s
α
� P denote (s, α,P) ∈�. Intuitively, s1

α
� P and (P s2) =

γ , 0C means that s2 is reachable from s1 via (the execution of) α with a value γ ∈ C.
(P s2) = 0C means that s2 is not reachable from s1 via the above α-transition; notice,
however, that, unless the FuTS is deterministic (see Def. 2.6 below), there might be another
(α-)transition from s1 such that s2 is reachable, via that transition. In the following, we will
omit the adjective ‘simple’ when this will be clear from the context. Whenever necessary
or convenient an initial state s0 ∈ S will be identified, and the relevant FuTS will be the
tuple (S , A,C,�, s0). Henceforth, FuTSs will be denoted by R,R1,R

′, Whenever
s

α
� P is a transition of R, we call P next state function, or continuation function, or,

simply, continuation. In Sect. 8 the above definition will be extended to general FuTS,
where different type of continuations are allowed within the same FuTS.

Definition 2.6. Let R = (S , A,C,�) be a FuTS, then:

(1) R is total if for all s ∈ S and α ∈ A there exists P ∈ TF(S ,C) such that s
α
�P;

(2) R is deterministic if for all s ∈ S , α ∈ A, and P ,Q ∈ TF(S ,C) we have that the
following holds: s

α
�P , s

α
� Q =⇒P = Q;

(3) R is a finite support FuTS (FsFuTS for short) if�⊆ S × A × FTF(S ,C). •

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

A Uniform Definition of Stochastic Process Calculi · 9

Henceforth, we will consider only FsFuTSs, since they are powerful enough to model the
process calculi we are interested in. Notice that considering deterministic FuTS does not
imply that they can only be used to model deterministic behaviors (see Sect. 8.1).

In the context of Markovian SPCs, where the relevant commutative semi-ring C is R≥0,
γ characterizes either the duration of an action a, denoted by δa in this paper, or just the
passage of time, denoted by δ in this paper. In any case, such time interval is modeled as
an exponentially distributed RV, and γ > 0 is the relevant rate. In the sequel we use δe in
place of δ, and δe

a in place of δa, to emphasize the exponential nature of random delays.

Definition 2.7. Given setA of actions, the set of action delays ∆A is {δe
a | a ∈ A}. •

Remark 2.8. It is easy to see that standard CTMCs are the same as total deterministic
{δe}-labeled FsFuTS over R≥0. Similarly, by using the transition label π for denoting dis-
crete random experiments, DTMCs are the same as total deterministic {π}-labeled FsFuTS
over R≥0, with the additional requirement that every continuation P is a probability dis-
tribution function, i.e. ⊕P = 1; note that ⊕P = 1 implies P s ∈ [0, 1] since the range
of P contains only non-negative values. RTSs coincide with ∆A -labeled FsFuTS over
R≥0. Finally, given a generic set of weights K, let K be a commutative semi-ring such
that K ⊂ K and 0K < K; let, furthermore, ω label weighted transitions; then Weighted
Transition Systems (WTSs), as defined in [Fahrenberg et al. 2011], are total {ω}-labeled
FuTS over K, with the additional property that for each s ∈ S and P ∈ TF(S ,K) such
that s

ω
� P , there exists an s′ ∈ S such that P s′ , 0K; this last property, together with

totality, corresponds, in the FuTS framework, to the non-blocking property required in the
definition of WTSs. �

The definition of bisimilarity over FuTS is reported below.

Definition 2.9. Given a FuTS (S , A,C,�), we say that an equivalence relation B ⊆
S × S is a bisimulation relation if and only if, whenever (s1, s2) ∈ B, for all α ∈ A and
P1, if s1

α
� P1, then there exists P2 such that s2

α
� P2 and �P1 C = �P2 C for all

equivalence classes C ⊆ S of B. We say that s1 and s2 are bisimilar, written s1 ∼ s2, if and
only if (s1, s2) ∈ B for some bisimulation relation B. •

Definition 2.10. For FsFuTS R = (S , A,C,�), s ∈ S , and Γ ⊆ A, the set of states
reachable from s via Γ, denoted S/s,Γ, is the least set such that s ∈ S/s,Γ and if s′ ∈ S/s,Γ,
s′

α
� P for some α ∈ Γ and P ∈ FTF(S ,C) with P s′′ , 0C, then s′′ ∈ S/s,Γ. Notice

that, for the purposes of this paper, it is convenient to include, by definition, s itself in S/s,Γ.
We furthermore define the set of actions associated with the set of states reachable from s
via Γ, A/s,Γ ⊆ A, as follows:

A/s,Γ =def {α ∈ A | ∃s′ ∈ S/s,Γ,P ∈ FTF(S ,C). s′
α
�P and P , []C}

and, for P ∈ FTF(S ,C), we let P/s,Γ ∈ FTF(S/s,Γ,C) denote P|(S/s,Γ), i.e. the restriction
of P on S/s,Γ. Finally, we consider the restricted transition relation,� /s,Γ, defined as the
set {(s′, α,P/s,Γ) | s′ ∈ S/s,Γ, α ∈ A/s,Γ, s′

α
�P} •

The FsFuTS generated from a state s is defined below:

Definition 2.11. Let R = (S , A,C,�) be a FsFuTS, s ∈ S , and Γ ⊆ A. The FsFuTS
generated from s and Γ, denoted by R/s,Γ, is the FsFuTS (S/s,Γ, A/s,Γ, C, �/s,Γ, s). •

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

10 · De Nicola et Al.

P,Q ::= nil [inaction]
| λ.P [rate prefix]
| a.P [action prefix]
| a.{

∑
j p j :: P j} [probabilistic action prefix]

| 〈a, λ〉.P [rated-action prefix]
| 〈a, ∗ω〉.P [passive-action prefix]
| āλ.P [rated-output-action prefix]
| aλ.P [rated-input-action prefix]
| a∗ω .P [passive-input-action prefix]
| P + Q [choice composition]
| P ||L Q [multi-party synchronization composition]
| P | Q [binary synchronization composition]
| X [constant]

Fig. 2. Syntax of Stochastic Process Calculi operators.

For the sake of notational clarity, whenever Γ = A, we write R/s (S/s,�/s, respectively) in
place of R/s,Γ (S/s,Γ, �/s,Γ, respectively).

3. OPERATORS OF STOCHASTIC PROCESSES

In this paper we consider several SPCs proposed in the literature. For reasons of notational
uniformity, we refer to the grammar of Fig. 2. Whenever we deal with a specific SPC, we
select those constructs which are relevant for that language. As a consequence, we often
use a concrete syntax which is different from that originally defined for the specific SPC.
For the sake of completeness, in Appendix A, the main differences between the syntax we
use and the original ones will be pointed out. In the grammar of Fig. 2 we assume that rates
λ, λ′, λ1, . . . and weights ω,ω′, ω1, . . . range over R>0; we furthermore assume non-empty,
countable setsA of actions, ranged over by a, a′, a1, . . ., and Ā of co-actions, ranged over
by ā, ā′, ā1, . . . Finally, L ⊂ (℘finA) is a finite set of actions.

Term nil denotes the process that is unable to get involved in any action. The syntax
contains many types of prefixes needed to address different types of calculi. Rate prefix
λ.P, delays execution of P by an interval, conventionally denoted by δe, the duration of
which is an exponentially distributed RV with rate λ ∈ R>0. Action prefix a.P starts with the
execution of action a and then continues with that of P; the execution of a is duration-less
or instantaneous, i.e. takes no time. Probabilistic action prefix a.{p1 :: P1 + . . . + ph :: Ph}

generalizes action prefix in that the single process P is replaced by a probability sub-
distribution over processes, where p j > 0 for 0 < j ≤ h and

∑h
j=1 ≤ 1 is required, as well

as Pi , P j for i , j. The intended meaning is that a.{p1 :: P1 + . . . + ph :: Ph} starts with
the execution of action a and then may continue with one of the processes P1, . . . , Ph, the
probability of continuing with P j being p j.

In rated-action prefix 〈a, λ〉.P the duration of the execution of action a is an exponen-
tially distributed RV with rate λ; after completion of the execution of a, the behavior con-
tinues as in P. Rated-action prefix is typical of most SPCs which have been proposed in
the literature and which are based on the multi-party synchronization paradigm. In such
languages there is often the possibility of leaving the durations of some of the action ‘un-
specified’, in the sense that, for any such ‘passive action’, the actual duration is determined
by the rate of the ‘active’ action with which it synchronizes. The passive-action prefix

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

A Uniform Definition of Stochastic Process Calculi · 11

operator 〈a, ∗ω〉.P serves this purpose; weight ω is used for determining a probabilistic
distribution in case there is more than one passive action which may synchronize with the
same active one.

Rated-input-action prefix aλ.P, and rated-output-action prefix āλ.P are used to model
one-to-one synchronization paradigms; rates are associated to both input and output ac-
tions. There are also proposals in which input actions are considered passive by definition,
thence the passive-input-action prefix a∗ω .P. In all cases above, after executing a, the pro-
cess continues as P.

The choice composition operator is denoted by P1 + P2. In fully Markovian calculi
the term P1 + P2 is interpreted according to the race condition principle of CTMCs. For
instance, the sojourn time in state 〈a, λ〉.nil + 〈b, µ〉.nil is an exponentially distributed RV
with rate λ + µ. There is a race between the execution of action a and action b. The
probability that the race is ‘won’ by a (b) is λ

λ+µ
(µ
λ+µ

). In calculi like IML, instead, P1 + P2
can model a race condition (e.g. by µ1.Q1 + µ2.Q2), or a standard non-deterministic choice
(e.g. by a1.Q1 + a2.Q2), or an arbitrary mix thereof. Similar considerations apply to the
Language for Markov Automata.

The multi-party synchronization parallel composition operator, denoted by P1 ||L P2,
where L ∈ (℘finA) is the synchronization (or cooperation) set, prescribes that actions in
L be performed synchronously by both P1 and P2, while the other actions be performed
independently by the two processes. The one-to-one synchronization parallel composition,
denoted by P1 | P2, is used to model synchronization of complementary actions. Finally,
X is a constant defined by means of an equation of the form X := P where constants
X, X1, X′, . . . may occur only guarded in P, i.e. within the scope of a prefix .Q. A set E of
defining equations is complete and consistent if and only if it contains exactly one defining
equation for each constant of the language. For all practical purposes, it is sufficient to
consider only finite (and consistent) sets of defining equations {X1 := P1, . . . Xn := Pn}

which can easily be completed by adding equation X := nil for all X < {X1, . . . Xn}. In this
paper, the FuTS semantics of a calculus C, will be given up to a complete and consistent set
of constant defining equations E. In particular, a FuTS RC will be defined, corresponding
to the complete language of the calculus, under E. The set of states of the FuTS coincides
with the set of terms PC of the calculus; the label set LC typically (but not necessarily)
refers to sets A and Ā of actions and co-actions; the transition relation is defined by
means of a logical deduction system and depends on the equations in E. The FuTS of a
single process P ∈ PC is, as usual, defined as the FuTS generated by P, i.e. RC/P. Notice
that, in the following sections, in the definition of the FuTS semantics of each calculus, set
E will not be mentioned explicitly.

4. A LANGUAGE FOR CTMCs

In this section we define a simple language for describing CTMCs like in [Hermanns et al.
2002]. The set PCT MC of CTMC terms is defined by the grammar obtained by selecting
from Fig. 2 the following operators: inaction, rate prefix, choice composition, and constant.

In the sequel we focus on the semantics. The relevant set of states is PCT MC . For what
concerns the set of labels, we first observe that standard CTMCs are composed of states,
transitions between states, and rates characterizing transition delays. In particular, standard
CTMCs abstract from specific actions. We denote the (action-less) passage of time with
δe. Consequently, the label set LCT MC is the singleton {δe} and the relevant semi-ring is

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

12 · De Nicola et Al.

(NIL)
nil

α
� []R≥0

(RPF1)
λ.P

α
� [P7→λ]

(CHO)
P

α
�P ,Q

α
�Q

P + Q
α
�P+Q

(CNS)
P

α
�P , X:=P

X
α
�P

Fig. 3. Semantics Rules for the Language of CTMCs.

R≥0. The transition relation� is the one defined in Figure 3, where α = δe. Notice that
the third component of the transition relation is no longer a state, as in traditional SOS, but
a continuation function, which maps states to rates. Before giving the formal definition of
the FuTS semantics of the language, we briefly discuss the intuitions behind the rules in
Fig. 3. Intuitively, it should be clear from Rule (NIL) that no state is reachable from nil.
According to Rule (RPF1), P is reachable from λ.P and the rate of such a transition is λ.

The rule for choice (CHO) prescribes that P + Q reaches a state R with a rate resulting
from the sum of the rates by which the individual components may reach R. If one of
the components, say Q, cannot reach R, then (Q R) = 0 and only the contribution of the
other is considered. It is worth noting that the continuation P + Q of P + Q after δe

is defined compositionally from the continuations P and Q of P and Q. Furthermore,
such a continuation is defined by means of just one rule, while, typically, choice operator
semantics definitions require two rules. The use of FuTSs, in particular in the rule for
choice, naturally handles race conditions and solves the related transition multiplicity issue
in a simple and elegant way. In Fig. 4(a) the possible transitions associated with λ.R1 +

µ.R2 are presented where continuation functions associating rates to future behaviors are
represented as dotted arrows. In this simple example, the following transitions can be
derived:

(1) if R1 , R2 then λ.R1 + µ.R2
δe

� [R1 7→ λ,R2 7→ µ];

(2) if R1 = R2 then λ.R + µ.R
δe

� [R 7→ λ + µ]

(3) if R1 = R2 and λ = µ then λ.R + λ.R
δe

� [R 7→ 2λ].

λ.R1 + µ.R2 λ.R + µ.R λ.R + λ.R

R1 R2 R R

δe

λ µ

δe

λ + µ

δe

2λ

(1) (2) (3)

(a) FuTS and race condition.

λ.X + µ1.nil + µ1.nil

nil

δe

λ
2µ1

(b) A CTMC

Fig. 4. Examples of FuTS representations of CTMCs

Rule (CNS) for process constants should be obvious. The presence of X := P in the
premises for the rule for constant definition is intended as the fact that X := P is an element
of the relevant set E of defining equations and X behaves exactly like P. The CTMC
associated with term X, when X := λ.X + µ1.nil + µ1.nil, is the one of Fig. 4(b).

The following proposition guarantees that the continuation functions of interest are
finite-support and total.
ACM Computing Surveys - In Press, Vol. , No. , November 2012.

A Uniform Definition of Stochastic Process Calculi · 13

Proposition 4.1. For all P ∈ PCT MC and P ∈ TF(PCT MC ,R≥0), if P
δe

� P can be
derived using the rules of Fig. 3, then P ∈ FTF(PCT MC ,R≥0). �

We are now ready for providing the formal definition of the FuTS semantics for the lan-
guage of CTMCs:

Definition 4.2. The formal semantics of the calculus for CTMCs is the FsFuTS RCT MC

(PCT MC ,LCT MC ,R≥0,�); where �⊆ PCT MC × LCT MC × FTF(PCT MC ,R≥0) is the least
relation satisfying the rules of Fig. 3. •

The following theorem characterizes the structure of RCT MC:

Theorem 4.3. RCT MC is total and deterministic. �

As a corollary of Theorem 4.3 we obtain that whenever P
δe

�P , the exit rate of P is given
by ⊕P and P is the row of the rate matrix corresponding to P.

5. PARALLEL COMPOSITION

In this section we introduce parallel composition and we show the basic principles for
handling it in the FuTS framework. Here we focus on a pure interleaving composition
operator, incorporating it in the simple language of CTMCs which has been presented in
Sect. 4. In doing so, we will introduce some additional notation useful in the remaining
sections, where major SPCs will be presented and their specific design choices will be
addressed.

5.1 Parallel Composition of CTMCs

Let us consider processes λ1.P1 and λ2.P2, for some P1 and P2; we are interested in their
(interleaving) parallel composition, i.e. λ1.P1 || λ2.P2. The interleaving assumption pre-
scribes that any state reachable in one step from λ1.P1 || λ2.P2 must be a term of the
form Q1 || Q2. To be more precise, the only terms reachable via a (single) step from term
λ1.P1 || λ2.P2 are P1 || λ2.P2, reachable with a random delay which is exponentially
distributed, with rate λ1, and λ1.P1 || P2, reachable with a similar delay, but with rate λ2.
Intuitively, we can see that the parallel composition of λ1.P1 and λ2.P2 results into a CTMC
where the exit rate of state λ1.P1 || λ2.P2 is λ1 + λ2 and there are two transitions as above.
Notice that if λ1 = λ2 = λ and P1 = P2 = P, the exit rate of λ.P || λ.P must be 2 ·λ, due to
the race condition principle. Finally, assuming for simplicity P1 = P2 = nil, and recalling
the basic memoryless property of negative exponential distributions, we note that the time
needed for reaching state nil || nil from state λ1.nil || λ2.nil, is a RV D = max{D1,D2}

where D j is an exponentially distributed RV3 with rate λ j.
In the sequel, we will see how the notions discussed above can be expressed in terms of

continuation functions, so that we can extend the semantics of the language of CTMCs in
order to include the interleaving parallel composition operator. Let P1 and P2 be generic

terms of our CTMC language, with P1
δe

� P1 and P2
δe

� P2 and let us consider P such

that P1 || P2
δe

� P . We know that for all terms Q which are not of the form Q1 || Q2, for

3We remind the reader that D is not an exponentially distributed RV. Technically, D belongs to the class of Phase
Type distributions which are combinations of exponentially distributed RVs and can profitably be represented as
CTMCs with an absorbing state (nil || nil, in our example). The interested reader is referred to [Neuts 1981].

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

14 · De Nicola et Al.

some Q1 and Q2, P Q = 0 must hold. Furthermore, Q1 || Q2 is reachable from P1 || P2 if
and only if Q1 is reachable from P1 and Q2 is the term P2 or, symmetrically, Q2 is reachable
from P2 and Q1 is the term P1. As far as rates are concerned, Q1 || P2 would be reachable
with rate P1 Q1, i.e. P(Q1 || P2) = P1 Q1, while P1 || Q2 would be reachable with rate
P2 Q2, i.e. P(P1 || Q2) = P2 Q2, keeping in mind that any term Q reachable both via
a step of P1 and via a step of P2 is reachable with the cumulative rate P1 Q + P2 Q. In
the sequel, we show how continuation P can be obtained as an appropriate composition
of the component continuations P1 and P2. This will enable us to define the semantics of
the interleaving, and in general the parallel composition operator, in a compositional way.

In the following, we assume an extended definition of set PCT MC , which includes also
interleaving terms of the form P1 || P2. We first of all ‘lift’ the interleaving operator || to
a product operator ⊗ || on continuation functions as follows:

(P1 ⊗ || P2) Q =def

{
(P1 Q1) · (P2 Q2), if Q = Q1 || Q2 for some Q1,Q2 ∈ PCT MC ,
0, otherwise.

Furthermore, for each term P ∈ PCT MC we let the characteristic function X : PCT MC →

R≥0 be defined as [P 7→ 1R≥0], yielding 1 on P and 0 on any other term. Continuation
P above can easily be expressed as a composition of continuations P1 and P2 and the
component terms P1 and P2, i.e. P = P1 ⊗ || (X P2) + (X P1) ⊗ || P2.
The actual rule for the interleaving operator of CTMCs is the following:

(INT) P1
δe
�P1, P2

δe
�P2

P1 || P2
δe
�(P1⊗ || (X P2)) +((X P1)⊗ ||P2)

For instance, for term λ1.nil || λ2.nil, we have the transitions λ1.nil
δe

� [nil 7→ λ1] and

λ2.nil
δe

� [nil 7→ λ2]. By applying rule (INT) above, we obtain:

λ1.nil
δe
�[nil 7→λ1], λ2.nil

δe
�[nil7→λ2]

λ1.nil || λ2.nil
δe
�[nil 7→λ1]⊗ || (Xλ2.nil)+(Xλ1.nil)⊗ || [nil7→λ2]

where:
[nil 7→ λ1] ⊗ || (Xλ2.nil) + (Xλ1.nil) ⊗ || [nil 7→ λ2]

= [nil 7→ λ1] ⊗ || [λ2.nil 7→ 1] + [λ1.nil 7→ 1] ⊗ || [nil 7→ λ2]
= [nil || λ2.nil 7→ λ1] + [λ1.nil || nil 7→ λ2]
= [nil || λ2.nil 7→ λ1 , λ1.nil || nil 7→ λ2]

stating that term λ1.nil || λ2.nil can reach nil || λ2.nil with rate λ1 and λ1.nil || nil
with rate λ2. The FuTS generated by λ1.nil || λ2.nil is reported in Fig. 5 (a). Let us now
consider the term X || X, where X := λ.X, that represents a subtle situation where it is
crucial to take into account all possible derivations and consider their cumulative effect.

The FuTS associated to X || X is shown in Fig. 5 (b). We have that X
δe

� [X 7→ λ] and, by
applying rule (INT):

X
δe
�[X 7→λ], X

δe
�[X 7→λ]

X || X
δe
�[X 7→λ]⊗ || (X X)+(XX)⊗ || [X 7→λ]

and, with a derivation similar to the above one, we obtain X || X
δe

� [X || X 7→ 2·λ]. Thus,
while according to the standard semantics of process algebras X || X would be considered
equivalent to X, in SPCs X || X is modeled as twice as fast as X. The use of summation
ACM Computing Surveys - In Press, Vol. , No. , November 2012.

A Uniform Definition of Stochastic Process Calculi · 15

λ1.nil || λ2.nil

nil || λ2.nil λ1.nil || nil

nil || nil

(a)

δe

λ1 λ2

δe δe

λ1λ2

X || X

δe

2λ

(b)

Fig. 5. Parallel composition of CTMCs.

to compose the next state functions associated with each of the two parallel components,
guarantees the correct calculation of the rates of all transitions.

5.2 Generalizing auxiliary operators

In this section we generalize the operators on continuation functions introduced for the
language of CTMCs in order to use them for other calculi and for richer interpretations. In
the following we assume set S and semi-ring C as in Sect. 2.

Characteristic functions. The (S ,C)-characteristic function XC : S → FTF(S ,C) is
defined by: XC s =def [s 7→ 1C] and is the function which yields 1C on s and 0C elsewhere.
Also for XC, we will omit the subscript C whenever clear from the context.

Parallel aggregation. Let × : S → S → S be an injective binary function on S . The
parallel aggregation operator ⊗C× : TF(S ,C)→ TF(S ,C)→ TF(S ,C) is defined below:

(P1 ⊗
C
× P2) s =def

{
(P1 s1) ·C (P2 s2), if ∃s1, s2 ∈ S . s = s1 × s2,
0C, otherwise.

Notice that injectivity of × is essential for the above definition to make sense; for each
SPC we will consider, operator × will be replaced by the parallel composition constructor
specific of the calculus; thus ⊗C× is parametric with respect to such specific operators; for
instance, in the sequel we will use ⊗C

||L
and ⊗C

|
when multi-parties (||L) and one-to-one

composition (|) are used, respectively.

Renormalization. Parallel aggregation combines functions to describe behavior of co-
operating processes. However, to compute the rate associated with specific transitions, the
aggregated values might have to be renormalized. Let P be a function in TF(S ,C) and
x, y ∈ C; we let P · x

y denote the function associating to each s ∈ S (P s) ·C x
y when y , 0C

and 0C otherwise.

Parallel aggregation ⊗C× binds stronger that multiplication and, consequently, renormal-
ization. The following proposition follows directly from the definitions above:

Proposition 5.1. For every countable non empty set S and commutative semi-ring C,
FTF(S ,C) is closed under the operations XC, (⊗×), and ·C / , i.e. for each s ∈ S ,

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

16 · De Nicola et Al.

P ,Q ∈ FTF(S ,C), and x, y ∈ C, we have that: (XC s), (P ⊗× Q) and P ·C x/y are
elements of FTF(S ,C). �

6. FULLY MARKOVIAN CALCULI WITH MULTI-PARTY SYNCHRONIZATION

A key issue which needs to be addressed when dealing with action based PCs is action syn-
chronization. This involves fundamental design decisions on the nature of synchronization
and of synchronization actions, namely those actions resulting from synchronizing actions.
In the case of SPCs, the additional issue of the relationship between the stochastic-time fea-
tures of synchronizing actions and those of synchronization actions must be addressed. The
intuition behind the rendez vous nature of synchronization could naturally bring to require
that the duration of a synchronization action should be the max of the durations of the syn-
chronizing actions. Unfortunately, this cannot be achieved if one wants action durations
be modeled by RVs with negative exponential distributions. We recall, in fact, that such
a class of RVs is not closed under max. Consequently, in the literature several different
conceptual frameworks have been proposed. One approach is to abandon the framework
of exponential distributions and use general distributions; the problem here is that most of
the theory and tools for the analysis of stochastic systems are based on exponential distri-
butions. Another approach has been to de-couple actions from delays, and this will be dealt
with in Sect. 8.1. In this section we focus on SPCs with multi-party synchronization which
lay in the realm of exponential distributions: the duration of a synchronization action is
assumed to be a RV with a negative exponential distribution, the rate of which is a (simple)
function of the rates of the synchronizing actions. Furthermore, such functions are chosen
in such a way that desirable properties like composition commutativity or associativity,
are preserved. We will consider TIPP [Hermanns et al. 1998], EMPA [Aldini et al. 2010],
and PEPA [Hillston 1996], among the major approaches addressing the issue of synchro-
nization rates. In TIPP it is assumed that cooperating activities can boost each other, thus
the synchronization rate is obtained as the product of those of the synchronizing actions.
In EMPA, instead, a distinction is introduced between active and passive actions. A syn-
chronization may take place only between a single active action and one or more passive
actions. The synchronization rate is that of the active action. In PEPA, the synchroniza-
tion rate of (active) actions is the minimum of the rates of the synchronizing components
according to the intuition that the rate of the synchronization is equal to that of the slow-
est synchronizing action—this action has the strongest impact on the cooperation between
the synchronizing actions. PEPA provides also the notion of passive, which do not affect
the synchronization rate. We address only those fragments of the above mentioned SPCs
which are relevant for stochastic behavior, ignoring operators like relabeling or hiding. We
will call such fragments TIPPk, EMPAk, and PEPAk, the subscript k standing for kernel.

6.1 TIPPk

The kernel we consider refers to the version of TIPP presented in [Hermanns et al. 1998]4.
The considered operators are: inaction, rated-action prefix, choice, multi-party synchro-
nization, and constant. The set PT IPPk of TIPPk terms is defined by the grammar obtained
by selecting from Fig. 2 the specific productions for the above operators.

4In [Buchholz 1994; Hermanns et al. 1998], synchronization rates are defined as the product of those of the
synchronizing actions, as opposed to the original definition of TIPP, given in [Gotz et al. 1993], where, instead,
such rates are the max of the rates of the components.

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

A Uniform Definition of Stochastic Process Calculi · 17

(RAPF1)
〈a,λ〉.P

δea
� [P 7→λ]

(RAPF2)
α,δe

a

〈a,λ〉.P
α
� []R≥0

(PAR1)
P

α
�P ,Q

α
�Q, (nα) < L

P ||L Q
α
� (P⊗ ||L (XQ)) +((X P)⊗ ||L Q)

(PAR2T)
P

α
�P ,Q

α
�Q, (nα) ∈ L

P ||L Q
α
�P⊗ ||L Q

Fig. 6. Additional semantics rules for TIPPk

Let us now consider the ingredients for the definition of the FuTS semantics of TIPPk.
PT IPPk is the relevant set of states, as usual. In TIPP, time delays are not separated from
actions; consequently, LT IPPk is the set ∆A introduced in Definition 2.7. As continuations
map processes to rates, the relevant semi-ring is R≥0. The transition relation � is the
one induced by the rules of Fig. 6 plus rules (NIL), (CHO) and (CNS) of Fig. 3, with
the obvious assumption that now P,Q ∈ PT IPPk and α ∈ LT IPPk . Function n, in Fig. 6,
maps each transition label to the relevant action, i.e. n : LT IPPk → A, with n δe

a =def a.
Functions XR≥0 and ⊗R≥0

||L
are those introduced in Sect. 5.

Rule (PAR1) for interleaving ensures that all behaviors of P ||L Q after α, whenever
(nα) < L, are either of the form R ||L Q where P

α
�P and (P R) > 0, for some P , or

of the form P ||L R where Q
α
� Q and (Q R) > 0, for some Q, as (a simple extension of

what) we have seen in Sect. 5. Rule (PAR2T) for synchronization, instead, implements the
rate multiplication principle of TIPP: if (nα) ∈ L, P

α
� P , Q

α
� Q, (P RP) = λP > 0,

and (Q RQ) = λQ > 0, then P ||L Q evolves, via α, to RP ||L RQ with rate λP · λQ.
The following proposition can be easily proven by structural induction:

Proposition 6.1. For all P ∈ PT IPPk , α ∈ LT IPPk and P ∈ TF(PT IPPk ,R≥0), if P
α
�P

can be derived using rules (NIL), (CHO) and (CNS) of Fig. 3, plus those of Fig. 6, then
P ∈ FTF(PT IPPk ,R≥0). �

Definition 6.2. The formal semantics of TIPPk is the FsFuTS RT IPPk defined as the
tuple (PT IPPk ,LT IPPk ,R≥0,�), where�⊆ PT IPPk ×LT IPPk ×FTF(PT IPPk ,R≥0) is the least
relation induced by rules (NIL), (CHO) and (CNS) of Fig. 3 and by the rules in Fig. 6. •

The following result characterizes the structure of RT IPPk .

Theorem 6.3. RT IPPk is total and deterministic. �

The theorem below establishes, for TIPPk, the formal correspondence between the FuTS
semantics and the original SOS, as in [Hermanns et al. 1998]. We recall here that rta(P,Q)
is computed over the LTS characterized by the TIPPk SOS and it yields the cumulative rate
over the a-labelled transitions leading to Q from P in the LTS.

Theorem 6.4. For all P,Q ∈ PT IPPk , α ∈ LT IPPk , and unique P ∈ FTF(PT IPPk ,R≥0)
such that P

α
�P: (P Q) = rt(nα)(P,Q). �

A CTMC can be easily derived for each P ∈ PT IPPk . We have to consider the FuTS
generated from P, i.e. RT IPPk/P, and for each Q1,Q2 ∈ PT IPPk/P the rate matrix is defined
as follows:

R Q1 Q2 =def

∑
P∈{P′ |∃α∈LT IPPk . Q1

α
�PP′}

(P Q2)

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

18 · De Nicola et Al.

(PAPF1E)
〈a,∗ω〉.P

δea∗
� [P7→ω]

(PAPF2E)
α,δe

a∗

〈a,∗ω〉.P
α
� []R≥0

(PAR2E)
P
δea∗
�P ,Q

δea∗
�Q, a ∈L

P ||L Q
δea∗
�P⊗ ||L Q· (⊕P)+(⊕Q)

(⊕P)·(⊕Q)

(PAR3E)
P

δea
�Po, P

δea∗
�Pi,Q

δea∗
�Qi,Q

δea
�Qo, a∈L

P ||L Q
δea
�Po⊗ ||L Qi·

1
⊕Qi

+Pi⊗ ||L Qo·
1

⊕Pi

Fig. 7. Additional semantics rules for EMPAk

where, for notational simplicity, we have let�P denote the transition relation of RT IPPk/P.
Notice that, by (syntactical) construction, for all P ∈ PT IPPk the set {α | ∃P . P

α
� P} is

finite; thus the above sum always converges.

6.2 EMPAk

In this section we consider EMPA [Aldini et al. 2010], but restrict our attention to the
features of the exponentially timed kernel of EMPA and do not address other features
of the language such as priorities, probabilities and immediate actions. The operators
we consider are: inaction, rated-action prefix, passive-action prefix, choice, multi-party
synchronization, and constant. The setPEMPAk of EMPAk terms is induced by the grammar
obtained by selecting from Fig. 2 the specific productions for the above operators, where
ω ∈ WEMPA =def R>0.

Similarly to TIPP, EMPA associates delays to actions. The label set LEMPAk includes
set ∆A . Moreover, to model EMPA interactions that forbid synchronization between active
actions, we let LEMPAk include labels explicitly indicating execution of passive actions.
We let δe

a∗ denote the execution of passive action a and let ∆A∗ be the set {δe
a∗ | a ∈ A}.

Thus we have LEMPAk =def ∆A ∪ ∆A∗ and, in a similar way as in TIPP, we use function
n : LEMPAk → A to obtain the action involved in the actual transition. The relevant semi-
ring is R≥0. The transition relation � is the one induced by rules of Fig. 7, plus Rules
(NIL), (CHO) and (CNS) of Fig. 3 and Rules (RAPF1), (RAPF2) and (PAR1) of Fig. 6,
where P,Q ∈ PEMPAk and α ∈ LEMPAk . In this SPC, each synchronization is obtained
as the interaction of a single active action with a set of passive ones. The rate of the
synchronization is that of the active action; passive actions are equipped with weights.

Rules (PAPF1E) and (PAPF2E) of Fig. 7 are self explanatory. Notice that, in Rule
(PAR1) of Fig. 6, α can also be a delay of a passive action, δe

a∗ for some a, in which
case P or Q yield weights. Rule (PAR2E) models the ‘passive side’ of EMPA’s asymme-

try principle for synchronization: for a ∈ L, if P
δe

a∗
� P , Q

δe
a∗
� Q, (P RP) = ωP > 0, and

(Q RQ) = ωQ > 0, then P ||L Q evolves to RP ||L RQ with weight ωP · ωQ ·
(⊕P)+(⊕Q)
(⊕P)·(⊕Q) ,

under the assumption that the total weight of a in P (i.e.⊕P) and the total weight of a in Q
(i.e. ⊕Q) are positive; otherwise P ||L Q leads to []R≥0 via δe

a∗ . The normalization factor
(⊕P)+(⊕Q)
(⊕P)·(⊕Q) is chosen, in EMPA, in such a way that the total weight of a in P ||L Q is indeed

(⊕P) + (⊕Q). The second rule for synchronization, (PAR3E), implements the asymmetry

principle of EMPA: the transitions modeling the active role of a in P, i.e. P
δe

a
� Po, are

paired with the transitions modeling the ‘passive role’ of a in Q, i.e. Q
δe

a∗
� Qi, and the

resulting function Po ||L Qi is normalized with the positive weight of a in Q, (i.e. ⊕Qi),
and vice-versa.
ACM Computing Surveys - In Press, Vol. , No. , November 2012.

A Uniform Definition of Stochastic Process Calculi · 19

The following proposition can be easily proven by structural induction:

Proposition 6.5. For all P ∈ PEMPAk , α ∈ LEMPAk , and P ∈ TF(PEMPAk ,R≥0), if
P

α
�P can be derived using the set of rules consisting of rules (NIL), (CHO) and (CNS)

of Fig. 3 plus rules (RAPF1), (RAPF2) and (PAR1) of Fig. 6 and the rules in Fig. 7, then
P ∈ FTF(PEMPAk ,R≥0). �

Definition 6.6. The formal semantics of EMPAk is the FsFuTS REMPAk defined as the
tuple (PEMPAk ,LEMPAk ,R≥0,�) where the transition relation � ⊆ PEMPAk × LEMPAk ×

FTF(PEMPAk ,R≥0) is the least relation satisfying the set of rules consisting only of the
rules (NIL), (CHO) and (CNS) of Fig. 3 plus rules (RAPF1), (RAPF2) and (PAR1) of
Fig. 6 and the rules of Fig. 7. •

Theorem 6.7. REMPAk is total and deterministic. �

The theorem below establishes, for EMPAk, the formal correspondence between the
FuTS semantics and the original SOS, as in [Aldini et al. 2010]. We recall here that
rta(P,Q) and wta(P,Q), are computed over the LTS characterized by the EMPAk SOS
and yield the cumulative rate and weight over the a-labelled transitions leading to Q from
P in the LTS and weight(P, a) is defined over the LTS as follows:

weight(P, a) =def

∑
{|ω ∈ R>0|∃P′ ∈ PEMPAk . P a,∗ω−−−−→ P′|}

Theorem 6.8. For all P,Q ∈ PEMPAk , δ
e
a, δ

e
a∗ ∈ LEMPAk , and unique functions P ,P ′ ∈

FTF(PEMPAk ,R≥0) such that P
δe

a
� P and P

δe
a∗
� P ′, the following holds: (P Q) =

rta(P,Q), (P ′ Q) = wta(P,Q), and (⊕P ′) = weight(P, a). �

The CTMC associated with P ∈ PEMPAk is built by considering only the transitions
associated with active actions. Consequently, the set of states is (PEMPAk)/P, while the rate
matrix is defined as follows:

R Q1 Q2 =def

∑
P∈{P′ |∃α∈∆A . Q1

α
�PP′}

(P Q2)

We close this section by noting that the original syntax of EMPA contains also immediate
actions, i.e. actions with no durations. We will show how to deal with this kind of actions
when we consider the language IML (see Sect. 8) that clearly separates non-determinism
and time and hence all its actions are durationless.

6.3 PEPAk

We consider now the kernel calculus PEPAk of PEPA [Hillston 1996], consisting of rated-
action prefix, choice composition, multi-party synchronization, and constant.

The principle regulating the synchronization rate of PEPA processes is the so-called min-
imal rate, where, essentially, the rate of an action which is the result of the synchronization
of two component processes is the min of the rates of synchronizing actions. Whenever a
component process may perform the same action in several different ways, the cumulative,
so-called apparent, rate has to be considered. The kernel we consider in this section is
adequate for illustrating the minimal apparent rate principle; therefore, we leave out other
features of PEPA like hiding. The set PPEPAk of PEPAk terms is defined by the gram-
mar obtained by selecting from Fig. 2 the specific productions for the above mentioned
operators.

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

20 · De Nicola et Al.

(PAR2P)
P

α
�P ,Q

α
�Q, (nα) ∈ L

P ||L Q
α
�P⊗ ||L Q· min{⊕P,⊕Q}

⊕P·⊕Q

Fig. 8. Synchronization rule for PEPAk

Also in PEPA delays are associated with actions. Consequently, we let the label set
LPEPAk be again the set ∆A , ranged over by α, α1, α

′, . . .; function n for PEPA is defined
as expected: n : LPEPAk → A with n δe

a =def a. The relevant set of states and semi-ring
are PPEPAk and R≥0, while the set of rules defining the transition relation� is composed
of the rule given in Fig. 8, plus Rules (CHO) and (CNS) of Fig. 3, and (RAPF1), (RAPF2)
and (PAR1) of Fig. 6 where P,Q ∈ PPEPAk and α ∈ LPEPAk must be assumed.

Rule (PAR2P) for cooperation implements the minimal apparent rate principle: if (nα) ∈
L, P

α
� P , Q

α
� Q, (P RP) = λP > 0, and (Q RQ) = λQ > 0, then P ||L Q evolves to

RP ||L RQ with rate λP
⊕P ·

λQ

⊕Q · min{⊕P ,⊕Q}.
The following proposition can be easily proven by derivation induction:

Proposition 6.9. For all P ∈ PPEPAk , α ∈ LPEPAk , and P ∈ TF(PPEPAk ,R≥0), if P
α
�

P can be derived using the set of rules composed only of rules (CHO) and (CNS) of
Fig. 3, rules (RAPF1), (RAPF2) and (PAR1) of Fig. 6 and rule (PAR2P) of Fig. 8, then
P ∈ FTF(PPEPAk ,R≥0). �

Definition 6.10. The formal semantics of PEPAk is the FsFuTS RPEPAk defined as the
tuple (PPEPAk ,LPEPAk ,R≥0,�) where �⊆ PPEPAk × LPEPAk × FTF(PPEPAk ,R≥0) is the
least relation satisfying the set of rules consisting only of rules (CHO) and (CNS) of Fig. 3,
(RAPF1), (RAPF2) and (PAR1) of Fig. 6 and rule (PAR2P) of Fig. 8. •

Theorem 6.11. RPEPAk is total and deterministic. �

As a corollary of Theorem 6.11, we get that whenever P
δa
� P , the apparent rate of

action a in P, i.e. ra(P) =def
∑

Q rta(P,Q), is given by ⊕P .
The theorem below establishes, for PEPAk, the formal correspondence between the

FuTS semantics and the original SOS, as in [Hillston 1996]. We recall here that rta(P,Q)
is computed over the LTS characterized by the PEPAk SOS and it yields the cumulative
rate over the a-labelled transitions leading to Q from P in the LTS.

Theorem 6.12. For all P,Q ∈ PPEPAk , α ∈ LPEPAk , and unique P ∈ FTF(PPEPAk ,R≥0)
such that P

α
�P the following holds: (P Q) = rt(nα)(P,Q). �

A CTMC can be associated with each P ∈ PPEPAk in a similar way as for TIPPk.
We close this section by observing that PEPA passive actions can be easily dealt with

also in the FuTS approach. One way for doing this is to proceed as in [Hillston 1996], con-
sidering functions in TF(PPEPAk ,R≥0 ∪ {∗ω | ω ∈ N>0}), using the equations for weights5.
Moreover, weights are ordered as follows: x < ∗ω (∀x ∈ R>0), ∗ω1 < ∗ω2 if ω1 < ω2. For
details we refer the reader to [De Nicola et al. 2009c].

5∗ω1 + ∗ω2 = ∗ω1+ω2 ,
∗ω1
∗ω2

=
ω1
ω2

.

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

A Uniform Definition of Stochastic Process Calculi · 21

7. FULLY MARKOVIAN CALCULI WITH ONE-TO-ONE SYNCHRONIZATION

The SPCs that we have considered in the previous sections all rely on an operator for
multi-party parallel composition. In this section, we consider stochastic extensions of
CCS [Milner 1989] that, instead, is based on a one-to-one, sometimes called binary, in-
teraction paradigm. A synchronization between processes P and Q, running in parallel,
occurs when P sends a signal over a channel (action ā) and Q receives a signal over the
same channel (action a). While there have been many variants of stochastic calculi based
on the multi-party interaction paradigm, very few proposals have been put forward for the
CCS based one. Moreover, all of them are inspired by [Priami 1995], that introduces a
stochastic extension of π-calculus, a calculus for mobility that generalizes CCS and guar-
antees a sophisticated handling of channel names and their visibility. In this section, we
consider two stochastic extensions of CCS that in general terms take inspiration from the
approach presented in [Priami 1995].

The first variant, named StoCCSAA, assigns an active role to both input and output ac-
tions. Following a similar approach as that used by Klin and Sassone [2008], we consider
two alternatives ways of computing the rate of a one-to-one synchronization. In the first
one, like in TIPP, the rate of a synchronization is obtained as the product of the rates of the
involved input and output actions. In the second one, the rate of a synchronization is com-
puted a là PEPA, like in [Priami 1995] for the π-calculus, and is obtained as the minimum
between the total input and the total output rates over the same channel. We shall see that
in the second case associativity of parallel composition is lost.

The second variant, named StoCCSAP, follows an approach similar to the calculus EMPA
that we considered in Sect.6.2: it is assumed that output actions have an active role while
input actions are passive. The rate of a synchronization is then the one of the involved
output action. This simple stochastic extension permits highlighting some of the intrica-
cies related to stochastic extensions of CCS-like calculi. We will see that differently from
the multiparty synchronization approach, where synchronizations have a local nature, in
the one-to-one synchronization approach, synchronizations play a global role. This means
that, in order to guarantee desirable properties, e.g. associativity of parallel composition,
re-normalizations of synchronization rates are necessary.

We will conclude this section with a discussion on associativity of one-to-one synchro-
nization operators when both input and output actions are considered active and the min-
imal rate principle is used. It will be shown that an associative one-to-one synchroniza-
tion parallel composition operator implementing the minimal rate principle can be defined.
This somehow contradicts the result of Klin and Sassone [2008] according to which, within
the SGSOS framework, associativity of CCS parallel composition can be guaranteed only
when the multiplicative approach is used6. We discuss the additional information that
needs to be kept into account in order to overcome the obstacles.

7.1 Active-active synchronization

In this section we consider StoCCSAA and the two variants for computing synchronization
rates. The syntax of the language consists of the following operators: inaction, rated-
output-action prefix, rated-input-action prefix, choice, and binary synchronization. Con-
sequently, the set PStoCCSAA of StoCCSAA terms is defined by the grammar obtained by

6SGSOS is a syntactic framework for the definition of the SOS of SPCs proposed by Klin and Sassone [2008] in
analogy to standard GSOS [Aceto et al. 2001].

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

22 · De Nicola et Al.

(IN1A)
aλ.P

δea
� [P7→λ]

(IN2A)
α,δe

a

aλ.P
α
� []R≥0

(OUT1)
āλ.P

δeā
� [P 7→λ]

(OUT2)
α, δe

ā

āλ.P
α
� []R≥0

(PAR1)
P

α
�P ,Q

α
�Q, α,δe

â

P|Q
α
� (P ⊗| (XQ)) +((X P)⊗|Q)

Fig. 9. Additional semantic rules for StoCCSAA

selecting from Fig. 2 the productions specific to the above mentioned operators.
We let the label set LStoCCS AA be defined as the set ∆A ∪ ∆Ā ∪ ∆

Â
, where ∆Ā and ∆

Â

are the sets {δe
a | a ∈ Ā} and {δe

â | a ∈ A}, respectively. ∆
Â

is the set of synchronizations
on channels; δe

â denotes a synchronization on channel a, which in CCS is more abstractly
denoted by τ. The additional information, i.e. the name of the synchronization channel, is
crucial for the associativity result. The relevant semi-ring is R≥0.

The transition relation � for the multiplicative synchronization variant is the one in-
duced by rules in Fig. 9 and Fig. 10, plus Rules (NIL) and (CHO) of Fig. 3, where
P,Q ∈ PStoCCS AA and α ∈ LStoCCS AA is assumed. The rules for the minimal rate variant
are as above but with the rule of Fig. 11 replacing that in Fig. 10.

Rules (IN1A) and (IN2A) ((OUT1) and (OUT2) respectively) govern the behavior of in-
put actions (output actions respectively), while rule (PAR1) describes interleaving behavior
of parallel processes. Notice that, rule (PAR1) can only be applied when the involved label
α is not a synchronization, i.e. when α , δe

â.
Rules for synchronization deserve a few remarks. In the following we first discuss the

multiplicative variant, obtained when using Rule (PARAA-mul) of Fig. 10, and then the
minimal apparent rate variant, based on Rule (PARAA-min) of Fig. 11. In CCS, the possible
continuations of P | Q after a synchronization â are the following:

(1) the continuations of P after â, in parallel with Q;
(2) the continuations of Q after â, in parallel with P;
(3) the continuations of P after a in parallel with continuations of Q after ā;
(4) the continuations of P after ā in parallel with the continuations of Q after a.

Notice that the synchronizations â considered in case (1) occur internally in P alone, i.e.
without the cooperation of Q; symmetrically, the synchronizations â considered in case (2)
occur internally in Q alone, i.e. without the cooperation of P. Let continuation functions
P , Pi and Po (respectively Q, Qi and Qo) be associated with P (respectively Q) after
an internal synchronization, an input and an output over channel a. When the multiplica-
tive approach is used to compute the synchronization rates, continuations (1)-(4) described
above can easily be computed by means of the parallel aggregation and characteristic func-
tions (⊗| and X, respectively) introduced in Sect. 5, as follows:

(1) (P ⊗| (XQ)) is the continuation of P after δe
â (a synchronization on a, which occurs

internally in P), in parallel with Q;
(2) ((X P) ⊗| Q) is the continuation of Q after δe

â (a synchronization on a, which occurs
internally in Q), in parallel with P;

(3) Pi ⊗| Qo is the continuation after composing an input in P with an output in Q, over
channel a;

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

A Uniform Definition of Stochastic Process Calculi · 23

P
δe
â
�P , P

δea
�Pi, P

δeā
�Po,Q

δe
â
�Q,Q

δea
�Qi,Q

δeā
�Qo

P|Q
δe
â
� (P ⊗| (XQ)) +((X P)⊗|Q) +Pi ⊗|Qo +Po ⊗|Qi

Fig. 10. Rule (PARAA-mul) for multiplicative synchronization for StoCCSAA

(4) Po ⊗| Qi is the continuation after composing an output in P with an input in Q, over
channel a.

Notice that in the latter two cases, synchronization rates are obtained as the multiplication
between the involved output and input rates. These are all the basic ingredients of Rule
(PARAA-mul), shown in Fig. 10.

For instance, if we consider process P defined as āλ1 .nil | aλ2 .nil, continuation functions
as (1)–(4) above are:

(1) [] ⊗| (X aλ2 .nil) = [] ⊗| [aλ2 .nil→ 1] = [];
(2) (X āλ2 .nil) ⊗| [] = [āλ2 .nil→ 1] ⊗| [] = [];
(3) [] ⊗| [] = [];
(4) [nil→ λ1] ⊗| [nil→ λ2] = [nil | nil→ λ1 · λ2]

Summarizing, P
δe

â
� [nil | nil → λ1 · λ2]. Let us now consider P | aλ3 .nil. The derivation

for such a process will be based on the continuations below:

(1) [nil | nil→ λ1 · λ2] ⊗| (X aλ3 .nil) = [(nil | nil) | aλ3 .nil→ λ1 · λ2];
(2) (X P) ⊗| [] = [];
(3) [āλ1 .nil | nil→ λ2] ⊗| [] = [];
(4) [nil | aλ2 .nil→ λ1] ⊗| [nil→ λ3] = [(nil | aλ2 .nil) | nil→ λ1 · λ3];

Summing up these continuations, we obtain:

[(nil | nil) | aλ3 .nil→ λ1 · λ2, (nil | aλ2 .nil) | nil→ λ1 · λ3]

that is: P | aλ3 .nil
δe

â
� [(nil | nil) | aλ3 .nil→ λ1 · λ2, (nil | aλ2 .nil) | nil→ λ1 · λ3].

A more complicated rule has to be used to handle synchronizations where the minimal
rate approach is used. Let Pi be the continuation of P after an input over a, and Qo be
the continuation of Q after a ā, then the rate of a synchronization on channel a between an
input in P and an output in Q is obtained as the minimum of their apparent rates, i.e. the
minimum of the total rate of a-inputs in P (⊕Pi) and the total rate of ā-outputs in Q (⊕Qo).
The synchronizations between output in P and input in Q are dealt with similarly. As we
know, a specific process P′ is reached from P, after input over a, with rate (Pi P′); simi-
larly, Q′ is reached from Q, after output ā, with rate (Qo Q′); thus the probability that such
a specific interaction takes place is (Pi P′)·(Qo Q′)

⊕Pi·⊕Qo
. Hence, the final synchronization rate is

(Pi P′)·(Qo Q′)
⊕Pi·⊕Qo

·min{⊕Pi,⊕Qo}. Notice that (Pi P′) ·(Qo Q′) is the synchronization rate used
in the multiplicative rate approach. So we can obtain the rule for the minimal rate approach
from that of the multiplicative rate approach; we only have to modify rule (PARAA-mul) in
order to re-normalize Pi ⊗| Qo and Po ⊗| Qi using min{⊕Pi,⊕Qo}

⊕Pi·⊕Qo
and min{⊕Po,⊕Qi}

⊕Po·⊕Qi
respec-

tively. All the above is formalized in Rule (PARAA-min) shown in Fig. 11.
ACM Computing Surveys - In Press, Vol. , No. , November 2012.

24 · De Nicola et Al.

P
δe
â
�P , P

δea
�Pi, P

δeā
�Po,Q

δe
â
�Q,Q

δea
�Qi,Q

δeā
�Qo

P|Q
δe
â
� (P ⊗| (XQ)) +((X P)⊗|Q) +Pi ⊗|Qo·

min{⊕Pi ,⊕Qo}
⊕Pi ·⊕Qo

+Po⊗|Qi·
min{⊕Po ,⊕Qi}
⊕Po ·⊕Qi

Fig. 11. Rule (PARAA-min) for minimal rate synchronization for StoCCSAA

Proposition 7.1. For all P ∈ PS toCCS AA , α ∈ LS toCCS AA , and P ∈ TF(PS toCCS AA ,R≥0)
if P

α
� P can be derived using the set of rules consisting of rules (NIL) and (CHO)

of Fig. 3, plus rules in Fig. 9, and using one out of (PARAA-mul) and (PARAA-min), then
P ∈ FTF(PS toCCS AA ,R≥0). �

Below we define the two FuTSs corresponding to the two variants of the StoCCSAA

when the multiplicative or the minimal rate synchronization approach is taken.

Definition 7.2 Formal FuTS semantics of StoCCSAA.

(1) The semantics of the multiplicative synchronization variant of StoCCSAA is the FsFuTS
Rmul

S toCCS AA
=def (PS toCCS AA ,LS toCCS AA ,R≥0,�) where the transition relation � ⊆

PS toCCS AA ×LS toCCS AA ×FTF(PS toCCS AA ,R≥0) is the least relation satisfying only rules
(NIL) and (CHO) of Fig. 3, the rules in Fig. 9, and rule (PARAA-mul).

(2) The formal semantics of the minimal rate synchronization variant of StoCCSAA is the
FsFuTS Rmin

S toCCS AA
=def (PS toCCS AA ,LS toCCS AA ,R≥0,�) where the transition relation

� ⊆ PS toCCS AA ×LS toCCS AA ×FTF(PS toCCS AA ,R≥0) is the least relation satisfying only
rules (NIL) and (CHO) of Fig. 3, the rules in Fig. 9, and rule (PARAA-min). •

Theorem 7.3. Rmul
StoCCS AA

and Rmin
StoCCS AA

are total and deterministic. �

The following theorem establishes the formal correspondence between the FuTS se-
mantics of StoCCSAA and the semantics definition of Stochastic CCS a là Priami [1995],
as reported in Section 2.2 of [Klin and Sassone 2008].

Theorem 7.4. For all P,Q ∈ PStoCCS AA , α ∈ LStoCCS AA , and unique function P in
FTF(PStoCCSI ,R≥0) such that P

α
�P the following holds:

(P Q) =

{
rta(P,Q), if α = δe

a with a ∈ A ∪ Ā,
rt〈a|ā〉(P,Q) + rt〈ā|a〉(P,Q), if α = δe

â with a ∈ A. �

As pointed out by Klin and Sassone [2008], Stochastic CCS with a minimal apparent
rate semantics suffers of non-associativity of the parallel composition operator, with re-
spect to strong Markovian bisimilarity7. Intuitively, the problem is that terms which differ
only for the grouping of parallel components generate transitions which correspond to ‘the
same’ interactions but assign different rates to ‘the same’ continuation behaviors.

As an example (taken from [Klin and Sassone 2008]), let us consider processes P and
Q, where P is the term (P1 | P2) | P3 and Q is the term P1 | (P2 | P3) where P1, P2 and P3
are the terms aλ.nil, aλ.nil and āλ.nil, respectively. We have that process P gives rise to a
single δe

â-labelled transition leading to the following continuation function:

[(P1 | nil) | nil 7→
λ

2
, (nil | P2) | nil 7→

λ

2
]

7PEPA parallel composition/cooperation operator is, instead, associative.

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

A Uniform Definition of Stochastic Process Calculi · 25

(IN1P)
a∗ω .P

δea
� [P7→ω]

(IN2P)
α, δe

a

a∗ω .P
α
� []R≥0

Fig. 12. Semantic rules for StoCCSAP

while process Q gives rise to a single δe
â-labelled transition leading to the following con-

tinuation function:

[P1 | (nil | nil) 7→ λ, nil | (P2 | nil) 7→ λ]

Clearly, process P, after an interaction between P2 and P3, reaches (P1 | nil) | nil with
rate λ

2 , while process Q, after the same interaction, reaches P1 | (nil | nil), with rate λ.
Thus, the stochastic behavior of P and Q is different. The basic reason for the difference is
the fact that, in Q, the rate of the synchronization between P2 and P3 is computed without
taking into account the presence of the input action in P1, as is instead the case for P.

From the results in [Klin and Sassone 2008] it follows that it is impossible to define
an SGSOS semantics that guarantees the associativity of CCS parallel composition. In
the next section, however, we discuss how this problem can be overcome in the FuTS
approach.

7.2 Active-passive synchronization

We introduce StoCCSAP, the stochastic extension of CCS where it is assumed that output
actions have an active role while input actions are considered as passive. The duration of a
synchronization is determined by the rate assigned to the participating output action. Input
actions are annotated with weights, i.e. positive integers that are only used for determining
the probability that a specific input action is selected among the possible ones when a com-
plementary output action is executed. This approach is inspired by the notion of passive
actions of EMPA discussed in Sect. 6.2.

The set PStoCCS AP of StoCCSAP terms are obtained by considering: inaction, rated-
output-action prefix, passive-input-action prefix, choice, and binary synchronization. Con-
sequently, the set PStoCCS AP of StoCCSAP terms is defined by the grammar obtained by
selecting from Fig. 2 the productions specific of the above mentioned operators where the
additional constraint is imposed that the two processes in a nondeterministic term of the
form P + Q cannot offer alternative input and output actions on the same channel. In other
words, processes of the form āλ.P1 + a∗ω .Q1 are not allowed. This is mainly for the sake
of simplicity; otherwise the computation of the synchronization rates would be technically
more complicated because we would have to take care that no synchronization erroneously
occurred between the alternative components of a choice term.

The label set LStoCCS AP is the same as the one for StoCCSAA, i.e. ∆A ∪ ∆Ā ∪ ∆
Â

. The
transition relation� is the one induced by the rules in Fig. 12, modeling the behavior of
passive input actions, plus the rule governing the synchronization that will be introduced
below, plus Rules (NIL) and (CHO) of Fig. 3, (OUT1), (OUT2) and (PAR1) in Fig. 9,
where P,Q ∈ PStoCCS AP and α ∈ LStoCCS AP is assumed.

The rule for synchronization deserves more attention and specific motivations. The next
states of P | Q after â, i.e. after a synchronization over channel a has taken place, can be
obtained by composing next state functions P , Pi and Po (Q, Qi, and Qo, respectively)
associated with P (respectively Q) after a synchronization internal to P (Q, respectively),
after an input and after an output over channel a, by using parallel aggregation (⊗|), renor-

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

26 · De Nicola et Al.

malization (·R /) and characteristic (X) functions introduced in Sect. 5.
A straightforward implementation of the synchronization rule would take into account

the following components when calculating the continuations of P | Q after â:

(1) the continuations of P after â, in parallel with Q, i.e. P ⊗| (XQ);
(2) the continuations of Q after â, in parallel with P, i.e. (X P) ⊗| Q;
(3) the continuations of P after a in parallel with the continuations of Q after ā, renormal-

ized w.r.t. the total weight of inputs in P, i.e.
Pi⊗

R
|
Qo

⊕Pi
;

(4) the continuations of P after ā in parallel with the continuations of Q after a, renormal-

ized w.r.t. the total weight of inputs in Q, i.e
Po⊗

R
|
Qi

⊕Qi
.

Renormalization in (3) and (4) is needed to correctly compute the relative probability of
selecting a specific input action. Notice, in fact, that in the absence of such a renormal-
ization, the exit rate of the state preceding the synchronization would increase with the
number of (passive!) input possibilities.

Formally, the rule corresponding to the composition of the four components intuitively
described above is the following:

P
δe
â
�P , P

δea
�Pi, P

δeā
�Po,Q

δe
â
�Q,Q

δea
�Qi,Q

δeā
�Qo

P|Q
δe
â
� (P ⊗| (XQ)) +((X P)⊗|Q) +

Pi⊗|Qo
⊕Pi

+
Po⊗|Qi
⊕Qi

Unfortunately, if we use this rule, associativity of parallel composition is again lost. To
see this, just reconsider, in the context of StoCCSAP, the example discussed in the previous
section. Let P and Q be as before, but with P1, P2 and P3 being the terms a∗ω .nil, a∗ω .nil,
and āλ.nil respectively. As before, P reaches both (nil | P2) | nil and (P1 | nil) | nil with
rate λ

2 while Q reaches P1 | (nil | nil) and nil | (P2 | nil) with rate λ. However, when
using the active-passive approach, this problem can be easily overcome. Let us consider,
for instance, a synchronization â taking place internally within P alone which will be
‘inherited’ by P | Q, i.e. will appear as a synchronization â in the parallel composition (in
practice, we are focussing on the first term of the sum in the continuation function in the
sequent of the rule above). This synchronization originates from a specific output action
ā of P. When considering this output in the context of the parallel composition P | Q, we
have to take into account that such an output could have synchronized with an input action
a in Q instead of one in P. More precisely when we consider P alone, the rate of such an
interaction is computed by multiplying the rate of the output ā by the weight of the specific
input a selected for the interaction and dividing by the total weight of input on a within P
(i.e. ⊕Pi). When, instead, we consider the same output action giving rise to interactions
within the broader context P | Q, we have to (multiply the rate and the weight as before
and) divide by the total weight of input on a within P | Q (i.e. ⊕Pi + ⊕Qi). In order
to recover the original value, i.e. the rate of the output ā multiplied by the weight of the
specific input a, as above, and to renormalize it w.r.t. the global context P | Q, all we need
to do is to use ⊕Pi

⊕Pi+⊕Qi
as normalization factor for the rates in P . Thus, the component of

the continuation function related to synchronizations â in P | Q taking place internally in
P is (P⊗|(XQ)) · ⊕Pi

⊕Pi+⊕Qi
. Symmetrically, we get that the component of the continuation function

related to synchronizations â in P | Q taking place internally in Q is ((X P))⊗|Q) · ⊕Qi

⊕Pi+⊕Qi
. For

similar considerations, when considering â synchronizations originating from outputs ā in
ACM Computing Surveys - In Press, Vol. , No. , November 2012.

A Uniform Definition of Stochastic Process Calculi · 27

(PAR2AP)
P

δe
â
�P , P

δea
�Pi, P

δeā
�Po,Q

δe
â
�Q,Q

δea
�Qi,Q

δeā
�Qo

P|Q
δe
â
�

(P⊗|(XQ)) · ⊕Pi
⊕Pi+⊕Qi

+
((X P)⊗|Q) · ⊕Qi
⊕Pi+⊕Qi

+
Pi⊗|Qo
⊕Pi+⊕Qi

+
Po⊗|Qi
⊕Pi+⊕Qi

Fig. 13. Rule (PAR2AP) for rate synchronization for StoCCSAP

Q (in P, respectively) and inputs a in P (in Q, respectively), the normalization factor must
be ⊕Pi + ⊕Qi and not simply ⊕Pi (⊕Qi respectively). Notice that the requirement of no
input-output mix in choice terms guarantees that only the rates of those input actions which
can actually take part in a synchronization are considered in the normalization factor. The
resulting new rule for synchronization is reported in Fig. 13. Applying the new semantics
to the above example, we get the following two transitions:

(1) (P1 | P2) | P3
δe

â
� [(nil | P2) | nil 7→ λ

2 , (P1 | nil) | nil 7→ λ
2]

(2) P1 | (P2 | P3)
δe

â
� [nil | (P2 | nil) 7→ λ

2 , P1 | (nil | nil) 7→ λ
2]

Proposition 7.5. For all P ∈ PStoCCS AP , α ∈ LStoCCS AP , and P ∈ TF(PStoCCS AP ,R≥0),
if P

α
� P can be derived using the set of rules consisting of rules (NIL) and (CHO) of

Fig. 3, rules (OUT1), (OUT2) and (PAR1) in Fig. 9, rules (IN1P), (IN2P) in Fig. 12 and
rule (PAR2AP) of Fig. 13, then P ∈ FTF(PStoCCS AP ,R≥0). �

Definition 7.6. The formal semantics of StoCCSAP is the FsFuTS RStoCCS AP defined as
(PStoCCS AP ,LStoCCS AP ,R≥0,�) where�⊆ PStoCCS AP × LStoCCS AP × FTF(PStoCCS AP ,R≥0) is
the least relation satisfying the set of rules consisting of rules (NIL) and (CHO) of Fig. 3,
rules (OUT1), (OUT2) and (PAR1) in Fig. 9, rules (IN1P), (IN2P) in Fig. 12 and rule
(PAR2AP) of Fig. 13. •

Theorem 7.7. RStoCCS AP is total and deterministic. �

De Nicola et al. [2009c] showed that, by using the above rule, associativity of parallel
composition is guaranteed:

Theorem 7.8. For all P,Q,R ∈ PStoCCS AP , (P | Q) | R ∼ P | (Q | R) �

This result is not in contradiction with the one presented by Klin and Sassone [2008],
where it is proved that associativity of parallel composition does not hold for CCS-like
calculi if one uses PEPA-like minimal rate synchronization. Our result relies on the in-
troduction of distinct labels for synchronization transitions (δe

â), which keep track of the
interaction channel. This is necessary to properly compute renormalization while taking
into account possible new inputs popping up along the derivation. The synchronization
labels in [Klin and Sassone 2008] are just τ; thus, crucial information is lost.

Notice that when deterministic FsFuTS with R≥0-valued continuations are considered
(like in the case of the considered stochastic process calculi), strong Markovian bisimilar-
ity, denoted by ∼M , coincides with the bisimilarity relation ∼ of Definition 2.9. We refer
the readers interested in further details of Markovian bisimilarity to, e.g. [De Nicola et al.
2009c; Hillston 1996; Brinksma and Hermanns 2001].

The CTMC of the interactions within process P ∈ PStoCCS AP can be derived as expected.
The set of states is (PStoCCS AP)/P; the rate matrix is defined as follows, for each Q1,Q2 ∈

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

28 · De Nicola et Al.

(PStoCCS AP)/P:

R Q1 Q2 =def

∑
P∈{P′ |∃α∈∆

Â
. Q1

α
�PP′}

(P Q2)

In Appendix D.7 it is shown that the semantics we considered in Sect. 7.1 can be modi-
fied to obtain associativity of the CCS parallel composition, thus obtaining:

Theorem 7.9. For all P,Q,R ∈ PStoCCS AA , (P | Q) | R ∼ P | (Q | R) �

8. INCLUDING NON-DETERMINISM AND PROBABILITIES

In this section we address models where stochastically timed, non-deterministic and prob-
abilistic behaviors coexist. We shall consider the Language of Interactive Markov Chains
(IML) [Hermanns 2002] and Markov Automata [Eisentraut et al. 2010].

Before doing this, we introduce a general definition of FuTSs, which allows the transi-
tion relation to have continuations with different (semi-rings as) co-domains. For instance,
continuations assigning rates to processes will be functions in TF(S ,R≥0) for some state
set S , as we have seen in the previous sections, while those assigning probabilities to pro-
cesses will lay in TF(S , [0, 1]). Continuations used for expressing pure reachability, where
one is not interested in quantitative issues, will be functions in TF(S ,B); this way we can
easily model pure non-deterministic behavior. In order to make different continuations co-
exist in the same FuTS, we use disjoint unions, denoted by], of the corresponding types.
For instance, a FuTS where we want to represent both non-deterministic and probabilistic
behavior will have a transition relation �⊆ S × A × (TF(S ,B)] TF(S , [0, 1])), where
boolean and probabilistic continuations coexist. The general definition of FuTSs follows:

Definition 8.1. A state to function A-labelled transition system (FuTS) over {C j}
k
j=1 is a

tuple (S , A, {C j}
k
j=1,�) where S is a countable, non-empty, set of states, A is a countable,

non-empty, set of transition labels, {C j}
k
j=1 is a finite family of commutative semi-rings,

and�⊆ S × A ×
⊎k

j=1 TF(S ,C j) is the transition relation. •

As in the previous sections, FuTSs will be denoted by R,R1,R
′, Furthermore, all

notational conventions as well as definitions, e.g. total, deterministic, finite support FuTS,
are extended in a natural way. In the following two sections we first consider Interactive
Markov Chains (IMCs), where non-deterministic behavior is integrated with stochastically
timed behavior, and then Markov Automata, which extend IMCs with probabilistic behav-
ior. For each model we consider an appropriate language and provide its FuTS semantics.

8.1 A Language for Interactive Markov Chains

The key feature of Interactive Markov Chains (IMCs) [Hermanns 2002; Hermanns and
Katoen 2010] is a definite, clear distinction between transitions modeling (instantaneous)
actions, called interactive transitions, and transitions modeling the passage of time, called
Markovian transitions because durations are, as usual, modeled by exponentially dis-
tributed random variables.

Definition 8.2. An Interactive Markov Chain (IMC) is a tuple (S , A,→,d, s0) with S a
nonempty finite set of states, A a finite set of actions,→⊆ S × A × S the set of interactive
transitions,d⊆ S × R>0 × S the set of Markov transitions, and s0 ∈ S the initial state. •
ACM Computing Surveys - In Press, Vol. , No. , November 2012.

A Uniform Definition of Stochastic Process Calculi · 29

We could use simple FuTSs for IMCs, by just considering as co-domain of continuations
a semi-ring of the form R≥0 ∪ {∞}, where classical operations on reals are extended as fol-
lows: ∀x , 0 : x·∞ = ∞, 0·∞ = 0 and ∀x.x+∞ = ∞. Elements in R>0 would indicate rates
of Markovian transitions (with 0 denoting un-reachability, as usual), while∞ would char-
acterize interactive ones, following the intuition that the latter, being immediate, have an
infinite rate. This simple choice has, however, the disadvantage of obscuring the distinction
between non-determinism and stochasticity. For this reason, we use general FuTSs with a
transition relation whose continuation components are in FTF(S ,B)] FTF(S ,R≥0). Con-
tinuations in FTF(S ,B) are used to model non-deterministic transitions, while functions in
FTF(S ,R≥0) are used to describe stochastic behaviors.

Let us now focus on the FuTS semantics of the Language for IMCs (IML) proposed
by Hermanns [2002]. As usual, we restrict our attention to a significative kernel of the full
calculus; the relevant operators are: inaction, rate prefix, action prefix, choice, multi-party
synchronization, and constant. Consequently, the set PIMLk of IMLk terms is defined by
the grammar obtained by selecting from Fig. 2 the productions for the above mentioned
operators. Note that, due to the distinction between actions and delays, IMLk has two
different prefix operators, namely rate prefix, for delays, and action prefix for actions.

The relevant sets of states and labels are PIMLk and LIMLk =def A ∪ {δ
e}, the latter

including duration-less actions inA and the delay label δe. Function n : LIMLk → A ∪ {ε}
is defined by n a =def a and n δe =def ε, assuming ε < A. As anticipated above, we use
the semi-rings B and R≥0. The set of rules defining the transition relation� is composed
of rules (CHO) and (CNS) of Fig. 3 (where P,Q ∈ PIMLk and α ∈ LIMLk is assumed) and
of the rules of Fig. 14, where, with a bit of overloading, we refine functions X and ⊗× as
described below. We let function X : LIMLk → PIMLk → (TF(PIMLk ,B)]TF(PIMLk ,R≥0))
be defined as follows:

Xα =def

{
XB, if α ∈ A,
XR≥0 , if α = δe.

Let, furthermore, BOP(F) =def F × F → F denote the collection of all the binary opera-
tions on F. We let function ⊗ ||L : LIMLk → BOP(TF(PIMLk ,B))] BOP(TF(PIMLk ,R≥0))
be defined as follows:

⊗α
||L

=def

 ⊗
B
||L
, if α ∈ A,

⊗
R≥0
||L
, if α = δe.

Notably, operators Xα and ⊗α
||L

are used to avoid type mismatches in the continuation for-
mulas while guaranteeing that the same rules for interleaving (and, similarly, for) synchro-
nization are used, regardless of the type of continuation functions. In fact, the semantic
rules for IMLk are the same as those for TIPPk except for parameter α in the functions
above. Actually, one could use these generalized functions also in the definitions of TIPPk

and of all the other SPCs. Then the same rule format, and in the case of IMLk and TIPPk

exactly the same rules, could be used for all the calculi. We preferred to use different
formats for the sake of readability.

The following proposition can be easily proven by derivation induction:

Proposition 8.3. For all P ∈ PIMLk , α ∈ LIMLk , and P ∈ TF(PIMLk ,R≥0] B), if
P

α
� P can be derived using the set consisting of rules (CHO) and (CNS) of Fig. 3 and

of the rules of Fig. 14, then the following holds: P ∈ FTF(PIMLk ,R≥0] B). �

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

30 · De Nicola et Al.

(NIL1I)
nil

δe
� []R≥0

(NIL2I)
α ∈A

nil
α
� []B

(RPF1I)
λ.P

δe
� [P 7→λ]

(RPF2I)
α ∈A

λ.P
α
� []B

(AP1I)
a.P

δe
� []R≥0

(AP2I)
a.P

a
� [P 7→1B]

(AP3I)
α ∈A \ {a}

a.P
α
� []B

(PAR1I)
P

α
�P ,Q

α
�Q, (nα) < L

P ||L Q
α
� (P ⊗α

||L
(X αQ)) +((X α P)⊗α

||L
Q)

(PAR2I)
P

α
�P ,Q

α
�Q, (nα) ∈ L

P ||L Q
α
�P ⊗α

||L
Q

Fig. 14. Additional semantic rules for IMLk

Proposition 8.4. For all P ∈ PIMLk , α ∈ LIMLk and P ∈ FTF(PIMLk ,R≥0] B) such
that P

α
� P can be derived using the set consisting of rules (CHO) and (CNS) of Fig. 3

and of the rules of Fig. 14, the following holds: (i) if α ∈ A then P ∈ FTF(PIMLk ,B); (ii)
if α = δe then P ∈ FTF(PIMLk ,R≥0). �

Definition 8.5. The formal semantics of IMLk is the FsFuTS RIMLk defined as the tuple
(PIMLk ,LIMLk , {R≥0,B},�) where�⊆ PIMLk×LIMLk×(FTF(PIMLk ,B)]FTF(PIMLk ,R≥0))
is the least relation satisfying the set consisting of rules (CHO) and (CNS) of Fig. 3 and of
the rules of Fig. 14. •

The following theorem characterizes the structure of RIMLk .

Theorem 8.6. RIMLk is total and deterministic.

The following theorem establishes the formal correspondence between the FuTS of
IMLk and the semantics definition given in [Hermanns 2002]. As usual, we let the cu-
mulative transition rate from P1 to P2 be denoted by rt(P1, P2).

Theorem 8.7. For all P,Q ∈ PIMLk , a ∈ A, and unique functions P ∈ FTF(PIMLk ,B)

and P ′ ∈ FTF(PIMLk ,R≥0) such that P
a
� P and P

δe

� P ′ the following holds: (i)
(P Q) = 1B if and only if P

a
→ Q; (ii) (P ′ Q) = rt(P,Q). �

8.2 A Language for Markov Automata

Markov Automata (MAs) [Eisentraut et al. 2010] are an extension of IMCs where proba-
bilistic behavior is integrated with non-deterministic and stochastically timed behavior. Es-
sentially, IMCs interactive transitions are replaced by probabilistic transitions in MAs. Any
probabilistic transition is labelled by an action, just like IMCs interactive transitions; how-
ever, instead of pointing to a single process, it points to a process sub-distribution. MAs
generalize IMCs in the sense that IMCs are isomorphic to MAs where all sub-distributions
are the unit Dirac distribution. Similarly, MAs generalize Probabilistic Automata of Segala
[1995] by introducing a notion of global (stochastic) time. MAs are defined below8; we
let Distr(S) denote the collections of all probability sub-distributions over S with finite
support, Distr(S) =def {P ∈ FTF(S ,R≥0) | ⊕P ≤ 1}.

Definition 8.8. A Markov Automaton (MA) is a tuple (S , A,→,��,s0) where S is a
nonempty finite set of states, A a finite set of actions, →⊆ S × A × Distr(S) is the set
of probabilistic transitions,��⊆ S × R>0 × S is the set of Markov timed transitions, and
s0 ∈ S the initial state. •

8We do not consider τ actions as in [Eisentraut et al. 2010]; they are irrelevant in the context of the present paper.

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

A Uniform Definition of Stochastic Process Calculi · 31

(NIL1M)
nil

δe
� []R≥0

(NIL2M)
a ∈A

nil
πa
� []R≥0

(RPF1M)
λ.P

δe
� [P 7→λ]

(RPF2M)
a ∈A

λ.P
πa
� []R≥0

(PAP1M)
a.{

∑
h ph::Ph}

δe
� []R≥0

(PAP2M)
a.{

∑
h ph::Ph}

πa
� [[{

∑
h ph::Ph}]]

(PAP3M)
b ∈A \ {a}

a.{
∑

h ph::Ph}
πb
� []R≥0

(CHO1M)
P

δe
�P ,Q

δe
�Q

P + Q
δe
�P + Q

(CHO2M) P
πa
�P

P + Q
πa
�P

(CHO3M)
Q

πa
�Q

P + Q
πa
�Q

(PAR1M)
P

δe
�P ,Q

δe
�Q

P ||L Q
δe
� (P ⊗ ||L (XQ)) +((X P)⊗ ||L Q)

(PAR2M)
P
πa
�P , a < L

P ||L Q
πa
�P ⊗ ||L (XQ)

(PAR3M)
Q

πa
�Q, a < L

P ||L Q
πa
� (X P)⊗ ||L Q

(PAR4)
P
πa
�P ,Q

πa
�Q, a ∈ L

P ||L Q
πa
�P ⊗ ||L Q

Fig. 15. Additional semantic rules for MAL

Recently, a full language for Markov Automata, MAPA (Markov Automata Process Alge-
bra) has been proposed by Timmer et al. [2012]. MAPA includes also a rich data system
and is equipped with restrictions for enabling state space generation and equivalent smaller
models. In [Timmer et al. 2012], the semantics of MAPA is defined using the SOS style.
In particular, proved LTSs are used for the markovian part of the language. Below, we
introduce MAL, a simplified fragment of MAPA, which we use for showing how MAs
based languages can be modeled with FuTSs. The constructs of MAL are: inaction, rate
prefix, probabilistic action prefix, choice, multi-party synchronization, and constant. Con-
sequently, the set PMAL of MAL terms is defined by the grammar obtained by selecting
from Fig. 2 the productions for the above mentioned constructs. Notice that the only dif-
ference from IMLk is that action prefix has been replaced by probabilistic action prefix.
The notation {p1 :: P1 + . . . + ph :: Ph} in probabilistic action prefix uniquely character-
izes the probability sub-distribution [P1 7→ p1 . . . Ph 7→ ph] ∈ Distr(PMAL), which we
denote by [[{p1 :: P1 + . . . + ph :: Ph}]]. The relevant set of states is PMAL. For what
concerns the label set, recall that we conventionally let π label probabilistic transitions (see
Remark 2.8). Since in MAs such transitions are associated with actions in the action set
A, the label set must include the set ΠA , defined as {πa | a ∈ A}; furthermore, it must
include δe, since MAL models also delays. Thus we define LMAL =def ΠA ∪ {δ

e}, with
δe < ΠA . Function n : LMAL → A ∪ {ε} is defined by n πa =def a and n δe =def ε,
assuming ε < A. The relevant semi-ring is R≥0. Furthermore, we have that if P

πa
� P ,

then ⊕P ≤ 1. We will use functions XR≥0 and ⊗R≥0
||L

, as introduced in Section 5.2 on
page 15. The set of rules defining the transition relation is given in Fig. 15 plus Rule
(CNS) of Fig. 3, where P,Q ∈ PMAL and α ∈ LMAL is assumed. It is worth noting that
the rules for the fragment of MAL dealing with exponentially distributed delays, namely
Rules (NIL1M), (RPF1M), (CHO1M) and (PAR1M) are the same as those for IMLk. The
other rules deal with probability sub-distributions and non-determinism at once. The fol-
lowing propositions can be easily proven by derivation induction:

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

32 · De Nicola et Al.

Proposition 8.9. For all P ∈ PMAL, α ∈ LMAL, and P ∈ TF(PMAL,R≥0), if P
α
� P

can be derived using the set consisting of rules (CNS) of Fig. 3 and of the rules of Fig. 15,
then the following holds: P ∈ FTF(PMAL,R≥0). �

Proposition 8.10. For all P ∈ PMAL, α ∈ LMAL and P ∈ FTF(PMAL,R≥0) such that
P

α
� P can be derived using the set consisting of rules (CNS) of Fig. 3 and of the rules

of Fig. 15, if α ∈ ΠA then ⊕P ≤ 1. �

Definition 8.11. The formal semantics of MAL is the FsFuTS RMAL defined as the tuple
(PMAL,LMAL,R≥0,�);�⊆ PMAL×LMAL×FTF(PMAL,R≥0) is the least relation satisfying
the set consisting of rules (CNS) of Fig. 3 and of the rules of Fig. 15. •

The following theorem characterizes the structure of RMAL.

Theorem 8.12. RMAL is total. �

It is worth noting that RMAL is not deterministic. This is due to the way we decided to deal
with probabilistic transitions. In IMLk we represented non-determinism using boolean
functions. For instance, a term like a.P1 + a.P2, with P1 , P2 and a ∈ A, gives rise to
the following transition:

a.P1 + a.P2
a
� [P1 7→ TRUE, P2 7→ TRUE]

Boolean functions are a compact way of representing non-determinism in the choice of
the next process (P1 or P2 in the example above). We could have used a similar approach
for non-deterministic choice over process (sub-)distributions. For instance a term like
a.{

∑
i pi :: Pi} + a.{

∑
j q j :: Q j}, with {

∑
i pi :: Pi} , {

∑
j q j :: Q j} and a ∈ A would have

given rise to the following transition:

a.{
∑

i pi :: Pi} + a.{
∑

j q j :: Q j}
πa
� [[[{

∑
i pi :: Pi}]] 7→ TRUE, [[{

∑
j q j :: Q j}]] 7→ TRUE]

This solution would have required MAL probabilistic continuation functions be of type
TF(Distr(MAL),B), thus breaking the property of the FuTS framework presented in this
paper, namely that continuations are of type TF(PC ,C) for some commutative semi-ring
C, where PC is always a set of syntactical terms. Consequently, under the semantics given
in Definition 8.11, the above term gives rise to the following two transitions:

(1) a.{
∑

i pi :: Pi} + a.{
∑

j q j :: Q j}
πa
� [[{

∑
i pi :: Pi}]]

(2) a.{
∑

i pi :: Pi} + a.{
∑

j q j :: Q j}
πa
� [[{

∑
j q j :: Q j}]].

9. RELATED WORK

Our approach is mainly based on three notions: the use of functions in the transition
relation, the generalization of the co-domain of such functions to generic commutative
semi-rings, and a systematic use of composition operators for such functions, which fa-
cilitates a compositional, syntax-driven definition of the semantics of SPCs. The use of
functions in the transitions is not new; for instance they can be found also in [Deng et al.
2007] and [Bohnenkamp et al. 2006]. However, in both works, function codomains are not
generic. Deng et al. [2007] also employ a systematic usage of composition operators on
functions.
ACM Computing Surveys - In Press, Vol. , No. , November 2012.

A Uniform Definition of Stochastic Process Calculi · 33

Other work aiming at providing a systematic account of the semantics of stochastic cal-
culi has been presented in [Klin and Sassone 2008] that studies a (meta-)syntactic frame-
work, called SGSOS, for defining well-behaved Markovian stochastic transition systems.

The SGSOS format arises from the abstract theory of well-behaved operational seman-
tics, based on bialgebras and a type of natural transformations, namely distributive laws.
SGSOS specifications induce Rated TSs, which are very similar to RTSs [De Nicola et al.
2009c], i.e. a sub-class of FuTSs. Rates of transitions in the Rated TSs induced by a SG-
SOS specification, are computed by induction on the syntax of process terms and by taking
into account the contribution of all those SGSOS rules that are triggered by the relevant
(apparent) rates. Note that such a set of rules is finite. So, in a sense, the computation of the
rates is distributed among the (instantiations of the) relevant rules with intermediate results
collected (and summed up) in the final rate. In this sense, the SGSOS approach is more
’syntax-oriented’ than the RTS one. In the latter, the relevant values are manipulated in a
more direct way, using the operators on continuation functions, by applying them directly
to the continuation elements of the transitions within the semantics rules. A noteworthy
result of Klin and Sassone [2008] is that stochastic bisimilarity of SPCs defined using the
SGSOS format is guaranteed to be a congruence. This result is generalized by Klin [2009]
who studies Weighted Transition Systems (WTSs) and related Weighted GSOS which are
proven to induce a congruence. It is shown that Rated TSs as well as LTSs are special
cases of WTSs. The above considerations on the comparison between the SGSOS and
RTSs approaches apply also to Weighted GSOS and general total deterministic FsFuTSs.

The approach taken recently in [Cardelli and Mardare 2010], where the semantics of
stochastic calculi is defined by associating a measure with each term, which encodes the
rates of the transitions from the state of a system to a measurable set of states, is some-
how opposite in spirit to ours. They associate measures with sets of processes while we
exploit functions from processes to semi-rings for building operational models. It has to be
said, however, that their semantic definitions rely heavily on general functions on measure
spaces and on operators which are very similar to those we proposed in [De Nicola et al.
2009a; 2009c] and that we have been using here. In [Cardelli and Mardare 2010] it is stated
that their approach generalizes ours because they deal with measures. On the other hand,
our focus is on the way continuation functions are used, manipulated and generalized (by
using generic semi-rings) in order to deal with very different models, ranging from CTMCs
to DTMCs as well as combinations thereof. To the best of our knowledge both Klin and
Sassone [2008] and Cardelli and Mardare [2010] have only considered fully stochastic (i.e.
without non-determinism) calculi, with one-to-one synchronization.

Hojjat et al. [2008] also aim at providing a uniform account of the semantics of different
SPCs with the main objective of automatic analysis of stochastic processes. They take
an axiomatic approach and use axioms as rewriting rules to reduce process terms into the
common format used by the µCRL toolset [Blom et al. 2001].

In [Latella et al. 2012] the notion of bisimulation induced by FuTSs is addressed from a
co-algebraic perspective. A correspondence result is proven stating that FuTS-bisimulation
coincides with the behavioral equivalence of the associated functor. As concrete examples,
the original equivalences for PEPAk and IMLk are related to FuTS-bisimulation, providing
a coalgebraic justification for these equivalences.

Bernardo et al. [2010] proposed Ultras, a model similar to FuTSs, in order to capture
and study non-deterministic, probabilistic, and stochastic trace and bisimulation equiva-

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

34 · De Nicola et Al.

lences. In Ultras, function co-domains are not required to be commutative semi-rings, but
rather they are order sets with a bottom element denoting unreachability.

We would like to conclude by mentioning only a few other models that are related to
FuTSs. The structure of Continuous Time Markov Decision Processes (CTMDPs), as de-
fined by Hermanns and Johr [Hermanns and Johr 2007], is similar to the structure of finite
support FuTSs with action-indexed random delays (∆A -labeled FsFuTS over R≥0). Indeed,
a CTMDP is a tupleM = (S ,A,T, s0) with S a (finite) set of states,A a (finite) set of ac-
tion labels, s0 ∈ S , and T ⊆ S ×A×FTF(S ,R≥0) the transition relation. Despite the strong
structural similarity, there are, however, important conceptual differences between the two
models. In fact, while in ∆A -labeled FsFuTSs the action to perform is selected among
those enabled following the race condition principle, in CTMDPs, choices are based on
a reactive semantics. Thus the next action is selected by the environment, while the race
condition principle is used to select the next state. It is not difficult to see that CTMDPs
can be defined as FuTSs with the appropriate choice of transition labels and appropriate
co-domains of the continuation functions. The same applies to other models proposed in
the literature under the name Continuous Time Probabilistic Automata [Lijun Zhang et al.
2008; Knast 1969; Dang Van Hung and Zhou Chaochen 1999]. All these variants can be
rendered as FuTSs. Indeed, for the model proposed in [Lijun Zhang et al. 2008] similar
considerations as those for CTMDPs apply. The Continuous Time Probabilistic Automata
considered in [Knast 1969] have been proposed as a language theoretic framework; the el-
ement ai, j(x) of the infinitesimal matrix used there is modeled, in our approach, with (P j)

for i
δe

x
� P . Finally, the variant used in [Dang Van Hung and Zhou Chaochen 1999] is

based on standard automata, where transitions are elements of S ×S and have a rate but no
label associated. Thus they are directly related to {δe}-labelled FuTSs over R≥0.

10. CONCLUSIONS

In this article we have presented a number of stochastic process calculi and have defined
their structural operational semantics relying on the same semantic framework based on
so-called State to Function Labeled Transition Systems (FuTSs) that has facilitated the
compact and compositional definition of the different semantics.

The key feature of FuTSs is the fact that each transition is a triple of the form (s, α,P).
The first and the second components are the source state and the label of the transition,
while the third component, P , is the continuation function, which associates a value of
a suitable type with each state, say s′. The only requirement on the co-domains of the
continuation functions is that they must be commutative semi-rings, which make FuTSs a
very general framework. This provides a high level of flexibility while preserving basic
properties of primitive operations like sum and multiplication. Moreover, since the third
component of the transition relation can be also a disjoint union of sets of functions with
different co-domains, FuTSs can be used to model different ‘kinds’ of transitions by as-
sociating different co-domains to continuations. Indeed, in this paper we have shown that
FuTSs can be effectively used as a semantic domain for the compositional definition of
the operational semantics of a calculus with both non-deterministic behavior and stochas-
tic delays, and for an extension including probabilistic discrete (sub-)distributions over
processes.

By defining appropriate operators on continuation functions, we have provided a com-
positional operational semantics of key fragments of major stochastic process calculi in-
ACM Computing Surveys - In Press, Vol. , No. , November 2012.

A Uniform Definition of Stochastic Process Calculi · 35

cluding TIPP, EMPA, PEPA, StoCCS, IML and MAL, a language for Markov Automata.
By this, we have provided a uniform, clean and powerful framework which supports the
identification of differences and similarities.

FuTSs elegantly solve the issue of transition multiplicity; the rates of equal transitions,
among those derivable from the semantics rules, are simply added via operations on contin-
uation functions. Furthermore, FuTSs make it relatively easy to define associative parallel
composition operators for calculi adopting the one-to-one interaction paradigm. Indeed,
by appropriately defining the composition of continuation functions, the components to be
taken into account, when one is interested in guaranteeing associativity of parallel compo-
sition, can be singled out and appropriately combined. Moreover, the unified framework
clearly shows that the modeling of one-to-one synchronization becomes simpler when one
distinguishes between active and passive actions; if all actions are considered as active the
arithmetics of rates becomes much more intricate.

The correspondence result shown in [Latella et al. 2012] sets the basis for a systematic
study of SPCs, within the FuTS framework, based on category theory, and in particular
within the coalgebraic framework, similar to what has been done for probabilistic models
in [Bartels 2002; Bartels et al. 2003; Sokolova and de Vink 2004], for Rated TSs by Klin
and Sassone [2008] and WTSs [Klin 2009]. We think this is a promising line of future
research which should be undertaken for FuTSs; in particular, the relationship between
WTSs Weighted GSOS on one hand and FuTSs and related PCs sematics rules on the
other seems an interesting line of research.

ACKNOWLEDGMENTS

We are very grateful to Marco Bernardo, Pedro D’Argenio, Gethin Norman, Bartek Klin,
Roberto Segala, and Erik de Vink for valuable discussions and suggestions. We also thank
the anonymous reviewers for their detailed and helpful reports.

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

36 · De Nicola et Al.

APPENDIX: Detailed proofs for the electronic editions

A. SOS DEFINITIONS

In this section the original SOS definition of the relevant process calculi is given. We
warn the reader that in this and the following sections, we sometimes used a syntactic
presentation which is different from the one of the original definition of the calculi at hand.
The reason for that is uniformity of presentation. We furthermore want to point out that
in the literature the transition multi-relation has often be defined as the least multi-relation
satisfying a set of SOS rules (see, e.g. [Hillston 1996] or [Hermanns 2002]). Although this
definition is not completely correct, since the least multi-relation happens to be a relation,
thus not capturing, as a matter of fact, transition multiplicity, in the sequel we stick to the
original formulation for conformance with the original proposals.

A.1 Calculus for finite CTMCs

The SOS of the Calculus for finite CTMCs of Sect. 4 is the multi-LTS (PCT MC ,R>0, −→)
where −→ is the multi-relation induced by the rules given in Fig. 16.

λ.P λ−−→ P
P λ−−→ R

P + Q λ−−→ R

Q λ−−→ R

P + Q λ−−→ R

P λ−−→ Q, X:=P

X λ−−→ Q

Fig. 16. SOS Rules for the CTMC Calculus.

A.2 TIPPk

The SOS of TIPPk (see Sect.6.1) is the multi-LTS (PT IPPk ,AT IPPk × R>0, −→) where −→
is the least multi-relation satisfying the rules given in Fig. 17. Notice that in the original
definition of TIPP [Hermanns et al. 1998], the rated-action prefix, choice and parallel
composition operators are denoted by (a, λ).P, [] and |[L]| respectively.

〈a,λ〉.P a,λ−−−→ P
P a,λ−−−→ R

P + Q a,λ−−−→ R

Q a,λ−−−→ R

P + Q a,λ−−−→ R

P a,λ−−−→ Q, X:=P

X a,λ−−−→ Q

P a,λ−−−→ P′, a<L
P ||L Q a,λ−−−→ P′ ||L Q

Q a,λ−−−→ Q′, a<L

P ||L Q a,λ−−−→ P ||L Q′

P
a,λP−−−−→ P′,Q

a,λQ−−−−→ Q′, a∈L

P ||L Q
a,λP·λQ−−−−−−→ P′ ||L Q′

Fig. 17. SOS Rules for the TIPPk .

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

A Uniform Definition of Stochastic Process Calculi · 37

〈a,λ〉.P a,λ−−−→ P 〈a,∗ω〉.P
a,∗ω−−−−→ P

P a,λ̃−−−→ R

P + Q a,λ̃−−−→R

Q a,λ̃−−−→ R

P + Q a,λ̃−−−→R

P a,λ̃−−−→ Q, X:=P

X a,λ̃−−−→ Q

P a,λ̃−−−→ P′, a<L

P ||L Q a,λ̃−−−→ P′ ||L Q

Q a,λ̃−−−→ Q′, a<L

P ||L Q a,λ̃−−−→ P ||L Q′

P a,λ−−−→ P′,Q a,∗ω−−−−→ Q′, a∈L

P ||L Q
a,λ· ω

weight(Q,a)−−−−−−−−−→ P′ ||L Q′

P a,∗ω−−−−→ P′,Q a,λ−−−→ Q′, a∈L

P ||L Q
a,λ· ω

weight(P,a)−−−−−−−−−→ P′||LQ′

P
a,∗ω1−−−−→ P′,Q

a,∗ω2−−−−→ Q′, a∈L

P ||L Q
a,∗norm(ω1,ω2,a,P,Q)
−−−−−−−−−−−−→ P′ ||L Q′

Fig. 18. SOS Rules for the EMPAk .

A.3 EMPAk

The SOS of EMPAk (see Sect.6.2) is the multi-LTS (PEMPAk ,AEMPAk × (R>0 ∪ {∗ω | ω ∈
R>0}), −→) where −→ is the multi-relation induced by the rules given in Fig. 18. In the
figure, λ̃ ∈ R>0 ∪ {∗ω | ω ∈ R>0}, whereas weight(P, a) and norm(ω1, ω2, a, P1, P2) are
defined as follows, where

∑
{||} =def 0:

weight(P, a) =def
∑
{|ω ∈ R>0|∃P′ ∈ PEMPAk . P a,∗ω−−−−→ P′|}

norm(ω1, ω2, a, P1, P2) =def
ω1

weight(P1,a) ·
ω2

weight(P2,a) · (weight(P1, a) + weight(P2, a))

In the original definition of EMPA [Aldini et al. 2010], the rec operator for constant
definition is used, instead of defining equations.

A.4 PEPAk

The SOS of PEPAk (see Sect.6.3) is the multi-LTS (PPEPAk ,APEPAk × R>0, −→) where −→
is the least multi-relation satisfying the rules given in Fig. 19. In the figure rα(P) and
r(α, λ1, λ2, P,Q) are used, which are defined as follows:

rα((β, λ).P) =def

{
λ, if β = α
0, if β , α

rα(P + Q) =def rα(P) + rα(Q)

rα(PBCL Q) =def

{
min(rα(P), rα(Q)) if α ∈ L
rα(P) + rα(Q), if α < L

r(α, λ1, λ2, P,Q) =def
λ1

rα(P) ·
λ2

rα(Q) · min(rα(P), rα(Q))

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

38 · De Nicola et Al.

〈a,λ〉.P α,λ−−−→ P
P α,λ−−−→ R

P + Q α,λ−−−→ R

Q α,λ−−−→ R

P + Q α,λ−−−→ R

P α,λ−−−→ Q, X:=P

X α,λ−−−→ Q

P α,λ−−−→ P′, α<L
P ||L Q α,λ−−−→ P′ ||L Q

Q α,λ−−−→ Q′, α<L

P ||L Q α,λ−−−→ P ||L Q′

P
α,λ1−−−−→ P′,Q

α,λ2−−−−→ Q′, α∈L

P ||L Q
α,r(α,λ1,λ2,P,Q)

−−−−−−−−−−−−→ P′ ||L Q′

Fig. 19. SOS Rules for PEPAk .

aλ.P (a,λ)−−−−→ P
P θ−→ R

P + Q
+1θ−−−→ R

Q θ−→ R

P + Q
+2θ−−−→ R

P θ−→ P′

P|Q
||1θ−−−→ P′|Q

Q θ−→ Q′

P|Q
||2θ−−−→ P|Q′

P
θ1(a,λ1)
−−−−−−→ P′,Q

θ2(ā,λ2)
−−−−−−→ Q′

P|Q
〈|1θ1(a,λ1),|2θ2(ā,λ2)〉r(x,λ1,λ2,P,Q)

−−−−−−−−−−−−−−−−−−−−−−−−−→ P′|Q′

Fig. 20. Rules for StoCCS.

In the original definition of PEPA [Hillston 1996], the rated-action prefix and parallel
composition operators are denoted by (a, λ).P and BCL respectively.

A.5 StoCCS

In the proved operational semantics, StoCCS is defined by the rules of Fig. 20 where θ
ranges over derivation proofs, e.g. represented by terms of the following grammar:

θ ::= (a, λ)

∣∣∣∣∣∣ +1 θ

∣∣∣∣∣∣ +2 θ

∣∣∣∣∣∣ ||1 θ
∣∣∣∣∣∣ ||2 θ

∣∣∣∣∣∣ 〈||1 θ, ||2 θ〉
Function r(α, λ1, λ2, P,Q), used to compute the rate of a synchronization, is defined as

for PEPA when the minimum synchronization rate approach is used, while it is simply
defined as λ1 · λ2 when the multiplicative rate approach is used.

From the LTS induced by the SOS rules an action labelled CTMC can be derived, by
removing the proofs from the labels while summing up the rates of identical transitions.

In the original definition of Stochastic CCS reported in Section 2.2 of [Klin and Sassone
2008], the rated-output-action prefix, rated-input-action prefix and parallel composition
operators are denoted by (ā, λ).P, (a, λ).P and || respectively.
ACM Computing Surveys - In Press, Vol. , No. , November 2012.

A Uniform Definition of Stochastic Process Calculi · 39

a.P
a
→ P

P
a
→R

P + Q
a
→R

Q
a
→R

P + Q
a
→R

P
a
→Q, X:=P

X
a
→Q

P
a
→ P′, a<L

P ||L Q
a
→ P′ ||L Q

Q
a
→Q′, a<L

P ||L Q
a
→ P ||L Q′

P
a
→ P′,Q

a
→Q′, a∈L

P ||L Q
a
→ P′ ||L Q′

λ.P
λ
d P

P
λ
dR

P + Q
λ
dR

Q
λ
dR

P + Q
λ
dR

P
λ
dQ, X:=P

X
λ
dQ

P
λ
d P′

P ||L Q
λ
d P′ ||L Q

Q
λ
dQ′

P ||L Q
λ
d P ||L Q′

Fig. 21. SOS Rules for the IMLk .

A.6 IMLk

The SOS definition of IMLk (see Sect.8.1) is given in Fig. 21. The action transition relation
→⊂ PIMLk × A × PIMLk is the least relation and the Markovian transition relation d⊂
PIMLk × R>0 × PIMLk is the least multi-relation given by the rules in Fig. 21.

Notice that in [Hermanns 2002] parallel composition (and hiding) are not defined by
means of an explicit set of SOS rules, but, being derived operators, it is defined by means
of expansion laws (and specific laws for hiding). Here we preferred to use explicit SOS
rules for uniformity reasons and because we do not address equivalence relations.

In the original definition of IML [Hermanns 2002], the parallel composition operator is
denoted by |[L]|.

B. PROOFS RELATED TO SECT. 4

B.1 Proof of Proposition 4.1

Proposition 4.1. For all P ∈ PCT MC and P ∈ TF(PCT MC ,R≥0), if P
δe

�P can be derived
from the rules of Fig. 3, then P ∈ FTF(PCT MC ,R≥0). �

Proof. By derivation induction. Let n ≥ 1 be the length of the derivation for proving

P
δe

� P .
Base case: Trivial since the only cases in which P

δe

� P can be derived with a proof
of length 1 are those in which P = []R≥0 or P = [P′ 7→ λ] and [], [P′ 7→ λ] ∈
FTF(PCT MC ,R≥0) by definition.

Inductive step: The last assert of any proof of length n > 1 must be of the form P + Q
δe

�

P + Q or X
δe

� P . In the first case P + Q ∈ FTF(PCT MC ,R≥0), since P ,Q ∈

FTF(PCT MC ,R≥0) by I.H. and FTF(PCT MC ,R≥0) is closed under + by definition of +. In
the second case the assert trivially follows from the I.H.

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

40 · De Nicola et Al.

B.2 Proof of Theorem 4.3

Theorem 4.3. RCT MC is total and deterministic. �

Proof. RCT MC is total: By structural induction9, taking inaction and rate prefix as base
cases, for which the assert is trivially proven. For the inductive step we show only the case

P + Q which is also very simple because P
δe

� P and Q
δe

� Q, for some P and Q

by the I.H., hence P + Q
δe

�P+Q by the FuTS semantics of the CTMC Language (Fig. 3).

RCT MC is deterministic: By structural induction. We prove only the inductive step for
case P + Q here, the others being simpler.

P + Q
δe

� R1, P + Q
δe

� R2

⇒ {Def. of� (Fig. 3)}

R1 = P1 + Q1,R2 = P2 + Q2, P
δe

� P1,Q
δe

� Q1, P
δe

� P2,Q
δe

� Q2

for some P1,Q1,P2 and Q2
⇒ {I.H.}

P1 = P2, Q1 = Q2, R1 = P1 + Q1,R2 = P2 + Q2

⇒ {Algebra}

R1 = R2

C. PROOFS RELATED TO SECT. 6

C.1 Proof of Proposition 6.1

Proposition 6.1. For all P ∈ PT IPPk , α ∈ LT IPPk and P ∈ TF(PT IPPk ,R≥0), if P
α
� P

can be derived using the set of rules composed only of rules (NIL), (CHO) and (CNS) of
Figure 3 plus those of Figure 6, then P ∈ FTF(PT IPPk ,R≥0). �

Proof. By induction on the length of the derivation for P
α
� P . We prove only the

inductive step. The last assert of any derivation of length n > 1 must be of the form
P + Q

α
� P + Q, or P ||L Q

α
� (P ⊗ ||L (XQ)) + ((X P) ⊗ ||L Q), or P ||L Q

α
�

P ||L Q, or X
α
� P . In all cases the assert follows from Proposition 5.1 since P ,Q ∈

FTF(PT IPPk ,R≥0) by I.H. and (XR≥0 P), (XR≥0 Q) ∈ FTF(PT IPPk ,R≥0) by definition.

C.2 Proof of Theorem 6.3

Theorem 6.3. RT IPPk is total and deterministic. �

Proof. RT IPPk is total: By induction on the structure, taking inaction and rated ac-
tion prefix as base cases, for which the assert is trivially proven. For the inductive step

9Strictly speaking, the proof is carried on by guarded induction, thanks to the guarded recursion constraint on the
syntax. This amounts to assuming a function φ : PCT MC → N such that φ(P1 op P2) > max{(φ P1), (φ P2)} for
all syntactic operators op and, moreover φX > φP if X := P. In the sequel we will keep the structural induction
terminology.

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

A Uniform Definition of Stochastic Process Calculi · 41

we show only the case P ||L Q which is also very simple because P
α
� P and

Q
α
� Q, for some P and Q by the I.H., hence, assuming (nα) < L, P ||L Q

α
�

(P ⊗ ||L (XQ)) + ((X P) ⊗ ||L Q) by the FuTS semantics of TIPPk; the case for (nα) ∈ L is
similar.

RT IPPk is deterministic: By structural induction. We prove only the inductive step for
case P ||L Q here, the others being similar or simpler. Let us suppose there are two dif-
ferent derivations of length n > 1: P ||L Q

α
� R1 and P ||L Q

α
� R2, with (nα) < L:

P ||L Q
α
� R1, P ||L Q

α
� R2

⇒ {Def. of�}

R1 = (P1 ⊗ ||L (XQ)) + ((X P) ⊗ ||L Q1),

R2 = (P2 ⊗ ||L (XQ)) + ((X P) ⊗ ||L Q2)
for some P1,Q1,P2,Q2

⇒ {I.H.}

P1 = P2,Q1 = Q2,

R1 = (P1 ⊗ ||L (XR≥0 Q)) + ((XR≥0 P) ⊗ ||L Q1),
R2 = (P2 ⊗ ||L (XR≥0 Q)) + ((XR≥0 P) ⊗ ||L Q2)

⇒ {Algebra}

R1 = R2

The case P ||L Q
α
� R1 and P ||L Q

α
� R2, with (nα) ∈ L is similar.

C.3 Proof of Theorem 6.4

Theorem 6.4. For all P,Q ∈ PT IPPk , α ∈ LT IPPk , and unique P ∈ FTF(PT IPPk ,R≥0) such
that P

α
�P the following holds: (P Q) = rt(nα)(P,Q) �

Proof. By induction of the length of the derivation for P
α
� P . We prove only the

inductive step for case P1 ||L P2, under the assumption (nα) ∈ L, the other cases being
similar. By definition of the FuTS semantics of TIPPk, the last assert of the derivation is of
the form P1 ||L P2

α
� P1 ⊗ ||L P2, with P1

α
� P1 and P2

α
� P2. We observe that if Q

is not of the form Q1 ||L Q2 then (P1 ⊗ ||L P2) Q = 0. On the other hand, we observe that
the only transitions from P1 ||L P2 allowed by the SOS semantics of TIPPk are to terms of
the form Q1 ||L Q2, so also rt(nα)(P1 ||L P2,Q) = 0 if Q is not of the form Q1 ||L Q2. Let
us assume Q is of the form Q1 ||L Q2.

(P1 ⊗ ||L P2) Q1 ||L Q2

= {Def. (P1 ⊗ ||L P2)}
ACM Computing Surveys - In Press, Vol. , No. , November 2012.

42 · De Nicola et Al.

(P1 Q1) · (P2 Q2)

= {P1
α
�P1 and P2

α
�P2; I.H.}

rt(nα)(P1,Q1) · rt(nα)(P2,Q2)

= {SOS definition of TIPPk; Def. of rta}

rt(nα)(P1 ||L P2,Q1 ||L Q2)

C.4 Proof of Proposition 6.5

Proposition 6.5. For all P ∈ PEMPAk , α ∈ LEMPAk , and P ∈ TF(PEMPAk ,R≥0), if P
α
�P

can be derived using the set of rules composed only of rules (NIL), (CHO) and (CNS) of
Figure 3 plus rules (RAPF1) and (RAPF2) and (PAR1) of Figure 6 and those of Figure 7,
then P ∈ FTF(PEMPAk ,R≥0) �

Proof. By derivation induction. Let n ≥ 1 be the length of the derivation for proving
P

α
� P .

Base case: Trivial since the only cases in which P
α
� P can be derived with a proof

of length 1 are those in which P = []R≥0 or P = [P′ 7→ x], with x ∈ R>0, and []R≥0 ∈

FTF(PEMPAk ,R≥0) and [P′ 7→ x] ∈ FTF(PEMPAk ,R≥0) by definition.
Inductive step: The last assert of any proof of length n > 1 must be of the form P + Q

α
�

P + Q, or P ||L Q
α
� (P ⊗ ||L (XQ)) + ((X P) ⊗ ||L Q), or P ||L Q

δe
a∗
� P ⊗ ||L Q ·

(⊕P)+(⊕Q)
(⊕P)·(⊕Q) , or P ||L Q

δe
a
� Po ⊗ ||L Qi ·

1
⊕Qi

+ Pi ⊗ ||L Qo ·
1
⊕Pi

, or, finally, X
α
�

P . In all cases the assert follows using Proposition 5.1 since P ,Q,Po,Pi,Qo,Qi ∈

FTF(PEMPAk ,R≥0) by I.H. and (XR≥0 P), (XR≥0 Q) ∈ FTF(PEMPAk ,R≥0) by definition.

C.5 Proof of Theorem 6.7

Theorem 6.7. REMPAk is total and deterministic. �

Proof. By structural induction. The proof is similar to that of Theorem 6.3.

C.6 Proof of Theorem 6.8

Theorem 6.8. For all P,Q ∈ PEMPAk , δ
e
a, δ

e
a∗ ∈ LEMPAk , and unique functions P ,P ′ ∈

FTF(PEMPAk ,R≥0) such that P
δe

a
� P and P

δe
a∗
� P ′, the following holds: (P Q) =

rta(P,Q), (P ′ Q) = wta(P,Q), and (⊕P ′) = weight(P, a). �

Proof. We prove the assert by induction on the length of the derivations for P
δe

a
�P and

for P
δe

a∗
� P ′. We prove only the inductive step for case P1 ||L P2, under the assumption

a ∈ L, the other cases being similar. By definition of the FuTS semantics of EMPAk, the
last asserts of the derivations are of the form

P1 ||L P2
δe

a
�P0

1 ⊗ ||L P i
2 ·

1
⊕P i

2
+ P i

1 ⊗ ||L Po
2 ·

1
⊕P i

1
and

P1 ||L P2
δe

a∗
�P1 ⊗ ||L P2 ·

(⊕P1)+(⊕P2)
(⊕P1)·(⊕P2) .

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

A Uniform Definition of Stochastic Process Calculi · 43

We observe that if Q is not of the form Q1 ||L Q2 then (Po
1 ⊗ ||L P i

2) Q = 0, as well as
(P i

1 ⊗ ||L Po
2) Q, and (P1 ⊗ ||L P2) Q. On the other hand, we observe that the only transi-

tions from P1 ||L P2 allowed by the original SOS semantics of EMPAk are to terms of the
form Q1 ||L Q2, so also rta(P1 ||L P2,Q) = wta(P1 ||L P2,Q) = 0 if Q is not of the form
Q1 ||L Q2. Let us assume Q is of the form Q1 ||L Q2.



(Po
1 ⊗ ||L P i

2 ·
1
⊕P i

2
+ P i

1 ⊗ ||L Po
2 ·

1
⊕P i

1
) Q1 ||L Q2

(P1 ⊗ ||L P2 ·
(⊕P1)+(⊕P2)
(⊕P1)·(⊕P2)) Q1 ||L Q2

⊕
(
(P1 ⊗ ||L P2) · (⊕P1)+(⊕P2)

(⊕P1)·(⊕P2)

)


= {Def. ⊗ ||L ,⊕}

(Po
1 Q1) · (P i

2 Q2) · 1
⊕P i

2
+ (P i

1 Q1) · (Po
2 Q2) · 1

⊕P i
1

(P1 Q1) · (P2 Q2) · (⊕P1)+(⊕P2)
(⊕P1)·(⊕P2)

(⊕P1)+(⊕P2)
(⊕P1)·(⊕P2) ·

∑
Q′1 ||L Q′2∈PEMPAk

(P1 Q′1) · (P2 Q′2)


= {Ph

δe
a∗
�P i

h, Ph
δe

a∗
�Ph, h = 1, 2; Unicity corollary (Th. 6.7)}

(Po
1 Q1) · (P i

2 Q2) · 1
⊕P i

2
+ (P i

1 Q1) · (Po
2 Q2) · 1

⊕P i
1

(P i
1 Q1) · (P i

2 Q2) · (⊕P i
1)+(⊕P i

2)
(⊕P i

1)·(⊕P i
2)

(⊕P i
1)+(⊕P i

2)
(⊕P i

1)·(⊕P i
2) ·

∑
Q′1 ||L Q′2∈PEMPAk

(P i
1 Q′1) · (P i

2 Q′2)


= {Ph

δe
a
�Po

h , Ph
δe

a∗
�P i

h, h = 1, 2; I.H.}

rta(P1,Q1)·wta(P2,Q2)
weight(a,P2) +

wta(P1,Q1)·rta(P2,Q2)
weight(a,P1)

wta(P1,Q1) · wta(P2,Q2) · weight(a,P1)+weight(a,P2)
weight(a,P1)·weight(a,P2)

weight(a,P1)+weight(a,P2)
weight(a,P1)·weight(a,P2) ·

∑
Q′1 ||L Q′2∈PEMPAk

wta(P1,Q′1) · wta(P2 Q′2)


= {Def. rta; Def. wta; Def. weight; SOS definition of EMPA}

rta(P1 ||L P2,Q1 ||L Q2)

wta(P1 ||L P2,Q1 ||L Q2)

weight(a, P1 ||L P2)


ACM Computing Surveys - In Press, Vol. , No. , November 2012.

44 · De Nicola et Al.

C.7 Proof of Proposition 6.9

Proposition 6.9. For all P ∈ PPEPAk , α ∈ LPEPAk , and P ∈ TF(PPEPAk ,R≥0), if P
α
�

P can be derived using the set of rules composed only of rules (CHO) and (CNS) of
Figure 3, (RAPF1), (RAPF2) and (PAR1) of Figure 6 and rule (PAR2P) Figure 8, then
P ∈ FTF(PPEPAk ,R≥0). �

Proof. By induction on the length of the derivation for P
α
� P . We prove only the

inductive step. The last assert of any derivation of length n > 1 must be of the form
P + Q

α
� P + Q, or P ||L Q

α
� (P ⊗ ||L (XQ)) + ((X P) ⊗ ||L Q), or P ||L Q

α
�

P ||L Q, or X
α
� P . In all cases the assert follows from Proposition 5.1 since P ,Q ∈

FTF(PPEPAk ,R≥0) by I.H. and (Xα P), (XαQ) ∈ FTF(PPEPAk ,R≥0) by definition.

C.8 Proof of Theorem 6.11

Theorem 6.11. RPEPAk is total and deterministic. �

Proof. By structural induction. The proof is similar to that of Theorem 6.3.

C.9 Proof of Theorem 6.12

Theorem 6.12. For all P,Q ∈ PPEPAk , α ∈ LPEPAk , and unique P ∈ FTF(PPEPAk ,R≥0)
such that P

α
�P the following holds: (P Q) = rt(nα)(P,Q) �

Proof. By induction of the length of the derivation for P
α
�P . The proof is similar to

that of Theorem 6.4.

D. PROOFS RELATED TO SECT. 7

D.1 Proof of Proposition 7.1

Proposition 7.1. For all P ∈ PS toCCS AA , α ∈ LS toCCS AA , and P ∈ TF(PS toCCS AA ,R≥0)
if P

α
� P can be derived using the set of rules consisting of rules (NIL) and (CHO)

of Figure 3, plus rules in Figure 9, and using one out of (PARAA-M) and (PARAA-*), then
P ∈ FTF(PS toCCS AA ,R≥0). �

Proof. By induction on the length of the derivation for P
α
� P . We prove only the

inductive step. The last assert of any derivation of length n > 1 must be of the form

—P + Q
α
� P + Q, or

—P | Q
α
� (P ⊗| (XQ)) + ((X P) ⊗| Q), or

—P | Q
δe

â
� (P ⊗| (XQ)) + ((X P) ⊗| Q) + Pi ⊗| Qo + Po ⊗| Qi, or

—P | Q
δe

â
� (P ⊗| (XQ)) + ((X P)⊗|Q) +Pi ⊗|Qo +Po ⊗|Qi (rule (PARAA-*) used), or

—P | Q
δe

â
� (P ⊗| (XQ)) + ((X P)⊗|Q) +Pi⊗|Qo ·

min{⊕Pi,⊕Qo}

⊕Pi·⊕Qo
+Po⊗|Qi ·

min{⊕Po,⊕Qi}

⊕Po·⊕Qi

(rule (PARAA-M) used).

In all cases the assert follows using Proposition 5.1 since P ,Pi,P0,Q,Qi,Qo are func-
tions in FTF(PS toCCS ,R≥0) by I.H. and (X P), (XQ) ∈ FTF(PStoCCS I ,R≥0) by defini-
tion.

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

A Uniform Definition of Stochastic Process Calculi · 45

D.2 Proof of Theorem 7.3

Theorem 7.3. Both R∗StoCCS AA
and RM

StoCCS AA
are total and deterministic.

Proof. By structural induction. The proof is similar to that of Theorem 6.3.

D.3 Proof of Theorem 7.4

Theorem 7.4. Both in the minimum rate and in the multiplicative approach, for all P,Q ∈
PStoCCS I , α ∈ LStoCCS I , and unique P ∈ FTF(PStoCCS I ,R≥0) such that P

α
�P the follow-

ing holds:

(P Q) =


rta(P,Q), if α = δe

a with a ∈ A ∪ Ā

rt〈a|ā〉(P,Q) + rt〈ā|a〉(P,Q), if α = δe
â with a ∈ A

�

Proof.

Minimum rate approach:
We prove only the inductive step for case P1 | P2, under the assumption α = δe

â with a ∈
A, the other cases being similar. By definition of the FuTS semantics of StoCCSI , the last

assert of the derivation is of the form P1 | P2
δe

â
� R, where

R = (P1 ⊗| (X P2)) + ((X P1) ⊗| P2) + P1i ⊗| P2o ·
min{⊕P1 i ,⊕P2o}
⊕P1 i ·⊕P2o

+ P1o ⊗| P2i ·
min{⊕P1o ,⊕P1 i}
⊕P1o ·⊕P2 i

with P1
δe

â
� P1, P1

δe
a
� P1i, P1

δe
ā
� P1o, P2

δe
â
� P2, P2

δe
a
� P2i, P2

δe
ā
� P2o.

We observe that if Q is not of the form Q1 | Q2 then R Q = 0. On the other hand, we
observe that the only transitions from P1 | P2 allowed by the SOS semantics of StoCCSI

are to terms of the form Q1 | Q2, so also rtα(P1 | P2,Q) = 0 if Q is not of the form Q1 | Q2.
Let us assume Q is of the form Q1 | Q2. There are several cases to be considered depending
to the fact that δe

â denotes synchronisations

(1) between P1 and P2 where
(a) P1 performs the input a and P2 performs the output ā, or
(b) P1 performs the output ā and P2 performs the input a, or

(2) within
(a) P1 alone, or
(b) P2 alone
and are inherited by P1 | P2.

We consider only the case of synchronisations between P1 and P2 where P1 performs the
input a and P2 performs the output ā, the other cases being similar or simpler. In this case,
function R reduces to P1i ⊗| P2o ·

min{⊕P1 i,⊕P2o}

⊕P1 i·⊕P2o
since this is the sub-term of R dealing

with such synchronisations between P1 and P2. We get the following derivation noting
that, under our assumptions, ⊕P1i · ⊕P2o , 0:

(P1i ⊗| P2o ·
min{⊕P1 i,⊕P2o}

⊕P1 i·⊕P2o
)(Q1 | Q2)

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

46 · De Nicola et Al.

= {Def. R1 ⊗| R2 ·
min{⊕R1,⊕R2}

⊕R1·⊕R2
in FTF(PS toCCS ,R≥0)}

(P1i Q1) · (P2o Q2) · min{⊕P1 i,⊕P2o}

⊕P1 i·⊕P2o

= { P1
δe

a
� P1i, P2

δe
ā
� P2o; I.H.}

rta(P1,Q1) · rtā(P2,Q2) · min{⊕P1 i,⊕P2o}

⊕P1 i·⊕P2o

= {SOS definition of StoCCSI ; Def. of rt〈a|ā〉 }

rt〈a|ā〉(P1 | P2,Q1 | Q2)

Moreover, the assumption that P1 performs the input a and P2 performs the output ā im-
plies rt〈ā|a〉(P1 | P2,Q1 | Q2) = 0 and this completes the proof.

Multiplicative rate approach
The proof is similar to that of the minimum rate case.

D.4 Proof of Proposition 7.5

Proposition 7.5. For all P ∈ PStoCCS AP , α ∈ LStoCCS AP , and P ∈ TF(PStoCCS AP ,R≥0), if
P

α
� P can be derived using the set of rules consisting of rules (NIL) and (CHO) of

Figure 3, rules (OUT1), (OUT2) and (PAR1) in Figure 9, rules (IN1P), (IN2P) in Figure 12
and rule (PAR2AP) of Figure 13, then P ∈ FTF(PStoCCS AP ,R≥0). �

Proof. Also in this case the assert can easily be proved by induction on the length of the
derivation for P

α
�P , using Proposition 5.1.

D.5 Proof of Theorem 7.7

Theorem 7.7. RStoCCS AP is total and deterministic. �

Proof. By induction on the structure. The proof is similar to that of Theorem 6.3.

D.6 Proof Theorem 7.8

Theorem 7.8. For all P,Q,R ∈ PStoCCS AP , (P | Q) | R ∼ P | (Q | R) �

Proof. The statement follows by proving that the following is a bisimulation inRStoCCS AP .

E = {〈P|(Q|R), (P|Q)|R〉|P,Q,R ∈ PStoCCS AP }

∪{〈(P|Q)|R, P|(Q|R)〉|P,Q,R ∈ PStoCCS AP }

∪{〈P|(Q|R), P|(Q|R)〉|P,Q,R ∈ PStoCCS AP }

∪{〈(P|Q)|R, (P|Q)|R〉|P,Q,R ∈ PStoCCS AP }

∪{〈P, P〉|P ∈ PStoCCS AP }

Indeed, if we prove that E is a bisimulation, we have that E ⊆∼. Moreover, for each
P,Q,R ∈ PStoCCS AP , by definition of E, we have that 〈(P | Q) | R, P | (Q | R)〉 ∈ E.
Therefore, for each P,Q,R ∈ PStoCCS AP , (P | Q) | R ∼ P | (Q | R).

To prove that E is a bisimulation, first we have to prove that E is an equivalence relation.
It is easy to prove that:

—for each P, 〈P, P〉 ∈ E;
—〈P,Q〉 ∈ E ⇒ 〈Q, P〉 ∈ E
ACM Computing Surveys - In Press, Vol. , No. , November 2012.

A Uniform Definition of Stochastic Process Calculi · 47

—〈P,Q〉 ∈ E ∧ 〈Q,R〉 ∈ E ⇒ 〈P,R〉 ∈ E

We have to prove that if 〈P,Q〉 ∈ E then for each equivalence class C of E:

P
α
�P =⇒ Q

α
� Q ∧ �P C = �Q C

We can distinguish three cases:

—P = Q
⇒ {RStoCCS AP is fully stochastic}

P
α
�P ∧ Q

α
� Q =⇒P = Q

⇒ {Def. (�PC)}

�P C = �Q C

—P = (P1|P2)|P3 and Q = P1|(P2|P3):
—α , δe

â

⇒ {Def.� where Pi
α
�Pi}

P = ((P1 ⊗| (XR≥0 P2)) + ((XR≥0 P1) ⊗| P2)) ⊗| (XR≥0 P3) + (XR≥0 (P1|P2)) ⊗| P3

⇒ {Def.� }

Q
α
�P1⊗|(XR≥0 (P1 | P2))+(XR≥0 P1)⊗|(P2⊗|(XR≥0 P3))+(XR≥0 P1)⊗|((XR≥0 P2)⊗|

P3)
⇒ {C = {X|(Y |Z), (X|Y)|Z}}

�P C =


P1(X) Y = P2 ∧ Z = P3
P2(Y) X = P1 ∧ Z = P3
P3(Z) X = P1 ∧ Y = P2

�Q C =


P1(X) Y = P2 ∧ Z = P3
P2(Y) X = P1 ∧ Z = P3
P3(Z) X = P1 ∧ Y = P2

⇒

�P C = �Q C

—α = δe
â

⇒ {Def.� }

P =

P1⊗| (XR≥0
P2)·⊕Pi

1
⊕Pi

1+⊕Pi
2

⊗|P3·(⊕P i
1+⊕P i

2)

⊕P i
1+⊕P i

2⊕P3
+

(XR≥0
P1)⊗|P2 ·⊕P

i
2

⊕Pi
1+⊕Pi

2
⊗|P3·(⊕P i

1+⊕P i
2)

⊕P i
1+⊕P i

2⊕P3
+

Pi
1⊗|P

o

⊕Pi
1+⊕Pi

2
⊗|(XR≥0 P3)·(⊕P i

1+⊕P i
2)

⊕P i
1+⊕P i

2⊕P3
+

Po
1⊗|P

i

⊕Pi
1+⊕Pi

2
⊗|(XR≥0 P3)·(⊕P i

1+⊕P i
2)

⊕P i
1+⊕P i

2+⊕Po
3

+

(XR≥0 (P1 |P2))⊗|P3·⊕P i
3

⊕P i
1+⊕P i

2+⊕P i
3

+
(P i

1⊗|(XR≥0 P2)+(XR≥0 P1)⊗|P i
2)⊗|Po

3

⊕P i
1+⊕P i

2⊕P
i
3

+

(Po
1⊗|(XR≥0 P2)+(XR≥0 P1)⊗|Po

2)⊗|P i
3

⊕P i
1+⊕P i

2⊕P
i
3

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

48 · De Nicola et Al.

=
((P1⊗|(XR≥0 P2))⊗|(XR≥0 P3))·⊕P i

1

⊕P i
1+⊕P i

2⊕P3
+

(((XR≥0 P1)⊗|P2)⊗|(XR≥0 P3))·⊕P i
2

⊕P i
1+⊕P i

2⊕P3
+

(P i
1⊗|P

o)⊗|(XR≥0 P3)
⊕P i

1+⊕P i
2⊕P3

+
(Po

1⊗|P
i)⊗|(XR≥0 P3)

⊕P i
1+⊕P i

2+⊕Po
3

+
(XR≥0 (P1 |P2))⊗|P3·⊕P i

3

⊕P i
1+⊕P i

2+⊕P i
3

+

(P i
1⊗|(XR≥0 P2)+(XR≥0 P1)⊗|P i

2)⊗|Po
3

⊕P i
1+⊕P i

2⊕P
i
3

+
(Po

1⊗|(XR≥0 P2)+(XR≥0 P1)⊗|Po
2)⊗|P i

3

⊕P i
1+⊕P i

2⊕P
i
3

=
((P1⊗|(XR≥0 P2))⊗|(XR≥0 P3))·⊕P i

1

⊕P i
1+⊕P i

2⊕P3
+

(((XR≥0 P1)⊗|P2)⊗|(XR≥0 P3))·⊕P i
2

⊕P i
1+⊕P i

2⊕P3
+

(P i
1⊗|P

o)⊗|(XR≥0 P3)
⊕P i

1+⊕P i
2⊕P3

+
(Po

1⊗|P
i)⊗|(XR≥0 P3)

⊕P i
1+⊕P i

2+⊕Po
3

+
(XR≥0 (P1 |P2))⊗|P3·⊕P i

3

⊕P i
1+⊕P i

2+⊕P i
3

+

(P i
1⊗|(XR≥0 P2))⊗|Po

3

⊕P i
1+⊕P i

2⊕P
i
3

+
((XR≥0 P1)⊗|P i

2)⊗|Po
3

⊕P i
1+⊕P i

2⊕P
i
3

+
(Po

1⊗|(XR≥0 P2))⊗|P i
3

⊕P i
1+⊕P i

2⊕P
i
3

+
((XR≥0 P1)⊗|Po

2)⊗|P i
3

⊕P i
1+⊕P i

2⊕P
i
3

where:

P j
δe

â
�P j, P j

δe
a
�P i

j, P j
δe

ā
�Po

j

⇒ {Def.� }

Q =
P1⊗|(XR≥0 (P2 |P3))·⊕P i

1

⊕P i
1+⊕P i

2⊕P3
+

(XR≥0 P1)⊗|(P2⊗|(XR≥0 P3))·⊕P i
2

⊕P i
1+⊕P i

2⊕P3
+

P i
1 |(P

o
|(XR≥0 P3))

⊕P i
1+⊕P i

2⊕P3
+

Po
1 |(P

i
|(XR≥0 P3))

⊕P i
1+⊕P i

2+⊕Po
3

+
(XR≥0 P1)⊗|((XR≥0 P2)⊗|P3)·⊕P i

3

⊕P i
1+⊕P i

2+⊕P i
3

+

P i
1 |((XR≥0 P2)⊗|Po

3)
⊕P i

1+⊕P i
2⊕P

i
3

+
(XR≥0 P1)⊗|(P i

2⊗|P
o
3)

⊕P i
1+⊕P i

2⊕P
i
3

+
Po

1⊗|((XR≥0 P2)⊗|P i
3)

⊕P i
1+⊕P i

2⊕P
i
3

+
(XR≥0 P1)⊗|(Po

2⊗|P
i
3)

⊕P i
1+⊕P i

2⊕P
i
3

⇒ {C = {X|(Y |Z), (X|Y)|Z}}

�P C = �Q C

—P = X|(Y |Z) and Q = (X|Y)|Z: follows like the previous one.

D.7 Proof Theorem 7.9

The semantics we considered in Sect. 7.1 can be modified to obtain associativity of the CCS
parallel composition. For this purpose we have to replace (PARAA-min) by the following:

P
δe
â
�P , P

δea
�Pi, P

δeā
�Po,Q

δe
â
�Q,Q

δea
�Qi,Q

δeā
�Qo

P|Q
δe
â
� (P⊗|(XQ))·ρP +((X P)⊗|Q)·ρQ +Pi⊗|Qo·ρ+Po⊗|Qi·ρ

where ρQ, ρP are the values used to recompute the rate of synchronizations occurring in P
and Q, while ρ is used to compute synchronization rates.

ρP =def
min{⊕Pi+⊕Qi,⊕Po+⊕Qo}

min{⊕Pi,⊕Po}
·

⊕Pi
⊕Pi+⊕Qi

·
⊕Po

⊕Po+⊕Qo

ρQ =def
min{⊕Pi+⊕Qi,⊕Po+⊕Qo}

min{⊕Qi,⊕Qo}
·

⊕Qi
⊕Pi+⊕Qi

·
⊕Qo

⊕Po+⊕Qo

ρ =def
min{⊕Pi+⊕Qi,⊕Po+⊕Qo}

(⊕Pi+⊕Qi)·(⊕Po+⊕Qo) ·
⊕Qi

⊕Pi+⊕Qi
·

⊕Qo
⊕Po+⊕Qo

The proof of the associativity theorem below proceeds like in the case of Theorem 7.8.
ACM Computing Surveys - In Press, Vol. , No. , November 2012.

A Uniform Definition of Stochastic Process Calculi · 49

Theorem 7.9. For all P,Q,R ∈ PStoCCS AA , (P | Q) | R ∼ P | (Q | R) �

E. PROOFS RELATED TO SECT. 8

E.1 Proof of Proposition 8.3

Proposition 8.3. For all P ∈ PIMLk , α ∈ LIMLk , and P ∈ TF(PIMLk ,R≥0] B), if P
α
�P

can be derived using the set consisting of rules (CHO) and (CNS) of Figure 3 and of the
rules of Figure 14, then the following holds: P ∈ FTF(PIMLk ,R≥0] B). �

Proof. By induction on the length of the derivation for P
α
�P . The proof is similar to

that of of Proposition 6.1.

E.2 Proof of Proposition 8.4

Proposition 8.4. For all P ∈ PIMLk , α ∈ LIMLk and P ∈ FTF(PIMLk ,R≥0] B) such that
P

α
�P can be derived using the set consisting of rules (CHO) and (CNS) of Figure 3 and

of the rules of Figure 14, then the following holds: (i) if α ∈ A then P ∈ FTF(PIMLk ,B);
(ii) if α = δe then P ∈ FTF(PIMLk ,R≥0). �

Proof. By induction on the length of the derivation for P
α
� P . Let n ≥ 1 be the

length of the derivation for proving P
α
� P .

Base case: Trivial since the only cases in which P
α
� P can be derived with a proof of

length 1 are those for inaction, rate-prefix and action-prefix. In all these cases the assert
easily follows from the relevant semantics rules (see Figure 14).

Inductive step: The last assert of any proof of length n > 1 must be of the form P +

Q
α
� P + Q, or P ||L Q

α
� (P ⊗α

||L
(XαQ)) + ((Xα P) ⊗α

||L
Q), or X

α
� P , or

P ||L Q
α
� P ⊗α

||L
Q. We show the proof only for the first two cases, the other being

simpler.

Case: P + Q
α
�P + Q

(i) if α ∈ A, from the definition of the FuTS semantics of IMLk we get P
α
�P , Q

α
� Q

and by the I.H., P ,Q ∈ FTF(PIMLk ,B) thus also P + Q ∈ FTF(PIMLk ,B) by definition
of +B and, consequently, of + over FTF(PIMLk ,B); (ii) if α = δe the proof is identical as
for case (i), but using R≥0 instead of B.

Case: P ||L Q
α
� (P ⊗α

||L
(XαQ)) + ((Xα P) ⊗α

||L
Q)

(i) Suppose α ∈ A. From the definition of the FuTS semantics of IMLk P
α
�P , Q

α
� Q,

and, by I.H., P ,Q ∈ FTF(PIMLk ,B). Moreover, also (XαQ), (Xα P) ∈ FTF(PIMLk ,B)
by definition of X, since α ∈ A. Using the closure properties of FTF(PIMLk ,B), and in
particular Proposition 5.1, we get the assert; (ii) if α = δe the proof is identical as for case
(i), but using R≥0 instead of B.

E.3 Proof of Theorem 8.6

Theorem 8.6. RIMLk is total and deterministic. �

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

50 · De Nicola et Al.

Proof. By induction on the structure. The proof is the similar to that of Theorem 6.3.

E.4 Proof of Theorem 8.7

Theorem 8.7. For all P,Q ∈ PIMLk , a ∈ A, and unique functions P ∈ FTF(PIMLk ,B)

and P ′ ∈ FTF(PIMLk ,R≥0) such that P
a
� P and P

δe

� P ′ the following holds: (i)
(P Q) = 1B if and only if P

a
→ Q; (ii) (P ′ Q) = rt(P,Q). �

Proof. Proof of part (i). For the sake of conciseness, we prove both the direct (⇒) and
the reverse (⇐) implication together. For the direct implication we proceed by induction
on the length of the derivation for FuTS semantics (P

a
� P), while we use induction on

the length of the derivation for the SOS (P
a
→ Q) for the reverse implication. Let n ≥ 1 be

the length of the derivation for proving P
a
� P (P

a
→ Q, respectively).

Base case: Trivial since the only case in which P
a
� P can be derived with a proof of

length 1 and (P Q) = 1B is a.Q
a
� P with P = [Q 7→ 1B]. But a.Q

a
→ Q in the SOS

definition of IMLk. On the other hand, the only case in which P
a
→ Q can be derived with

a proof of length 1 is when P = a.Q, in which case P
a
� [Q 7→ 1B].

Inductive step: The last assert of any proof of length n > 1 must be of the form P1 + P2
a
�

P1 + P2, or X
a
� P1, or P1 ||L P2

a
� (P1 ⊗

α
||L

(X a P2)) + ((X a P1) ⊗α
||L

P2), or

P1 ||L P2
a
� P1 ⊗

α
||L

P2 and P1 + P2
a
→ Q, or X

a
→ Q, or P1 ||L P2

a
→ Q (with

a < L), or P1 ||L P2
a
→ Q (with a ∈ L), respectively.

Case:


P1 + P2

a
�P1 + P2, for ⇒

P1 + P2
a
→ Q, for ⇐

(P1 + P2) Q = 1B
⇒
⇐ {Def. FuTS semantics of IMLk; Def. (P1 + P2)}

P1
a
�P1, P2

a
�P2, (P1 Q) = 1B or (P2 Q) = 1B

⇒ {I.H.}
⇐ {I.H.; Unicity of P1, P2}

P1
a
→ Q or P2

a
→ Q

⇒
⇐ {Def. SOS of IMLk}

P1 + P2
a
→ Q

Case:


X

a
� P1, X := P1, for ⇒

X
a
→ Q, X := P1, for ⇐

(P1 Q) = 1B
ACM Computing Surveys - In Press, Vol. , No. , November 2012.

A Uniform Definition of Stochastic Process Calculi · 51

⇒ {Def. FuTS semantics of IMLk}

⇐ {Logics}

P1
a
� P1, (P1 Q) = 1B

⇒ {I.H.}
⇐ {I.H.; Unicity of P1}

P1
a
→ Q

⇒
⇐ {Def. SOS of IMLk}

X
a
→ Q

Case:


P1 ||L P2

a
� (P1 ⊗

α
||L

(X a P2)) + ((X a P1) ⊗α
||L

P2), for ⇒

P1 ||L P2
a
→ Q, a < L, for ⇐

(P1 ⊗
α
||L

(X a P2)) + ((X a P1) ⊗α
||L

P2) Q = 1B

⇒ {Def. FuTS semantics of IMLk; Def. + and ⊗α
||L

over FTF(PIMLk ,B); Def. X}
⇐ {Def. + and ⊗α

||L
over FTF(PIMLk ,B); Def. X}

P1
a
�P1, P2

a
�P2, a < L,

Q = Q1 ||L P2 for some Q1 such that (P1 Q1) = 1B, or

Q = P1 ||L Q2 for some Q2 such that (P2 Q2) = 1B

⇒ {I.H.}
⇐ {I.H.; Unicity of P1, P2}

Q = Q1 ||L P2 for some Q1 such that P1
a
→ Q1, a < L or

Q = P1 ||L Q2 for some Q2 such that P2
a
→ Q2, a < L

⇒
⇐ {Def. SOS of IMLk}

P1 ||L P2
a
→ Q, a < L

Case:


P1 ||L P2

a
� P1 ||L P2, for ⇒

P1 ||L P2
a
→ Q, a ∈ L, for ⇐

(P1 ⊗
α
||L

P2) Q = 1B

⇒ {Def. FuTS semantics of IMLk; Def. ||L over FTF(PIMLk ,B)}

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

52 · De Nicola et Al.

⇐ {Def. ||L over FTF(PIMLk ,B)}

P1
a
�P1, P2

a
�P2, a ∈ L,

Q = Q1 ||L Q2 for some Q1,Q2 such that(P1 Q1) = 1B, (P2 Q2) = 1B

⇒ {I.H.}
⇐ {I.H.; Unicity of P1, P2}

Q = Q1 ||L Q2 for some Q1,Q2 such thatP1
a
→ Q1, P2

a
→ Q2, a ∈ L

⇒
⇐ {Def. SOS of IMLk}

P1 ||L P2
a
→ Q, a ∈ L

Proof of part (ii). We proceed by induction on the length of the derivation for P
δe

� P ′.

Let n ≥ 1 be the length of the derivation for proving P
δe

� P ′.

Base case: Trivial since the only case in which P
δe

� P ′ can be derived with a proof of

length 1 and (P ′ Q) , 0 is λ.Q
δe

� [Q 7→ λ] and rt(λ.Q,Q) = λ by the SOS definition of
IMLk and the definition of rt. In all other cases, (P ′ Q) = 0 and there are no transitions
P

λ
d Q, hence rt(P,Q) = 0 by definition.

Inductive step: The last assert of any proof of length n > 1 must be of the form P1 + P2
δe

�

P1 + P2, or X
δe

� P1, or P1 ||L P2
δe

� (P1 ||L (X δe P2)) + ((X δe P1) ||L P2).

Case: P1 + P2
δe

�P1 + P2

(P1 + P2) Q

= {Def. (P1 + P2)}

(P1 Q) + (P2 Q)

= {P1
δe

�P1, P2
δe

�P2; I.H.}

rt(P1,Q) + rt(P2,Q)

= {SOS definition of IMLk; Def. of rt}

rt(P1 + P2,Q)

Case: X
δe

�P1, X := P1

(P1 Q)
ACM Computing Surveys - In Press, Vol. , No. , November 2012.

A Uniform Definition of Stochastic Process Calculi · 53

= {P1
δe

�P1; I.H.}

rt(P1,Q)

= {SOS definition of IMLk; Def. of rt}

rt(X,Q)

Case: P1 ||L P2
δe

� (P1 ⊗
α
||L

(X δe P2)) + ((X δe P1) ⊗α
||L

P2)

We observe that, from the FuTS semantics of IMLk, if Q is neither of the form Q1 ||L P2,
nor of the form P1 ||L Q2 then ((P1 ⊗

α
||L

(X δe P2)) + ((X δe P1) ⊗α
||L

P2)) Q = 0. On the
other hand, we observe that the onlyd transitions allowed by the SOS definition of IMLk

are to terms of the form Q1 ||L P2 or P1 ||L Q2, so, also rt(P1 ||L P2,Q) = 0 if Q is
neither of the form Q1 ||L P2, nor of the form P1 ||L Q2. Let us assume, w.l.g., Q be of
the form Q1 ||L P2; we have to consider two cases: (a) Q1 , P1, and (b) Q1 = P1.

Case a):

((P1 ⊗
α
||L

(X δe P2)) + ((X δe P1) ⊗α
||L

P2)) Q1 ||L P2

= {Def. + over FTF(PIMLk ,R≥0)}

((P1 ⊗
α
||L

(X δe P2)) Q1 ||L P2) + (((X δe P1) ⊗α
||L

P2) Q1 ||L P2)

= {Def. ⊗α
||L

; Def. X}

(P1 Q1)

= {P1
δe

�P1; I.H.}

rt(P1,Q1)

= {SOS definition of IMLk; Def. of rt}

rt(P1 ||L P2,Q1 ||L P2)

Case b):

((P1 ⊗
α
||L

(X δe P2)) + ((X δe P1) ⊗α
||L

P2)) P1 ||L P2

= {Def. + over FTF(PIMLk ,R≥0)}

((P1 ||L (X δe P2)) P1 ||L P2) + (((X δe P1) ||L P2) P1 ||L P2)

= {Def. ⊗α
||L

; Def. X}

(P1 P1) + (P2 P2)

= {P1
δe

�P1; P2
δe

�P2 I.H.}
ACM Computing Surveys - In Press, Vol. , No. , November 2012.

54 · De Nicola et Al.

rt(P1,P1) + rt(P2,P2)

= {SOS definition of IMLk; Def. of rt}

rt(P1 ||L P2, P1 ||L P2)

The proof for the case in which Q is of the form P1 ||L Q2 is similar.

E.5 Proof of Proposition 8.9

Proposition 8.9. For all P ∈ PMAL, α ∈ LMAL, and P ∈ TF(PMAL,R≥0), if P
α
� P can

be derived using the set consisting of rules (CNS) of Fig. 3 and of the rules of Fig. 15, then
the following holds: P ∈ FTF(PMAL,R≥0). �

Proof. By induction on the length of the derivation for P
α
�P . The proof is similar to

that of Proposition 6.1.

E.6 Proof of Proposition 8.10

Proposition 8.10. For all P ∈ PMAL, α ∈ LMAL and P ∈ FTF(PMAL,R≥0) such that
P

α
� P can be derived using the set consisting of rules (CNS) of Fig. 3 and of the rules

of Fig. 15, if α ∈ ΠA then ⊕P ≤ 1. �.

Proof. The proof is easily done by induction on the length of the derivation for P
α
�

P , it is similar to that of Proposition 8.4, taking into account the fact that we have that
⊕[[{p1 :: P1 + . . . + ph :: Ph}]] ≤ 1 by construction, and is thus left out here.

E.7 Proof of Theorem 8.12

Theorem 8.12. RMAL is total. �

Proof. By induction on the structure. The proof is similar to that of Theorem 6.3.

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

A Uniform Definition of Stochastic Process Calculi · 55

REFERENCES

Aceto, L., Fokking, W., and Verhoef, C. 2001. Structural Operational Semantics. In Handbook of Process
Algebra. Elsevier, 197–292.

Aldini, A., Bernardo, M., and Corradini, F. 2010. A Process Algebraic Approach to Software Architecture
Design. Springer.

Bartels, F. 2002. GSOS for probabilistic transition systems (extened abstract). ENTCS 65, 1. Elsevier, 1–25.
Bartels, F., Sokolova, A., and de Vink, E. 2003. A hierarchy of probabilistic system types. ENTCS 82, 1.

Elsevier, 1–19.
Bergstra, J., Ponse, A., Smolka, S., Eds. 2001. Handbook of Process Algebra. Elsevier.
Bernardo, M. 2010. On the Expressiveness of Markovian Process Calculi with Durational and Durationless

Actions. In GANDALF 2010, EPTCS 25, 199–213.
Bernardo, M., De Nicola, R., and Loreti, M. 2010. Uniform labeled transition systems for nondeterministic,

probabilistic, and stochastic processes. In TGC 2010, LNCS 6084. Springer, 35–56.
Blom, S., Fokkink, W., Groote, J. F., van Langevelde, I., Lisser, B., and van de Pol, J. 2001. µcrl: A toolset for

analysing algebraic specifications. In CAV 2001, LNCS 2102. Springer, 250–254.
Bohnenkamp, H., D’Argenio, P., Hermanns, H., and Katoen, J.-P. 2006. MODEST: A Compositional Modeling

Formalism for Hard and Softly Timed Systems. IEEE TSE 32, 10. IEEE Computer Society Press, 812–830.
Brinksma, E. and Hermanns, H. 2001. Process Algebra and Markov Chains. In Lectures on Formal Methods

and Performance Analysis, LNCS 2090. Springer, 181–231.
Buchholz, P. 1994. Markivian Process Algebra: Composition and Equivalence. In Proceedings of PAPM ’94,

Erlangen, 11–30.
Cardelli, L. and Mardare, R. 2010. The Measurable Space of Stochastic Processes. In QEST 2010. IEEE

Computer Society Press, 171–180.
Dang Van Hung and Zhou Chaochen. 1999. Probabilistic Duration Calculus for Continuous Time. Formal

Aspects of Computing. The International Journal of Formal Methods. 11. Springer, 21–44.
De Nicola, R., Katoen, J.-P., Latella, D., Loreti, M., and Massink, M. 2006. Klaim and its Stochastic Se-

mantics. Technical Report 6, Dipartimento di Sistemi e Informatica, Università di Firenze. (available at
http://rap.dsi.unifi.it/˜loreti/papers/TR062006.pdf).

De Nicola, R., Latella, D., Loreti, M., and Massink, M. 2009a. MarCaSPiS: a Markovian Extension of a
Calculus for Services. In SOS 2008, ENTCS 229. Elsevier, 11–26.

De Nicola, R., Latella, D., Loreti, M., andMassink, M. 2009b. On a Uniform Framework for the Definition of
Stochastic Process Languages. In FMICS 2009, LNCS 5825. Springer, 9–25.

De Nicola, R., Latella, D., Loreti, M., and Massink, M. 2009c. Rate-based Transition Systems for Stochastic
Process Calculi. In Automata, Languages and Programming. Part II, LNCS 5556. Springer, 435–446.

De Nicola, R., Latella, D., andMassink, M. 2005. Formal modeling and quantitative analysis of KLAIM-based
mobile systems. In SAC 2005. ACM, 428–435.

Deng, Y., van Glabbeek, R., Hennessy, M., Morgan, C., and Zhang, C. 2007. Characterising testing preorders
for finite probabilistic processes. In LICS. IEEE, Computer Society Press, 313–325.

Eisentraut, C., Hermanns, H., and Zhang, L. 2010. On Probabilistic Automata in Continuous Time. In IEEE
Symposium on Logic in Computer Science. IEEE, Computer Society Press, 342–351.

Fahrenberg, U., Thrane, C., and Larsen, K. 2011. Distances for weighted transition systems: Games and prop-
erties. In QAPL 2011 EPTCS 57, 134–147.
van Glabbeek, R. 2001. The Linear Time – Branching Time Spectrum I. In Handbook of Process Algebra.

Elsevier, 3–99.
Gotz, N., Herzog, U., and Rettelbach, M. 1993. Multiprocessor and distributed systems design: The integra-

tion of functional specification and performance analysis using stochastic process algebras. In Performance
Evaluation of Computer and Communication Systems. LNCS 729. Springer, 121-146.

Hermanns, H. 2002. Interactive Markov Chains. LNCS 2428. Springer.
Hermanns, H., Herzog, U., and Katoen, J.-P. 2002. Process algebra for performance evaluation. Theoretical

Computer Science 274, 1-2. Elsevier, 43–87.
Hermanns, H., Herzog, U., and Mertsiotakis, V. 1998. Stochastic process algebras - between LOTOS and

Markov chains. Computer Networks and ISDN Systems 30 North-Holland, 901–924.

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

56 · De Nicola et Al.

Hermanns, H. and Johr, S. 2007. Uniformity by Construction in the Analysis of Nondeterministic Stochastic
Systems. In DSN 2007. IEEE Computer Society Press, 718–728.

Hermanns, H. and Katoen, J. 2010. The How and Why of Interactive Markov Chains. In FMCO. LNCS 6286.
Springer, 311–337.

Hillston, J. 1994. The nature of synchronisation. In PAPM ’94. 51–70. Erlangen, Germany - ISSN 0344-3515.
Hillston, J. 1996. A compositional approach to performance modelling. Distinguished Dissertation in Computer

Science. Cambridge University Press.
Hojjat, H., Reza, Mousavi, M., and Sirjani, M. 2008. A framework for performance evaluation and functional

verification in stochastic process algebras. In SAC 2008. ACM, 339–346
Klin, B. 2009. Structural Operational Semantics for Weighted Transition Systems. In Semantics and Algebraic

Specification. LNCS 5700. Springer-Verlag, 121–139.
Klin, B. and Sassone, V. 2008. Structural Operational Semantics for Stochastic Process Calculi. In FoSSaCS

2008. LNCS 4962. Springer-Verlag, 428–442.
Knast, R. 1969. Continuous-Time Probabilistic Automata. Information and Control 15. Elsevier, 335–352.
Latella, D., Massink, M., and de Vink. 2012. Bisimulation of Labeled State-to-Function Transition Systems of

Stochastic Process Languages. In ACCAT 2012. EPTCS 93, 23–43.
Lijun Zhang, Hermanns, H., Eisenbrand, F., and Jansen, D. 2008. Flow Faster: Efficient Decision Algorithms

For Probabilistic Simulations. Logical Methods in Computer Science 4, 6, 1–43.
Milner, R. 1989. Communication and Concurrency. Series in Computer Science. Prentice Hall.
Neuts, M. 1981. Matrix-geometric Solutions in Stochastic Models—An Algorithmic Approach. The Johns Hop-

kins University Press, Baltimore.
Plotkin, G. D. 2004. A structural approach to operational semantics. J. Log. Algebr. Program. 60-61. Elsevier,

17–139.
Priami, C. 1995. Stochastic π-Calculus. The Computer Journal 38, 7. Oxford University Press, 578–589.
Segala, R. 1995. Modeling and verification of randomized distributed real-time systems. Ph.D Thesis, MIT.
Sokolova, A. and de Vink, E. 2004. Probabilistic Automata: System Types, Parallel Composition and Compari-

son. In Validation of Stochastic Systems. A Guide to Current Research. LNCS 2925. Springer, 1–43.
Timmer, M., Katoen, J-P., van de Pol, J., and Stoelinga, M. 2012. Efficient Modelling and Generation of Markov

Automata. In CONCUR 2012. LNCS 7454. Springer-Verlag, 364–379.

ACM Computing Surveys - In Press, Vol. , No. , November 2012.

2012 © IMT Institute for Advanced Studies, Lucca

Piazza San ponziano 6, 5100 Lucca, Italy. www.imtlucca.it

