
State Space c-Reductions of Concurrent Systems
in Rewriting Logic ?

Alberto Lluch Lafuente1, José Meseguer2, and Andrea Vandin1

1 IMT Institute for Advanced Studies Lucca, Italy
2 University of Illinois in Urbana-Champaign, USA

Abstract. We present c-reductions, a simple, flexible and very general
state space reduction technique that exploits an equivalence relation
on states that is a bisimulation. Reduction is achieved by a canonizer
function, which maps each state into a not necessarily unique canonical
representative of its equivalence class. The approach contains symmetry
reduction and name reuse and name abstraction as special cases, and
exploits the expressiveness of rewriting logic and its realization in Maude
to automate c-reductions and to seamlessly integrate model checking and
the discharging of correctness proof obligations. The performance of the
approach has been validated over a set of representative case studies.

1 Introduction

Taming state space explosion is one of the key challenges for effective model
checking analysis. Bisimulation-based state space reductions are particularly
attractive, because they never generate spurious behaviors. This is because
temporal logic properties are preserved by bisimulations. Therefore, an LTL,
CTL, or CTL∗ formula holds on a bisimilar reduced system iff it holds in the
original system. A particular example are symmetry reductions which have
been extensively studied [1] and are used in model checkers (from the seminal
works on Murphi to extensions of Spin, Uppaal, Prism, etc.) and other
verification tools such as SAT solvers or planners. Developing and applying
such state space reduction techniques is still a challenging task: (i) automatic
detection of system regularities like symmetries is not trivial and thus often
delegated to the system designer; (ii) their exploitation is sometimes done by
enriching the system description language (e.g. scalarset datatypes in [2, 3]), so
that the user is required to learn new primitives; (iii) the implementation of
state space reduction techniques has to be combined (both theoretically and
practically) with the rest of the techniques and algorithms implemented in the
model checker, and often this integration effort has to be repeated for every
new version, improvement or technique; and (iv) checking correctness of the
reductions is not easy and requires reasoning techniques (e.g. theorem proving)
that may not be integrated in the model checking framework, or part of the

? Work supported by NSF Grant CCF 09-05584, AFOSR Grant FA8750-11-2-0084 and
the EU Project ASCENS.

2 A. Lluch Lafuente, José Meseguer, A. Vandin

user’s skills. Indeed, problem (iv) means that in order to correctly model check a
formula in a reduced system it must be a correct reduction of the original system,
which requires discharging proof obligations. The problem, however, is that most
model checkers lack theorem proving support (within the same framework) for
discharging such proof obligations, so that the checking task is usually left to the
user and may never be done, decreasing the confidence that can be placed on the
verification.

Research Questions. In addressing problems (i)–(iv) above, our work asks
and provides answers to the following research questions: (1) Can symmetry
reductions be generalized to reductions requiring only that the bisimulation is
an equivalence relation? (2) Can model checking support for such bisimulation-
based reductions be provided in a way that does not require any changes to
the underlying model checker, yet with high performance? (3) Can the system
description language be kept likewise unchanged? (4) Can the specifications of
reduced systems be automatically generated from those of the original systems?
(5) Can model checking and theorem proving be seamlessly integrated for such
reductions, so that correctness proof obligations are explicitly generated and can
be semi-automatically discharged by appropriate tools?

Our Contributions. We answer question (1) in the affirmative by proposing the
notion of c-reduction, based on the idea of providing a canonizer function that
computes a not-necessarily unique representative of the equivalence class of states
defined by the bisimulation. This notion is quite flexible, since unique canonical
representatives, although maximally space-efficient, can be time-inefficient. Fur-
thermore, it is fully general : it subsumes various reduction techniques such as
symmetry reduction, name reuse and name abstraction; and it can be applied to
any Kripke structure. Questions (2) and (3) are answered in the affirmative: no
such changes are needed (moreover, in [8] we report on performance experiments
showing that c-reductions can achieve drastic state space reductions). Question
(5) is answered by proposing rewriting logic [4] as an efficiently executable logical
framework supported by a high-performance tool (Maude [5]) and having a
formal tool environment where both LTL model checking and the discharging
of correctness proof obligations for c-reductions are seamlessly integrated and
partially automated. In fact, our answer to question (5) takes the form of a
formal methodology, which breaks proofs of correctness into smaller, manageable
proof subtasks. Many of the steps in our methodology apply to any c-reduction,
but some of them are directly tailored to symmetry reductions. As we gain
more experience, we plan to extend all steps of our methodology to arbitrary
c-reductions. Question (4) is answered in our current prototype for a very wide
class of concurrent systems, namely, object-based concurrent systems, and takes
the form of a theory transformation that automatically maps the original system
into the desired c-reduction of it.

We have evaluated our approach over a set of examples by considering the ease
of defining reduction strategies, the effectiveness of the correctness checks, and
the performance of the resulting reductions. Compared to previous work, we have
observed performance gains in some cases (including previous implementations

State Space c-Reductions of Concurrent Systems in Rewriting Logic 3

of symmetry reductions in Maude [6]), and a great flexibility in the definition
of reductions, which allows us to subsume a wide range of reductions including
permutation and rotation symmetries, name reuse and name abstraction, which
have interesting applications (e.g. implementation of the operational semantics
of languages with dynamic features such as resource allocation). The usefulness
of our proof methodology has also been evaluated through a case study. A
preliminary version of our tool is available for download [7].

Synopsis. Sect. 2 offers the necessary background. Sect. 3 presents c-reductions
in a generic way, focusing on Kripke structures. Sect. 4 describes the realization
of c-reductions in rewriting logic, highlighting the theoretical results, and the
reasoning and verification mechanisms and tools underlying our methodology for
specifying and verifying c-reductions. Sect. 5 covers related work and conclusions.3

2 Preliminaries

We will use a simple running example of a banking system4 of concurrent objects
of the same class (accounts) having a natural number as attribute (their balance),
and body-less messages (one dollar transfers) for them. The behavior of objects
is governed by a simple rule: a message m for an object i can be consumed by
object i to increment its balance by one. The system exhibits a clear symmetry:
all objects are instances of the same class and have the same behaviour.

Systems like this (and of course more sophisticated ones) can be easily
specificied as theories of rewriting logic [4], which can be specified as Maude [5]
modules to be executed and analyzed within the Maude framework.

Definition 1 (rewrite theory). A rewrite theory M is a tuple M = (Σ,E ∪
A,R, φ) where Σ is a signature, specifying the basic syntax (function symbols) and
type infrastructure (sorts, kinds and subsorting) for terms, i.e. state descriptions;
E is a set of (possibly conditional) equations, which induce equivalence classes of
terms (and are used to specify functions), and (possibly conditional) membership
predicates, which refine the typing information; A is a set of axioms which also
induce equivalence classes of terms, i.e., equational axioms describing structural
equivalences between terms, like associativity and commutativity; R is a set of
(possibly conditional) non-equational rules, which specify the local concurrent
transitions in a system whose states are E ∪ A-equivalence classes of ground
Σ-terms; and where φ : Σ → Pfin(N) is a frozenness map, assigning to each
function symbol f of arity n a subset φ(f) ⊆ {1..n} of its frozen argument
positions, i.e. positions under which rewriting with rules in R is forbidden.

In our example we can define a theory (a Maude module) BANK whose signature
Σ includes sorts for messages (Message), objects (Object), their identifiers and

3 Interested readers are referred to the appendix which includes complementary material:
the formal proofs (Sect. A), a performance evaluation with literature benchmark
(Sect. B), and a full description of our case study (Sect. C,D).

4 Indeed, it is a simplification of the model of a bank account system described in [5].

4 A. Lluch Lafuente, José Meseguer, A. Vandin

attributes as natural numbers (Nat), configurations (Configuration) and states
(State), and operators that allow us to represent an object i with attribute x

as a term < i | x >, a message for object i as a term credit(i), an empty
configuration (of objects and messages) by none, and the multiset union of
configurations by juxtaposition, obeying associativity and commutativity as
axioms. The operator { } wraps an entire configuration c as a state {c}. Rules
rl { < i | x > credit(i) c1 } => { < i | s(x) > c1} , and rl { < i |

x > credit(i) } => { < i | s(x) > } model the above described behavior
of objects. Informally, one of these rules applies to states containing an object <
i | x >, a message credit(i) for it, and (possibly) a subconfiguration c15. If
such a match is found, the state can be replaced by the term on the right-hand
side of the rule (after applying the substitution of the match), resulting in a
state without the message and where object i increments its balance with the
successor operator s.

For the sake of simplicity, we assume that the system under study is described
by a rewrite theory M = (Σ,E ∪ A,R, φ) whose rules are “topmost” for a
designated kind [State] of states. We also assume that an operator { } is used
to enclose states so that all rules in R have that operator as their top operator in
their left-hand sides. These assumptions are already quite general: they can cover,
for example, object-based concurent systems. We further assume that M has
good executability properties, i.e., that E is sufficient complete, (ground) confluent
and terminating modulo A (that is, that the equational part correctly defines
functions), and R is coherent with E modulo A [5] (that is, that applying equations
to evaluate functions does not interfere with the application of the rules that
specify system transitions). Moreover, unless we state the contrary, all extensions
of M that we shall define will be required to be ground confluent, ground
terminating, and sufficiently complete w.r.t. the same signature of constructors
as M. Fortunately, the standard Maude tools offer automatization support for
checking such properties. Our running example satisfies all these conditions.

We consider the well-known semantic domain of Kripke structures for rewrite
theories, suitable for state space exploration problems like model checking.

Definition 2 (Kripke structure). A Kripke structure K is a tuple K = (S,→,
L,AP) such that S is a set of states, → ⊆ S × S is a transition relation between
states, and L : S → 2AP is a labelling function mapping states into sets of atomic
propositions AP (i.e. observations on states).

The Kripke semantics of a rewrite theory has State-sorted terms as states
and one-step rewrites between State-sorted terms as transitions. The labelling
function is defined by Boolean predicates specified equationally in the rewrite
theory. As proved in [9], any computable Kripke structure, even an infinite-
state one, can be obtained from an executable rewrite theory using only a finite
signature Σ, and finite sets E of equations, A of axioms and R of rules.

5 The second rule is needed since we treat the fact that none is an identity for union
equationally rather than axiomatically.

State Space c-Reductions of Concurrent Systems in Rewriting Logic 5

Definition 3 (Kripke semantics of rewrite theories). Let M = (Σ,E ∪
A,R, φ) be a rewrite theory with a designated state sort State, and a set AP ∈ Σ
of Boolean state predicates equationally defined in E. The Kripke structure
associated to M is KM = (TState/E∪A,→, L,AP) such that TState/E∪A are all
State-sorted states, → is defined as {[u] → [v] | M ` u →1

R,State v} (i.e.
transitions are one-step rewrites between E ∪ A equivalence classes of State-
terms in M), and L is such that p ∈ L(s) iff p(s) =E∪A true.

We will consider bisimulation as the key semantic equivalence.

Definition 4 (bisimulation). Let K = (SK ,→K , LK , APK), H = (SH ,→H

, LH , APH) be two Kripke structures, and let ∼ ⊆ SK ×SH be a relation between
SK and SH . We say that ∼ is a bisimulation between K and H iff for each two
states s ∈ SK and s′ ∈ SH such that s ∼ s′ we have that: (i) LK(s) = LH(s′);
(ii) s →K r implies that there is a state r′ s.t. s′ →H r′ and r ∼ r′; and (iii)
s′ →H r′ implies that there is a state r s.t. s→K r and r ∼ r′.

The notion of bisimulation can be lifted to rewrite theories in the obvious
way. We shall focus on bisimulations such that the relation ∼ is an equivalence
relation, which includes the case of bisimulations induced by symmetries, i.e.
when two states are bisimilar if they belong to the same class of symmetric states.

For instance, suppose that the initial state of our example is {< 0 | 0 > < 1

| 0 > credit(0) credit(1)}. We have then two possible transitions (given by
the application of the rules governing the system), leading respectively to states:
{< 0 | 1 > < 1 | 0 > credit(1)} and {< 0 | 0 > < 1 | 1 > credit(0)}.
These two states are syntactically different but they are symmetric, i.e. equal up
to the permutation of object identifiers.

Indeed, equivalence classes of symmetric states can be conveniently defined as
the orbits of a group action (permutations in our example), which yield symmetry
reductions as a special case of our approach. We hence recall here some basic
notions about groups and group actions.

Definition 5 (group basics). A group is a tuple G = (G, •, e, ()−1) where G
is a set of elements, • : G×G→ G is a binary associative operation, e ∈ G is
an identity (i.e. ∀f ∈ G.f • e = e • f = f), and ()−1 is an inverse operator (i.e.
∀f ∈ G.f • f−1 = f−1 • f = e).

Let G be a group and H ⊆ G be a subset of G. The group generated by H
denoted 〈H〉 is defined as the closure of H under the inverse and product operators
()−1 and • of G. In general 〈H〉 will be a subgroup of G, but if 〈H〉 coincides
with G, then H is said to generate G and its elements are called generators.

Let G be a group and A be a set. An action of G on A is a monoid homo-
morphism J·K : G → [A → A], that is, Jf • gK = JfK ◦ JgK, where f ◦ g denotes
function composition in (A→ A), and JeK = idA, with idA the identity on A.

Notable examples are permutation and rotation groups, which capture typical
symmetries introduced by process replication in concurrent systems. Generators
define groups in a concise manner, e.g. transpositions and single rotations for

6 A. Lluch Lafuente, José Meseguer, A. Vandin

permutation and rotation groups, respectively. The action of a group on the
states of a Kripke structure implicitly defines an equivalence relation.

Definition 6 (equivalence induced by a group action). Let S be a set of
states, G be a group and J·K be the action of G on S. Then the equivalence relation
∼G induced by G on S is defined by: s ∼G s′ ⇔ ∃f ∈ G.JfK(s) = s′.

Group actions can be defined in rewriting logic with equations of the form
[[f]](t) = t’ where f denotes a group element (typically a generator) and t,
t’ are State-sorted terms. For instance, in our running example, the application
of object identifier transpositions i<->j can be defined (by structural induction)
with the equations:

eq [teq1] : [[i<->j]]({c1}) = {[[i<->j]](c1)} .

eq [teq2] : [[i<->j]](none) = none .

eq [teq3] : [[i<->j]](c1 c2) = ([[i<->j]](c1)) ([[i<->j]](c2)) .

eq [teq4] : [[i<->j]](< k | x >) = < [[i<->j]](k) | x > .

eq [teq5] : [[i<->j]](credit(k)) = credit([[i<->j]](k)) .

eq [teq6] : [[i<->j]](i) = j .

ceq [teq7] : [[i<->j]](k) = k if (i != k) /\ (j != k) .

For example, the unconditional (eq) rule teq 4 defines the application of
a transposition [[i<->j]] to an object (< k | x >) as the object obtained
by transposing its identifier. Equations teq6 and teq7 take care of transposing
identifiers. A symmetric version of teq6 is not needed since <-> is commutative.
Equation teq7 is conditional (ceq): it applies when teq6 is not applicable.

3 C-Reductions for Kripke Structures

We introduce the idea of canonical reductions, abbreviated c-reductions as a
generic means to reduce a Kripke structure K by exploiting some equivalence
relation ∼ on the states of K which is also a bisimulation on K (i.e. between
K and itself). In Sect. 4 we will explain how c-reductions are specified, proved
correct, and used for model checking in rewriting logic.

We start by defining canonizer functions, which are used to compute for a
given state a (not necessarily unique) canonical representative of its equivalence
class, modulo some equivalence relation which is also a bisimulation (e.g. a
canonical permutation of the identifiers of processes with identical behavior).

Definition 7 (canonizer functions). Let K = (S,→, L,AP) be a Kripke
structure, and let ∼ ⊆ S × S be a an equivalence relation which is a bisimulation
on K. A function c : S → S is a ∼-canonizer (resp. strong ∼-canonizer) iff for
each s ∈ S we have s ∼ c(s) (resp. s ∼ c(s), and s ∼ s′ → c(s) = c(s′)).

Canonizer functions are used to compute smaller but semantically equivalent
(i.e. bisimilar) Kripke structures by applying canonizers after each transition.
Strong canonizers provide unique representatives for the equivalence classes of
states and, hence, more drastic space reductions. That is, for two different but

State Space c-Reductions of Concurrent Systems in Rewriting Logic 7

equivalent states s ∼ s′ they provide the same canonical representative (i.e.
c(s) = c(s′)). Typical examples of strong canonizers for equivalence classes are
functions based on enumeration strategies [10] which generate the complete
set of states of the equivalence class and then apply some function over it (e.g.
based on a total ordering of the states). For instance, in our running example,
an enumeration canonizer just generates all states that result from permuting
(symmetric) processes in all possible ways and then selects one according to some
total order (e.g. the lexicographic order of the description of states). In particular,
for a state {< 0 | 1 > < 1 | 0 > credit(1)} the enumeration will produce
its whole orbit: { {< 0 | 1 > < 1 | 0 > credit(1)}, {< 0 | 0 > < 1 | 1 >

credit(0)}}. Then the canonizer would assign the least state of the set according
to some total order, e.g. “identifier first, balance second” which would provide {<
0 | 0 > < 1 | 1 > credit(0)} as representative. Canonizers can be obtained
in more efficient and smarter ways as shown in Sect. 4.4, e.g. with local search
strategies [10] that repeatedly apply transpositions until the least state is reached.
Instead, a non-strong (or weak) canonizer can provide different representatives
for equivalent states. That is, it might be the case that c(s) 6= c(s′) even though
s ∼ s′. Weak canonizers provide weaker state space reductions, but they often
enjoy advantages over strong canonizers: in some cases they are easier to be
defined and analyzed, and their computation can be much more efficient in terms
of runtime cost. Such heuristic canonizers can be found for instance in [11, 3],
where the rough idea is to consider an ordering of the states that only depends
on part of the state description. The resulting ordering relation is partial and the
representative of a state is computed as one of the least states of the ordering.

The reduction of the state space is obtained by applying the canonizer to
states after a transition. This is what we call a c-reduction.

Definition 8 (c-reduction of a Kripke structure). Let K = (S,→, L,AP)
be a Kripke structure, and let c : S → S be a ∼-canonizer function for some
equivalence relation ∼ ∈ S × S which is a bisimulation on K. We call the Kripke
structure K/c = (S, (→; c), L,AP) the c-reduction of K, where the composed
transition relation →; c is defined by →; c = {(s, c(r)) ∈ S2 | s→ r}.

An important result is then that a c-reduction is bisimulation preserving.

Theorem 1 (∼-preservation). Let K = (S,→, L,AP) be a Kripke structure,
let ∼ be an equivalence relation on S that is a bisimulation on K, and let c be a
∼-canonizer function. Then ∼ is a bisimulation relation between K and K/c.

4 Correct c-Reductions in Rewriting Logic

We now describe a methodology for specifying, proving correct, and analyzing
c-reductions in rewriting logic. In this methodology, correctness proofs and model
checking verification are supported by tools in the Maude formal environment
such as the Maude LTL Model Checker [12], Invariant Analyzer [13], Inductive
Theorem Prover [14] and Church Rosser and Coherence Checker [15].

8 A. Lluch Lafuente, José Meseguer, A. Vandin

M.E

�,s�
�

(i)

��

M.R

�
(v) 44

jj

(iii)
**

M.AP

z	
�

ff

(ii) &&

M+G

x�

�
aa

(iv)

||

M/G

M oo (vi) //M/c M+ cjt

Fig. 1. Modules and steps.

We assume that there is some regular-
ity inM that we try to exploit by defining
an equivalence (bisimulation) relation ∼
on states to ease the analysis of M. We
also assume that the specification M sat-
isfies the assumptions in Sect. 2 and is
conveniently structured (see Fig. 1) into
a core equational part (M.E), and its ex-
tension with state predicate functions that
define the atomic propositions (M.AP)
and behavioral rules (M.R). Such modu-
lar structure is very natural and easy to achieve, and facilitates our methodology.
Fig. 1 schematizes our methodology by identifying the main theories (or mod-
ules), their incremental construction via extensions (triple arrows) or refactoring
(dashed arrows), and the modules involved in each step (dotted arrows). In
particular, our methodology consists in the following steps: (i) specify and verify
the equivalence relation ∼; when the equivalence ∼G is induced by a group G,
specify the group action that induces ∼G in a moduleM+G and verify that it is
indeed a group action (Sect. 4.1) which ensures ∼G to be an equivalence relation;
(ii) verify that ∼ preserves the state predicates AP (Sect. 4.2) by analyzing their
invariance under an auxiliary theoryM/G that models group actions; (iii) verify
that ∼ is a bisimulation (Sect. 4.3) by checking a coherence-like property between
the rules ofM.R and those ofM/G; (iv) define a canonizer c in a moduleM+c

and show it to be a ∼-canonizer (Sect. 4.4); (v) build the c-reduction M/c of
M (Sect. 4.5), and (vi) use M/c for model checking analysis purposes. Our
methology then ensures that any CTL* property ϕ holds on M/c if and only if
it holds on M, sinceM/c has been proved to be a correct c-reduction ofM, and
therefore bisimilar to M.

Some of the above steps are independent or apply at different levels of
abstraction, so that they act as building blocks to be re-used as needed. For
instance, verifying a c-reduction strategy does not require performing all the
verification steps if it is based on a state equivalence that has been already
proven to be correct. In practice, bisimulation relations and their canonizers
need not be defined and proven correct for every system, as there will be classes
of systems for which they can be specified once and for all. In such cases, one
can define c-reductions as theory transformations for wide classes of examples
corresponding, for instance, to certain permutation groups, or to other useful
equivalence relations besides the symmetry reduction case. In Maude this can be
done by exploiting reflection, so that the c-reduction is automatized as a function
at the metalevel, possibly after checking some proof obligations. Our current
prototype [7] applies some generic c-reductions to any object-based module.

Even though in some of the steps of our methodology we focus on c-reductions
based on group actions, the c-reduction technique, in particular steps (v-vi),
is more general and allows arbitrary canonizers. We focus on group actions to
illustrate the ideas and the semi-automatic correctness checks (steps (i)-(iv)) with

State Space c-Reductions of Concurrent Systems in Rewriting Logic 9

a simple example. More substantial examples can be found in [7]; several of them
are mentioned, together with detailed performance experiments and comparisons
with other tools and methods in Sect. B.

4.1 Specifying and Verifying Group Actions

We give a simple method to equationally specify group actions and verify their
correctness in terms of a set H of generators only, without having to explicitly
define the group G generated by H. The key ideas, explained in detail in Sect. E,
consist on: (a) “uncurrying” the desired group action function J·K : G −→
(State→ State) as a function J·K : G× State −→ State; (b) choosing a subset
H ⊆ G that generates G as a monoid; and (c) specifying the inverse i(g) = g−1

of each generator g ∈ H as a product of generators by a function i : H → H∗,
where H∗ is the free monoid on the alphabet H.

The trick is that, after equationally specifying steps (b) and (c), G needs
not be explicitly defined : it is enough to specify the action of the generators
by a function J·K : H × State → State, which extends uniquely to a monoid
action J·K : H∗ × State→ State satisfying for each u ∈ State, g ∈ H, w ∈ H∗
the recursive equations: JεKu = u and JwgKu = JwK(JgKu). Then it is easy to
prove (see Sect. E) that the only possible group action J·K : G× State→ State

extending J·K : H × State→ State exists if and only if the following equalities
hold for each generator g and each state u: JgK(Jg−1K(u)) = Jg−1K(JgK(u)) = u.
Then G needs not be explicitly specified, because we can safely replace G by
the group H∗/i = H∗/{g · i(g) = ε | g ∈ H}, so that ∼G=∼H∗/i, and the group
action J·K : G× State→ State can be replaced by the simpler monoid action
J·K : H∗ × State→ State.

The following definition captures (a) and (b), where we assume that H has
been equationally specified by a new sort H, and then H∗ has been specified by
instantiating a parameterized module List [X] to the instance List [H].

Definition 9 (group pre-action specification). Let M = (Σ,E ∪ A,R, φ)
be the rewrite theory under study with designated State sort. A group pre-action
on M is an equational theory M+G = (Σ ∪ΣG, E ∪ EG ∪A, ∅, φ) which is a
protecting extension of the equational part ofM,M.E, where ΣG and EG extend
the equational theoryM.E with a sort H, a sort H∗ of lists of elements in H (i.e.
the module List [H] is protected in M+G), a function J·K : H × State→ State

recursively extended to a monoid action J·K : H∗ × State→ State as explained
above, and a function i : H → H∗.

The proof obligations that need to be verified to show that a group pre-action
is a group action are as follows:

Proposition 1 (correctness criteria for group actions). Let M + G =
(Σ ∪ΣG, E ∪EG ∪A) be a group pre-action on M. Then in the inital algebra of
M+G the function J·K : H×State→ State uniquely extends to a group action
of H∗/i on State if and only if the following two equations hold inductively
in such an initial algebra: (i) (∀g : H,u : State) JgK(Jg−1K(u)) = u, and (ii)
(∀g : H,u : State) Jg−1K(JgK(u)) = u.

10 A. Lluch Lafuente, José Meseguer, A. Vandin

Using the above implicit definition method and checking the correctness
criteria in the above proposition one can equationally define group actions and
prove their correctness by inductive equational reasoning. In particular, this
can be done for any group action of interest, defining symmetries between
states, including the full and rotation symmetries that have been identified and
thoroughly studied in the past. Note that sometimes (e.g. transpositions) i(g) = g,
so that i needs not be defined explicitly, because it is the identity function. The
action function J·K : H × State→ State can be very easily specified in Maude,
by topmost equations relating two State-sorted terms of the form [[g]]({t})
= {t’}, for (patterns of) elements g ∈ H.

Inductively showing that the equations (i) and (ii) in Proposition 1 are
satisfied can usually be done easily by structural induction on the algebraic
structure of states. For instance, to check that in our running example full
symmetries yield a group action, all we have to do is to prove the equality
Ji↔ jK(Ji↔ jK({t})) = {t}, i.e. that applying the same transposition of i and
j (denoted i ↔ j) twice amounts to applying the identity. This proof can be
done by structural induction on State-sorted terms. For instance, to show that
the property holds in the general case (i.e. [[i<->j]] ([[i<->j]] ({c1 c2}))
= {c1 c2}), we apply the equations implementing the group action (namely
teq1, teq3) to obtain {[[i<->j]] ([[i<->j]] (c1)) [[i<->j]] ([[i<->j]]

(c2))} = {c1 c2} and conclude the proof by applying induction.6

Once proved that M+G correctly specifies a group action, we can conclude
that the induced relation on states ∼G is actually an equivalence relation. In our
example, we have an equivalence relation induced by object permutations.

4.2 Checking that ∼ Preserves Atomic Predicates

To prove that the equivalence ∼G induced by the action of group G preserves
the atomic propositions AP we proceed as follows. First, we define a rewrite
theory M/G for the sole purpose of analysis. The theory M/G is a protecting
extension of M+G that introduces some rewrite rules to “move” inside orbits.

Definition 10. Let M+G = (Σ∪ΣG, E∪EG∪A, ∅, φ) be the theory specifying
the action of a group G with generator H ⊆ G on the states of a theory M =
(Σ,E∪A,R, φ). Then, the theory M/G is defined as M/G = (Σ∪ΣG, E∪EG∪
A,RM/G, φ), where RM/G = {{t} => [[g]]({t})) | g ∈ H}.

In words, we replace the rules ofM by rules that move from a state u to a state
v obtained by applying a generator to u. If H is infinite, RM/G is also infinite.
However, in practice we can often find a finitary reformulation of RM/G, because
RM/G can often be expressed very concisely using patterns for the elements in H.
For instance, the module BANK/PERMUTATION of our running example contains
just two rules: rl { < i | x > < j | y > } => { [[i<->j]] (< i | x >

< j | y >) } and rl { < i | x > < j | y > c1 } => { [[i<->j]] (< i

| x > < j | y > c1) } to model transitions transposing two arbitrary objects.

6 For the full proof see Sect. C.

State Space c-Reductions of Concurrent Systems in Rewriting Logic 11

It is easy to see (by the properties of the generators of a group) that two
states are reachable inM/G if and only if they are in the same orbit, i.e. that for
any two states u, v we have the equivalence: u ∼G v ⇔ u→∗RM/G

v. Therefore,

proving that a predicate p ∈ AP is preserved by ∼G, i.e. that for each pair of
states u, v ∈ TStateE/A

u ∼G v implies p(u) = p(v), is equivalent to proving that
p is stable under M/G, i.e. M/G |= (p ⇒ �p), where � denotes the always
operator of LTL.

To prove stability we need only to focus on the positive equations defining when
p holds, which we assume are of the form p({t}) = true, or p({t}) = true if

cond, with cond a condition. In our example, the predicate some-message char-
acterizing states in which there is at least one message around for some existing
object is defined by the equations eq some-message(< i | x > credit(i))

= true and eq some-message(< i | x > credit(i) c1) = true.
Under the assumptions that: (i) the constructors of M.E are free modulo the

axioms A, and (ii) the terms t in predicate equations p({t}) = true, and the
left-hand sides of rules in M/G are constructor terms, we can use the results in
[16] to reduce proving M/G |= (p⇒ �p) to the following proof obligations:

Proposition 2 (predicate preservation through stability). Let M/G the
auxiliary rewrite theory of Definition 10 andM satisfy assumptions (i)–(ii) above.
and let p be an atomic proposition defined in M.AP by positive equations of
the form described above. Then, p is preserved by ∼G iff for each rule {t’} =>

{t’’} ∈ RM/G, each equation p({t}) = true in M.AP , and each A-unifier7,
we can prove p({ϑ({t’’}}) = true.

Proposition 2 is very useful in practice, since we can use the Invariant An-
alyzer [13, 16] (InvA) to automate a good part of the effort of proving stabil-
ity, leaving the remaining proof obligations for the Maude inductive theorem
prover [14]. For example, the above mentioned proposition can be shown to be
invariant under object permutations by InvA in a fully automatic way.

4.3 Checking that ∼ is a Bisimulation

Once the state relation ∼ we want to exploit has been shown to preserve the
atomic propositions of interest, we have to check that ∼ is a bisimulation.

{θ(t)}
M/G

��

M
// {θ(t’)}
M/G

∗��
{θ(t’’’)}

M
// {w}

In the case of an equivalence relation∼G induced by
a group G, proving that ∼G is a bisimulation amounts
to showing joinability of suitable “critical pairs” be-
tween the state transition rules {t} => {t’} in the
rule setM,8 and the rules {t’’} => {t’’’} ofM/G.
Indeed, bisimulation is ensured if we prove that for all ground A-unifiers θ be-
tween t and t’’ and each corresponding critical pair denoted with ordinary
arrows in the diagram on the right, there is a rule R giving us a one-step rewrite
{θ(t’’’)} →M {w} for which we can prove: {θ(t’)} →∗M/G {w}.

7 Mappings of variables into non-necessarily ground terms such that ϑ(t’) =A ϑ(t).
8 The case of conditional rules in M is analogous, using conditional critical pairs.

12 A. Lluch Lafuente, José Meseguer, A. Vandin

Proposition 3 (correctness of bisimulation by joinability). Let M be
the rewrite theory under study, with an action of the group G. Then ∼G is a
bisimulation between M and itself iff for all rules {t} => {t’} in RM, all rules
{t’’} => {t’’’} in M/G, and all ground A-unifiers θ between t and t’’ there
is a state {w} such that {θ(t’)} →∗M/G {w} and {θ(t’’’)} →M {w}.

The above proposition requires considering the set of all ground A-unifiers
which may be infinite. Fortunately, we can instead use A-unifiers with variables
and, in particular, the most general ones. Since each ground A-unifier is an
instance of a most general one, if we can prove the conditions in Proposition
3 for the finite set of most general A-unifiers, then we have proved bisimilarity.
However, using the most general A-unifiers may not always automatically prove
bisimilarity: some inductive joinability proof obligations may still be left.

That is, the use of most general A-unifiers yields the following sound and easy
to automate proof method. First, we use the Maude A-unification command to
find most general A-unifiers ϑ between {t} and {t’’}, respectively the left-hand-
sides of each rule {t} => {t’} of M, and each rule {t’’} => {t’’’} of M/G
(after a renaming of variables to ensure that they have no variables in common).
Second, for each such A-unifier ϑ we can use the Maude search command to
determine all possible 1-step rewrites {ϑ(t’’’)} →M {w}. Note that for each
ground instance s of {ϑ(t’’’)} the obtained rewrite steps correspond to some
of the possible transitions outgoing from state s. Last, we can use the search
command again to check if at least one of such obtained terms {w} can also
be reached from {ϑ(t’)} in M/G. For example, applying this method to our
running example yields six unifiers in the first step, each requiring one reachability
check that is efficiently solved by the search command of Maude. Proposition 4
summarizes the method.

Proposition 4 (soundness of the bisimulation check). Let M be the
rewrite theory under study and ∼G an equivalence on states induced by the
action of a group G. Then ∼G is a bisimulation between M and itself if for each
rule {t} => {t’} in M, rule {t’’} => {t’’’} in M/G, and most general
A-unifier ϑ between t and t’’, there is one state {w} with {ϑ(t’’’)} →M {w}
for which we can show {ϑ(t’)} →∗M/G {w}.

4.4 Defining and Verifying Canonizer Functions

The next step is to define canonizer functions c : State→ State in a protecting
extensionM+c of the rewrite theoryM under study. Note that in order to define
c we may need to define some auxiliary functions (e.g. the ordering relations
used in symmetry reduction to determine orbit representatives).

Definition 11 (c-extension of a rewrite theory). Let M = (Σ,E∪A,R, φ)
be the rewrite theory under study. A c-extension of M is a protecting extension
of M of the form M + c = (Σ ∪ Σc, E ∪ Ec ∪ A,R, φc) where c ∈ Σc with
c : State→ State, and φc extends φ by making all functions in Σc frozen.9

9 Imposing frozenness on the operators of Σc is needed for the result of Lemma 1.

State Space c-Reductions of Concurrent Systems in Rewriting Logic 13

Many candidate canonizers may exist for a given bisimulation ∼, each leading
to different results in terms of the size of the reduced state space and compu-
tational performance. In any case, all canonizer functions must preserve ∼, i.e.
they must be ∼-canonizers. This may require some theorem proving but it can
be relatively easy to check in most cases, since we can use the equations Ec and
show that each one preserves ∼.

For example, in the case of local reduction strategies [10] for symmetries based
on a group G with generators H ⊆ G, the equations Ec defining c are of the
form c({t}) = c([[g]]({t})) if [[g]]({t})<{t} with g ∈ H, < defining
an ordering relation on states, plus an equation c({t})={t} [owise] to deal
with the case when none of the previous equations is applicable, that is, when
there is no way to transform a state into a smaller equivalent one by applying a
generator (or inverse of a generator). Since such equations define c in terms of
group actions or of the identity function when all conditions fail, preservation of
the equivalence ∼G induced by G is immediate by the very definition of c.

Examples of local search strategies are implemented in our prototype tool [7].
In our running example, we can define such a canonizer as follows:

ceq c({ < i | x > < j | y > c1 })

= c({ [[i<->j]](< i | x > < j | y > c1) })

if i < j /\ x < y .

eq c({c1}) = {c1} [owise] .

A very similar situation is that of enumeration strategies [10], where canonizers
are defined as c({t}) = min{[[f]]({t}) | f ∈ G}. Again, preservation of ∼G

by c follows from the very definition of c. Indeed, for all states u, c(u) will be
necessarily of the form Jg1 • g2 • · · · • gnK(u), with each gi being a generator. We
call the equation format described above group application form.

Proposition 5 (group application ∼G canonizers). Let M be the rewrite
theory under study, ∼G the state equivalence induced by a group action, M/G
as in Definition 10, and M+ c a c-extension of M such that the equations of
Ec defining c are in group application form. Then, c is a ∼G-canonizer.

In practice, when specifying ∼G-canonizers in the above form, all we have to
check are the executability properties of the equations of M+ c: termination,
(ground) confluence and sufficient completeness, plus M protected in M+ c, for
which we can use the standard Maude tools.

Note that proving ground confluence of c is not sufficient to show that c is
a strong canonizer. It may still be the case that for some two states u, v such
that u ∼ v we have that c(u) 6= c(v). For example, in the case of equivalences
∼G induced by a group G generated by H ⊆ G as a monoid, to prove that c is a
strong canonizer we also need to show that for all group elements in g ∈ H and
states s we have c(s) = c(JgK(s)). It is easy to see that if this holds, an inductive
argument allows us to conclude c(s) = c(JfK(s)) for all f ∈ G and hence for any
two equivalent states s ∼G s′ = JfK(s). Of course, there are cases in which no
check is needed. For instance, it is well-known that enumeration strategies yield
strong canonizers, while local strategies are not strong in general.

14 A. Lluch Lafuente, José Meseguer, A. Vandin

4.5 Defining c-Reductions

The next step is defining a c-reduction of M as a rewrite theory M/c. This is
very useful, since then no changes to a model checker are needed to support c-
reductions : we just model checkM/c. We show thatM/c can be easily obtained
by applying a theory transformation M 7→M/c defined as follows.

Definition 12 (c-reduction of a rewrite theory). Let M + c = (Σ ∪
Σc, E ∪ Ec ∪ A,R, φc) be a c-extension of M = (Σ,E ∪ A,R, φ) for which
c is a ∼-canonizer of an equivalence bisimulation ∼. We then call M/c = (Σ ∪
Σc, E∪Ec∪A,Rc, φc) a c-reduction ofM, where Rc = {t => c(t’) if cond |
(t => t’ if cond) ∈ R}.

M/c is very much like M, except that each rule t => t’ if cond in R, is
transformed into a rule t => c(t’) if cond, i.e. into a rule where the canonizer
function c is applied to the right hand side to ensure that canonization is
performed after each system transition. For our running example we obtain, e.g.
a rule: rl { < i | x > credit(i) c1 } => c({ < i | s(x) > c1 }).

This transformation is supported by our prototype [7] for the class of object-
based rewrite theories. Our transformation exploits Maude reflective features: it
is defined by a function that manipulates the meta-representation of the input
theory to be c-reduced.

For some rules in M/c it may be more efficient not to apply the canonizer
after each step. For instance, if we know that the corresponding rule in M will
always result in a canonical state we can save the time of applying the canonizer.

It is trivial to show that M/c is a c-reduction by construction, and in
particular that KM/c = KM/c. It can also be shown that it has good executability
properties. By the properties required for Ec, it inherits all the properties of the
equational part ofM, namely sufficient completeness, confluence and termination
modulo A. Moreover, it can be shown that M/c is coherent modulo A.

Theorem 2 (executability ofM/c). LetM be the rewrite theory under study,
and let M/c be as in Definition 12. If M+ c has good executability properties,
then M/c also has good executability properties.

The above theorem means that we can use M/c for model checking analysis.
For example, in our running example we can use the Maude LTL model checker
to successfully verify the property ♦�¬some-message (“eventually there will be
no more messages forever”) efficiently. If we explore the whole state space of our
running example using the Maude reachability analyzer we can check that the
state space of the c-reduced system is drastically smaller than that of the original
system. For instance, if we choose an initial state with 4 empty accounts with 4
messages for each, the original state space has 625 states, while the c-reduced
one has only 70.

This is just a simple example: the performance experiments reported in Sect. B
include examples taken from the literature where the applied c-reductions provide
drastic gains and allow analyzing systems whose original state spaces is too large
to be effectively analyzed.

State Space c-Reductions of Concurrent Systems in Rewriting Logic 15

5 Related Work and Conclusions

Related Work. We briefly comment on some interesting related approaches
besides the ones already mentioned. A complementary line of research focuses on
automatic symmetry detection, proposed for some model checkers, e.g. SPIN [10]
and ProB [17]. Our approach does not forbid (though does not yet provide)
automatically detected symmetries but focuses on user-definable ones, providing
a methodology to check their correctness, with the main advantage being that
we rely on tools and techniques used to perform the verification of the system
itself. A related work is reported in [18] where formal methods are used to prove
the soundness of the reduction techniques of [17].

Interesting are as well other state space reduction techniques, in particular
those already proposed in the setting of rewriting logic and Maude, such as partial
order reduction [19], and equational abstraction [20]. The closest one is [20], where
abstractions are defined equationally. The main difference with our approach is
in the kind of behavioral equivalence considered: equational abstractions yield
simulations while we focus on bisimulations. With respect to [19] our approach
is orthogonal and we are hence investigating how to combine them to improve
the efficiency of rewriting-logic based interpreters of programming languages, in
particular those with primitives for dynamic memory allocation.

Conclusions. We have presented c-reductions, a general bisimulation-based
reduction technique that exploits canonizer functions whenever a bisimulation
is an equivalence relation. The main differentiating features with respect to
other state space reduction techniques are: (i) no changes to the underlying
model checker are required, and reductions are defined using the original system
description language; (ii) model checking and correctness proofs for the reduction
are seamlessly integrated and supported by tools; (iii) semi-automation: both for
applying the reduction and for checking their correctness; and (iv) generality:
it subsumes in a uniform way symmetry reduction as well as other kinds of
reductions (e.g. name reuse and name abstraction).

We have presented the basic concepts, described some typical classes of
reductions, and illustrated how they can be analyzed. Our methodology performs
a series of incremental steps Sect. 4.1–4.5, which include checking that the
equivalence relation is a bisimulation and that the reduction strategies preserve
such equivalence relation. Even if not presented here, we have performed a
set of experimental results (see Sect. B) were we have observed a comparable
performance with respect to symmetry reduction extensions of mature tools such
as SPIN and performance gains with respect to previous implementations of
symmetry reduction in Maude [6].

The flexibility of our approach has allowed us to define a wide range of
reductions. Beyond the classical permutation and rotation symmetries, we have
considered some simple cases of name reuse and name abstraction, which are
crucial to deal with the infinite state spaces of systems with dynamic allocation
of resources. Indeed, compared to the approach presented in [3, 11] we are able to
treat a wider class of systems, where identifiers of symmetric objects can appear

16 A. Lluch Lafuente, José Meseguer, A. Vandin

as pointers in attributes of other objects, and with wider classes of symmetries
such as rotational ones. Similar remarks can be made about [6], with respect to
which we offer a wider class of reduction strategies and better performance.

Even though we have emphasized reductions based on group actions, the
c-reduction approach is more general and accepts any possible canonizer function.
Correctness proof methods fully covering the general case should be developed in
future work. A preliminary version of our tool is publicly available [7].

References

1. Wahl, T., Donaldson, A.F.: Replication and abstraction: Symmetry in automated
formal verification. Symmetry 2 (2010) 799–847

2. Hendriks, M., Behrmann, G., Larsen, K.G., Niebert, P., Vaandrager, F.W.: Adding
symmetry reduction to Uppaal. In: FORMATS. LNCS 2791, Springer (2003)

3. Bosnacki, D., Dams, D., Holenderski, L.: Symmetric SPIN. International Journal
on Software Tools for Technology Transfer 4 (2002) 92–106

4. Meseguer, J.: Conditional rewriting logic as a united model of concurrency. Theo-
retical Computer Science 96 (1992) 73–155

5. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.L.: All About Maude. Volume 4350 of LNCS. Springer (2007)

6. Rodŕıguez, D.E.: Combining techniques to reduce state space and prove strong
properties. In: WRLA. Volume 238(3) of ENTCS. (2009) 267 – 280

7. C-Reducer, http://sysma.lab.imtlucca.it/tools/c-reducer.
8. Lluch Lafuente, A., Meseguer, J., Vandin, A.: State space c-reductions of concurrent

systems in rewriting logic (2012) Full version, eprints.imtlucca.it/1012/.
9. Meseguer, J., Palomino, M., Mart́ı-Oliet, N.: Algebraic simulations. Journal of

Logic and Algebraic Programming 79 (2010) 103–143
10. Donaldson, A.F., Miller, A.: A computational group theoretic symmetry reduction

package for the SPIN model checker. In: AMAST. (2006) 374–380
11. Bosnacki, D., Dams, D., Holenderski, L.: A heuristic for symmetry reductions with

scalarsets. In: FME, Springer (2001)
12. Eker, S., Meseguer, J., Sridharanarayanan, A.: The maude LTL model checker and

its implementation. In: SPIN. Volume 2648 of LNCS., Springer (2003)
13. The Maude Invariant Analyzer Tool (InvA), camilorocha.info/software/inva.
14. Clavel, M., Palomino, M., Riesco, A.: Introducing the ITP tool: a tutorial. Journal

of Universal Computer Science 12 (2006) 1618–1650
15. Durán, F., Meseguer, J.: A Church-Rosser Checker Tool for Conditional Order-

Sorted Equational Maude Specifications. In Ölveczky, P.C., ed.: WRLA. Volume
6381 of LNCS., Springer (2010) 69–85

16. Rocha, C., Meseguer, J.: Proving safety properties of rewrite theories. In Corradini,
A., et al., eds.: CALCO. Volume 6859 of LNCS. Springer (2011) 314–328

17. Spermann, C., Leuschel, M.: ProB gets nauty: Effective symmetry reduction for B
and Z models. In: TASE, IEEE Computer Society (2008) 15–22

18. Turner, E., Butler, M.J., Leuschel, M.: A refinement-based correctness proof of
symmetry reduced model checking. In: ASM. LNCS 5977, Springer (2010)

19. Farzan, A., Meseguer, J.: Partial order reduction for rewriting semantics of pro-
gramming languages. In: WRLA. Volume 176 (4) of ENTCS. (2007) 61–78

20. Meseguer, J., Palomino, M., Mart́ı-Oliet, N.: Equational abstractions. Theoretical
Computer Science 403 (2008) 239–264

State Space c-Reductions of Concurrent Systems in Rewriting Logic 17

A Proofs

This section documents the proofs for the main formal results of the paper. The
proofs of those results that are less immediate or more inherent to our approach
are described in detail, while the proofs of the rest of the results are sketched.

In some of the proofs, we sometimes use →M as an abbreviation of →RM (as
we did throughout the paper) when referring to the derivation of rewrite steps
using the rules R of a rewrite theory M. The latter version is preferred in proofs
that involve derivations of terms in M obtained using equations.

We start with Theorem 1 which ensures c-reduced Kripke structures to be
bisimulation preserving for c being a ∼-canonizer and ∼ being an equivalence
relation and a bisimulation.

Theorem 1 (∼-preservation). Let K = (S,→, L,AP) be a Kripke structure,
let ∼ be an equivalence relation on S that is a bisimulation on K, and let c be a
∼-canonizer function. Then ∼ is a bisimulation relation between K and K/c.

Proof. Let s and s′ be two arbitrary states of S such that s ∼ s′. Condition (i) of
Def. 4 holds trivially by the definition of ∼.

Condition (ii) is also easy to see. Indeed if we have s → r, we know that
s′ can simulate the transition s → r by a transition s′ → r′ since ∼ is a
bisimulation on K. But then we have r ∼ c(r′) (since c preserves ∼, and ∼
is an equivalence relation an hence symmetric and transitive).

s // r

s′ // r′
c
// c(r′)

s′ // r′
c
// c(r′)

s // r

(i) (ii)

Condition (iii) is also easy to show
(c.f. beside figure (ii)). Indeed, a tran-
sition s′ → r′ →c c(r), can be simu-
lated by some transition s → r such
that r ∼ r′ since ∼ is a bisimulation
on K. But, as in the above case, we
also have that r′ ∼ c(r) (since c preserves ∼ and ∼ is an equivalence relation
and hence transitive). ut

Next we sketch the proof of the proposition that identifies the properties to
be checked on the implementation of a group action in order to ensure it to be
correct.

Proposition 1 (correctness checks for group actions). Let M + G =
(Σ ∪ΣG, E ∪EG ∪A) be a group pre-action on M. Then in the inital algebra of
M+G the function J·K : H×State→ State uniquely extends to a group action
of H∗/i on State if and only if the following two equations hold inductively
in such an initial algebra: (i) (∀g : H,u : State) JgK(Jg−1K(u)) = u, and (ii)
(∀g : H,u : State) Jg−1K(JgK(u)) = u.

Proof. The proof is rather simple and relies on the notion of implicit group action
(see Definitions 14 and 15 in Sect. E). ut

18 A. Lluch Lafuente, José Meseguer, A. Vandin

What follows is the proof for Proposition 2 which allow us to use the InvA tool
for checking the invariance of propositions under the equivalence relation ∼ under
study. Recall that the requirements for using this result are: (i) the constructors
ofM.E are free modulo the axioms A, and (ii) the terms t in predicate equations
p({t}) = true, and the left-hand sides of rules in M/G are constructor terms.

Proposition 2 (proposition invariance by stability). Let M/G the auxil-
iary rewrite theory of Definition 10 and M satisfy assumptions (i)–(ii) above.
and let p be an atomic proposition defined in M.AP by positive equations of
the form described above. Then, p is preserved by ∼G iff for each rule {t’} =>

{t’’} ∈ RM/G, each equation p({t}) = true in M.AP , and each A-unifier10,
we can prove p({ϑ({t’’}}) = true.

Proof. Recall that what we need to prove is that for any two equivalent states
u ∼G v , and each proposition p ∈ AP we have p ∈ L(u)⇔ p ∈ L(v).

By the construction ofM/G we have that u ∼G v is equivalent to u→∗M/G v,

i.e. ∼G-equivalence amounts to reachability in M/G. In addition, our imple-
mentation of the the labeling function L for mapping states into sets atomic
propositions realizes p ∈ L(u) with a boolean predicate p(u). Hence, the invari-
ance of AP under ∼G can be clearly recasted as follows: for any two states u, v
such that u→∗RM/G

v, and each proposition p ∈ AP we have p(u) = p(v).

Now, this is exactly the problem of checking invariance of boolean predicates
studied [16], where it has been shown that it suffices to check for each rule {t’} =>

{t’’} ∈ RM/G, each equation p({t}) = true in M.AP , and each A-unifier ϑ
between t’ and t ϑ between t’ and t, whether p({ϑ([[g]]({t’’})}) = true.

ut

We now prove Proposition 3 which allows us to reduce the problem of showing
that an equivalence relation ∼G is a bisimilation to a problem of joinability of
critical pairs.

Proposition 3 (correctness of bisimulation by joinability). Let M be
the rewrite theory under study, with an action of the group G. Then ∼G is a
bisimulation between M and itself iff for all rules {t} => {t’} in RM, all rules
{t’’} => {t’’’} in M/G, and all ground A-unifiers θ between t and t’’ there
is a state {w} such that {θ(t’)} →∗M/G {w} and {θ(t’’’)} →M {w}.

Proof. Recall that what we need to prove is that for any two bisimilar states
u ∼ u′ , any transition u→RM v from u to v can be simulated by a transition
u′ →RM v′ from u′ to a state v′ bisimilar to v (v ∼ v′), and vice vera. Graphically,

10 Mappings of variables into non-necessarily ground terms such that ϑ(t’) =A ϑ(t).

State Space c-Reductions of Concurrent Systems in Rewriting Logic 19

u
RM

// v

u′
RM

// v′

where dotted arrows are the ones whose existence must be shown.
Now, it should be clear that by the construction ofM/G we have that s ∼ s′

is equivalent to s→∗M/G s′, i.e. bisimilarity amounts to reachability in M/G. So
the property we have to show can be recasted as showing the existence of state
v′ and the dotted arrows in the diagram below

u

RM/G

∗��

RM

// v

RM/G

∗��
u′

RM

// v′

for all possible states u, u′ and v satisfying the relations of the diagram.
This proof can be easily simplified by the observation that →∗M/G is the

closure of →M/G so that any of the previous diagrams can be decomposed as
follows

u

RM/G

��

R
// v

RM/G

��
u1

RM/G

��

R
// v1

RM/G

��
u2

RM/G

��

R
// v2

RM/G

��. . .

RM/G
��

R
// . . .

RM/G
��

u′
R
// v′

By induction we can show that we can reduce the problem to solving the
above simple squares. But we know that in our setting each transition u→RM v
is just an instance {θ1(t)} →RM {θ1(t’)} of a rule t => t’ of M, given by a
variable assignment θ1 such that u = θ1(t). Similarly, each transition u→M/G u1
is just an instance {θ′1(t’’)} →RM {θ1(t’’’)} of a rule t’’ => t’’’ of M/G.
The interesting case is now when θ1(t) is equal to θ′1(t’’) (say with a unifier
θ = θ1 ∪ θ′1), in which case we have reduced the proof to solving the desired
joinability problem, i.e. the existence of the dotted arrows in the below diagram

{θ(t)}

RM/G

��

RM

// {θ(t’)}

RM/G

∗��
{θ(t’’’)}

RM

// {w}

20 A. Lluch Lafuente, José Meseguer, A. Vandin

ut

Next we show Proposition 4 which allows us to check the above joinability
problem by resorting to Maude’s unification and reachability capabilities.

Proposition 4 (soundness of the bisimulation check). LetM be the rewrite
theory under study and ∼G an equivalence on states induced by the action of a
group G. Then ∼G is a bisimulation between M and itself if for each rule {t}
=> {t’} in M, rule {t’’} => {t’’’} in M/G, and most general A-unifier ϑ
between t and t’’, there is one state {w} with {ϑ(t’’’)} →M {w} for which
we can show {ϑ(t’)} →∗M/G {w}.

Proof. By Proposition 3 showing bisimimulation amounts to showing the join-
ability of the critical pairs that arise when considering rules of M and rules of
M/G as illustrated in the diagram (1) below

{θ(t)}

RM/G
��

RM

// {θ(t’)}

RM/G
∗��

{θ(t’’’)}
RM

// {w}

{ϑ(t)}

RM/G

��

RM

// {ϑ(t’)}

{w1}
zz
R∗M/G

{ϑ(t’’’)}
RM

//

RM

99

RM
%%

{wi}
�� R∗M/G

{wn}
��

R∗M/G

(1) (2)

What we will show is that such joinability is given whenever we perform the
reachability checks enumerated in the proposition we are proving, graphically
depicted in the diagram (2) above.

The proof is rather simple. Any ground unifier θ in diagram (1) is just
an instance of one of the most general unifiers ϑ in diagram (2), say with a
substitution of variables by ground terms η (i.e. θ = η◦ϑ). If the reachability check
is successful for ϑ, we know that there is a term {wi} such {ϑ(t’’’)} →RM {wi}
and {ϑ(t’)} →∗RM/G

{wi}. Now, the former rewrites can be grounded. That is, any

state {wi} can be instantiated as the ground term (i.e. a state) {η(wi)}, and idem
for the rewrites {η(ϑ(t’’’))} →RM {η(wi,j)} and {η(θ(t’))} →∗RM/G

{η(wi)}.
In other words, {η(wi)} is the state {w} that joins the pairs for the ground unifier
θ. ut

State Space c-Reductions of Concurrent Systems in Rewriting Logic 21

Proposition 5 (group application ∼G canonizers). Let M be the rewrite
theory under study, ∼G the state equivalence induced by a group action, M/G
as in Definition 10, and M+ c a c-extension of M such that the equations of
Ec defining c are in group application form. Then, c is a ∼G-canonizer.

The proof is trivial. As we informally explain in Sect. 4.4 we can just exploit
the group application form of the equations defining the canonizer c to devise an
inductive proof. ut

Before proving Theorem 2 we show a helpful lemma regarding the coherence
of a c-reduced theory.

Lemma 1 (coherence ofM/c). LetM = (Σ,E∪A,R, φ) be ground confluent,
terminating, sufficiently complete, and with R ground coherent with E modulo
A, c be a canonizer function, and M/c = (Σ ∪ Σc, E ∪ Ec ∪ A,Rc, φc) be the
c-reduction of M. Then all rules in Rc are ground coherent with E ∪ Ec modulo
A.

u
1

RM

//

E/A!
��

v
c
//

∗E/A ��

c(v)
∗

E/A $$

w c(w)

u′
1

RM

// v′
c
//

∗

E/A

@@

c(v′)

∗

E/A

::

Proof. Since M is topmost and all op-
erators in Σc are frozen (see Def. 11),
any ground Σ ∪ Σc-term u of sort
State such that M ` u →1

R v must
be a Σ term. Therefore, its E ∪Ec/A-
canonical form u′ is exactly its E/A-
canonical form. By the ground coher-
ence of R with E modulo A we obtain
the inner pentagon in the diagram on the right which trivially yields the outer
pentagon, proving E ∪ Ec ` c(v) = c(v′) as desired. ut

Last, we can prove Theorem 2.

Theorem 2 (executability of Rc). Let M be the rewrite theory under study,
and let M/c be as in Definition 12. If M+ c has good executability properties,
then M/c also has good executability properties.

Proof. The proof immediatedly follows from the fact that M/c has the same
equational part as M/c and from Lemma 1. ut

22 A. Lluch Lafuente, José Meseguer, A. Vandin

SymmSpin c-reductions
weak strong weak strong

Experiment n if sf tf sf tf sf tf sf tf

Peterson
2 -0.50 -0.48 +0.00 -0.49 +0.00 -0.45 +0.00 -0.45 +0.00
3 -0.83 -0.75 -0.79 -0.82 -0.79 -0.77 +0.00 -0.83 +1.50
4 -0.96 -0.91 -0.77 -0.95 -0.84 -0.93 -0.75 -0.95 +0.50

DBM
7 -0.99 -0.99 -0.99 -0.99 -0.80 -0.98 -0.87 -0.99 +2.00
8 -0.99 -0.99 -0.99 -0.99 -0.48 -0.99 -0.95 -0.99 -0.65

Table 1. SymmSpin vs c-reductions in Maude (the values for SymmSpin are derived
from [11]; only comparison of reduction factors is meaningful).

B Performance experiments

We present here a selection of the experiments we have carried out, with the
main purpose of validating the efficiency of the implementation of the c-reduction
approach in Maude.

Our main hypothesis to be checked is that the relative performance gain (in
terms of runtime and state space reductions) is comparable to the one obtained
by state-of-the-art model checkers. The second hypothesis is that c-reductions
are more efficient than the previous approach to symmetry reductions in Maude
described in [6]. Finally, we enrich the experiments where we combine various
c-reductions not supported by the previously mentioned tools. The Maude
implementation of the benchmark examples used here are included in the release
of our prototype [7].

Comparison with SymmSPIN We have chosen SymmSPIN [11, 3] as a rep-
resentative model checker with which to compare our approach. SymmSPIN
extends the SPIN model checker with support for symmetry reductions. It is
worth to remark that we do not perform absolute comparison as we aim at
checking the usefulness of our approach (experiments with SymmSPIN cannot
be reproduced since the tool is no more available for download).

We have implemented in Maude two of the benchmark models tested in [11,
3], namely Peterson’s mutual exclusion protocol11, and a database management
system.12 Both examples exhibit a full symmetry due to the presence of families
of replicated concurrent processes with identical behavior. In both cases we
manually translated the Promela specification into Maude specifications, in the
most faithful manner we could.

We have considered various c-reduction strategies. For the sake of simplicity,
we consider only the two best strategies of SymmSPIN (i.e. pc-segmented and
pc-sorted) and the two best of our own strategies our implementation (partly
inspired by the ones proposed in [11, 3]), for which regards time and state space

11 Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc. (1996)
12 Valmari, A.: Stubborn sets for reduced state generation. In: Proceedings on Advances

in Petri nets 1990, Springer (1991)

State Space c-Reductions of Concurrent Systems in Rewriting Logic 23

Reflection-based c-reductions

Params Not reduced weak strong

n m states if states sf tf states sf tf states sf tf

2 5 38,029 -0.50 19,295 -0.49 +9.62 21,630 -0.43 +1.14 19,025 -0.50 +0.46

3 2 72,063 -0.83 13,280 -0.82 +7.30 29,534 -0.59 +1.01 12,235 -0.83 +0.34

3 3 952,747 -0.83 174,428 -0.81 +5.65 307,532 -0.68 -0.50 160,121 -0.83 +0.30
Table 2. Reflection-based symmetry reduction vs. c-reductions in Maude.

reduction. We call them strong and weak as they are actually strong and non-
strong canonizers.

Table 1 presents the results for instances of the models with increasing number
of components (n). We offer only results for those instances for which it has
been possible to generate the unreduced state spaces, so to compare the relative
gain of the reductions in terms of relative state reduction factor (sf) and relative
time reduction factor (tf). A relative state (resp. time) reduction factor of k
indicates that, if the non-reduced exploration involved n states (resp. seconds)
then the reduced exploration involved m = n+ (k×n) states (resp. seconds). Put
it otherwise, k is calculated as k = (m/n)− 1. Clearly, values below 0 indicate a
reduction, while numbers above 0 an increase. The table also includes the “ideal”
relative reduction factor (if), which in the case of full symmetries is (1/n!)− 1
where n is the size of the permutations (i.e. the number of replicated processes
in the examples), since the size of each orbit is at most n!. So for an exhaustive
exploration that requires s states and t seconds an ideal factor k means that we
can expect the reduction to require at the best the exploration of n + (k × s)
states in t+ (k × t) seconds (where k is obviously negative). Clearly, “sf” and
“tf” are always greater than “if”. We highlight cells corresponding to the best
results in each category (state space and run-time gain) for each model instance.
It is worth to remark that the results for the SymmSPIN tool have been derived
from [11]. Reproducing them was not possible since SymmSPIN is not available
for download. Fortunately, we are not interested in absolute measures but in the
relative gain of the reduction.

The two approaches provide state space reductions near to the ideal gain. The
two strategies based on weak canonizers provide very similar outcomes, while
the ones based on strong canonizers reduce similarly. SymmSPIN is more time-
efficient, which is not a surprise, since the reduction algorithms are implemented
in a procedural language (C) and efficiently compiled, while our implementation is
based on a declarative language (Maude) running over an intepreter (the Maude
engine).

Comparison with reflection-based symmetry reduction in Maude Our
second set of experiments aims at checking whether c-reductions offers better
performances than the symmetry reduction implementation in Maude described
in [6]. Very briefly, the main idea of [6] is to select the canonical representative

24 A. Lluch Lafuente, José Meseguer, A. Vandin

of a state on the basis of the lexicographical order of the meta-representation of
the state, which is achieved by exploiting Maude’s reflection capabilities.

The comparison is performed over the Chain-Replication protocol13 used
in [6]. As in the previous case, the replication of identical processes yields a full
symmetry. Table 2 presents our results in the same format as Table 1 with the
only exception that the model is instantiated with two parameters: the number n
of replicated components and the number m of queries they perform. The table
shows that the reductions of the reflection-based approach of [6] are bounded
by the ones obtained by our strategies. That is: our weak strategy (resp. strong)
provides a better (resp. worse) time reduction factor, while our strong (resp. weak)
strategy provides a better (resp. worse) space reduction factor. In particular our
weak strategy offers worse space reductions, while the strong one offers better
space reductions. More interestingly, our reduction strategies introduce much less
time overhead, differing often by an order of magnitude. This is not a surprise,
since resorting to Maude’s meta-level involves a considerable overhead.

Canonizers based on the lexicographical order of meta-representations are
also implemented in our prototype [7] where similar results can be observed.

Exploiting permutations, rotations, reuse and abstraction Our last set
of experiments regards the joint application of a number of c-reductions of
different nature, not supported by the previously mentioned tools. As a test
case we have considered a message-passing solution to the Dining Philosophers
problem along the lines of the case study used in an approach14 where newly
generated messages (representing forks) receive fresh identities (as the original
purpose that approach was to reason about individual messages). There are
a couple of regularities that can be exploited in the form of c-reductions and
that happen to yield bisimulations (for an empty set of atomic predicates): the
rotational symmetry of philosophers, the full symmetry of messages, the reuse
of message identifiers and their abstraction. Of course, the situation is different
when one considers state predicates that involve the identity of philosophers or
messages. However, our goal here is to validate the effectiveness of the mentioned
c-reductions.

Table 3 reports the results. The table presents the size of the state space and
the time (in ms) to generate it, for instances of the model with increasing number
of philosophers. The table considers the state spaces generated in the following
cases: reuse of message identifiers (NR), reuse together with (rotational and full)
symmetry reduction (NR+RS+FS), abstraction of name identifiers (NA), and
abstraction of name identifiers together with (rotational) symmetry reduction
(NA+RS). The sizes of the unreduced state spaces are not shown since they are
infinite (due to the creation of messages with fresh identifiers).

13 van Renesse, R., Schneider, F.B.: Chain replication for supporting high throughput
and availability. In: Proceedings of the 6th conference on Symposium on Opearting
Systems Design & Implementation - Volume 6, USENIX Association (2004) 77

14 Distefano, D., Rensink, A., Katoen, J.P.: Model checking birth and death. In Baeza-
Yates, R.A., et al., eds.: TCS. Volume 223., Kluwer (2002)

State Space c-Reductions of Concurrent Systems in Rewriting Logic 25

NR NR+RS+FS NA NA+RS

n states time states time states time states time

2 21 0 10 0 18 0 10 0

3 115 8 27 12 76 0 27 8

4 801 100 86 60 322 20 86 48

5 6,251 1,456 275 320 1,364 124 275 248

6 54,869 20,765 982 1,732 5,778 740 982 1,412

7 541,731 463,080 3,499 11,828 24,476 6,624 3499 8,124

8 O.T. O.T. 13,016 49,651 103,682 29,329 13,006 35,594

9 O.T. O.T. 48,828 247,987 439,204 192,072 48,819 186,329
Table 3. c-reductions for the dining philosophers.

The first clear advantage is that reuse of message identifiers yields finite state
spaces (since the number of messages in each state is bounded by n). Besides this,
we see how combining various c-reductions results in better and more efficient
reductions. To be noticed is the fact that name reusing alone ran out of time
(more than 5 hours) for models instantiated with more than 7 philosophers, while
combining it with symmetry reductions (for messages and philosophers) allows
us to manage larger instances. In particular, the best reductions are obtained
with the combination of name abstraction and rotational symmetry (NA+RS),
while name abstraction alone (NA) offers the fastest explorations from 2 to
8 philosophers, and is outperformed by the combination NA+RS for greater
instances.

26 A. Lluch Lafuente, José Meseguer, A. Vandin

BANK.E

�,r�
�

(i)

xx
BANK.R

�

(v)
55

kk

(iii) ++

BANK.AP

x�
�

ff

(ii)
&&

BANK+G

�,
�

oo
(iv)

��
BANK/G BANK+c

oy
BANK oo (vi) // BANK/c

Fig. 2. Modularisation of the specification and verification steps in the running example.

C Validation

This section provides a detailed description of the application of methodology
to the running example. The full specification of this example can be found
in Sect. D. The modular structure of the specification is illustrated in Fig. 2 and
follows the one of Fig. 1.

Step (i): Proving that BANK+PERMUTATION correctly specifies the action
of permutations. Recall that in order to show that BANK+PERMUTATION is a
group action we have to show that the following equation holds

[[i <-> j]] ([[i <-> j]] ({c1})) = {c1}
where i, j are arbitrary natural numbers and c1 is an arbitrary configuration.

We proceed by structural induction on c1. The base cases are trivial. For
example, consider the case when c1 is none. Then what we have to show is the
equation

[[i <-> j]] ([[i <-> j]] ({none})) = {none}
but applying equations teq1 and teq2 we can reduce the left hand side of the
equation to obtain.

{[[i <-> j]] (none)} = {none}
and applying again the same equation concludes the proof for this case. The rest
of the base cases are solved similarly.

Consider, now the general case where we have to show

[[i <-> j]] ([[i <-> j]] ({c1 c2})) = {c1 c2}
Applying teq1 and teq3 (twice) to the left hand side of the above equation we
obtain

{[[i <-> j]] ([[i <-> j]] (c1)) [[i <-> j]] ([[i <-> j]] (c2))}
= {c1 c2}

State Space c-Reductions of Concurrent Systems in Rewriting Logic 27

Now, the application of the inductive hypothesis concludes the proof.
As a byproduct, we can safely add the equation

eq [teq9] : [[i <-> j]] ([[i <-> j]] (c1)) = c1 .

to module BANK+PERMUTATION which turns out to be convenient for theorem
proving purposes. In particular, equation teq9 will be exploited by some of the
tools we use in the below verification steps.

Step (ii): Checking invariance of predicates under object permuations.
In order to check the invariance of the atomic proposition (state observations)
under object transpositions we rely on the InvA tool as explained in Sect. 4.2.

Consider for example the atomic proposition some-message which identi-
fies states in which there is at least one message for an existing object. Such
proposition is defined by the following equations in module BANK.APP.15

fmod BANK.APP is

...

eq [some-message-eq1] : some-message({ < i | x > credit(i) }) = true .

eq [some-message-eq2] : some-message({ < i | x > credit(i) c1 }) = true .

...

endfm

Moreover, consider the rules (implemented in BANK/PERMUTATION) that define
transitions between equivalent states by transposing objects.

mod BANK/PERMUTATION is

...

rl [transposition1] :

{ < i | x > < j | y > }

=> { [[i <-> j]] (< i | x > < j | y >) } .

rl [transposition2] :

{ < i | x > < j | y > c1 }

=> { [[i <-> j]] (< i | x > < j | y > c1) } .

endm

Now, in order to show the invariance of some-message under object per-
mutations we can use InvA to perform what is called a stability check of the
proposition some-message under the rules of BANK/PERMUTATION.

15 The predicates p do not need to be completely specified: the cases in which they
evaluate to false can be neglected, and hence we use a module M.APP (which
contains the partial definition of the propositions) of which M.AP is a protecting
extension (which contains a complete definition of the propositions). In particular,
M.AP can be obtained from M.APP just by adding equations of the form p({t}) =

false [owise]. This is in general convenient, but in the case of InvA is also necessary
since it does not support the owise keyword.

28 A. Lluch Lafuente, José Meseguer, A. Vandin

Maude> select INVA .

Maude> loop init .

rewrites: 976 in 2ms cpu (2ms real) (406836 rewrites/second)

Invariant Analyzer 1.1 - February 8th 2011

(with Church-Rosser Checker 3l)

Maude> (analyze-stable some-message(s:State) in BANK.APP BANK/PERMUTATION .)

rewrites: 15357 in 23ms cpu (24ms real) (649015 rewrites/second)

Checking BANK/PERMUTATION ||- some-message => O some-message ...

Proof obligations generated: 1

Proof obligations discharged: 1

Success!

The check is successful: all proof obligations are automatically discharged and
we can conclude the desired invariance.

We can proceed similarly with the rest of the atomic propositions. For instance,
consider two-dollars which identifies states in which at least one object has at
least two dollars.

fmod BANK.APP is

...

eq [two-dollars-eq1] : two-dollars({ < i | s(s(x)) > }) = true .

eq [two-dollars-eq2] : two-dollars({ < i | s(s(x)) > c1 }) = true .

...

endfm

We can use again InvA to show the invariance of two-dollars under object
permutations:

Maude> select INVA .

Maude> loop init .

rewrites: 976 in 2ms cpu (2ms real) (406836 rewrites/second)

Invariant Analyzer 1.1 - February 8th 2011

(with Church-Rosser Checker 3l)

Maude> (analyze-stable two-dollars(s:State) in BANK.APP

BANK/PERMUTATION .)

rewrites: 15571 in 16ms cpu (19ms real) (918643 rewrites/second)

Checking BANK/PERMUTATIONS ||- two-dollars => O two-dollars ...

Proof obligations generated: 2

Proof obligations discharged: 2

Success!

The check is again successful: all proof obligations are automatically discharged
and we can conclude the desired invariance.

Step (iii): Checking that object permutations yield a bisimulation.
The next step is to check wether object transpositions induce a bisimulation by
applying the methodology described in Sect. 4.3.

First, we compute the most general unifiers between the left-hand sides of the
rules in BANK.R and the rules BANK/PERMUTATION by using the unify command.
We focus in particular on the rule credit2 of BANK.R

State Space c-Reductions of Concurrent Systems in Rewriting Logic 29

mod BANK.R is

...

rl [credit2] :

{ < i | x > credit(i) c1 }

=> { < i | s(x) > c1 } .

...

endm

and the rule transposition2 of BANK/PERMUTATION

mod BANK/PERMUTATION is

...

rl [transposition2] :

{ < i | x > < j | y > c1 }

=> { [[i <-> j]] (< i | x > < j | y > c1) } .

...

endm

The desired most general unifiers are then computed as follows:

Maude> unify { < i:Nat | x:Nat > credit(i:Nat) c1:Configuration }

=? { < j:Nat | y:Nat > < k:Nat | z:Nat > c2:Configuration } .

unify in BANK/C : {< i | x > credit(i) c1}

=? {< j:Nat | y:Nat > < k:Nat | z:Nat > c2:Configuration} .

Decision time: 1ms cpu (5ms real)

Solution 1

c1 --> #7:Configuration < #3:Nat | #4:Nat > < #5:Nat | #6:Nat >

i --> #1:Nat

x --> #2:Nat

c2:Configuration --> #7:Configuration credit(#1:Nat) < #1:Nat | #2:Nat >

j:Nat --> #3:Nat

y:Nat --> #4:Nat

k:Nat --> #5:Nat

z:Nat --> #6:Nat

...

Solution 6

c1 --> < #3:Nat | #4:Nat >

i --> #1:Nat

x --> #2:Nat

c2:Configuration --> credit(#1:Nat)

j:Nat --> #1:Nat

y:Nat --> #2:Nat

k:Nat --> #3:Nat

z:Nat --> #4:Nat

We obtain thus 6 unifiers (we present only the first and last ones for brevity).
Let us consider the first one (Solution 1). What we have to do now is to

30 A. Lluch Lafuente, José Meseguer, A. Vandin

consider the right-hand-side of transposition2 after the application of the
unifier Solution 1, which is

{ < n5:Nat | n4:Nat > < n3:Nat | n6:Nat > [[n5:Nat <-> n3:Nat]]

(c7:Configuration credit(n1:Nat) < n1:Nat | n2:Nat >)}

and to compute all state terms reachable from it in one rewrite step with the
rules of BANK.R.16

Maude> search in BANK.BISIMULATION : { < n5:Nat | n4:Nat > < n3:Nat | n6:Nat

> [[n5:Nat <-> n3:Nat]] (c7:Configuration credit(n1:Nat) < n1:Nat | n2:Nat

>) } =>1 S:State .

search in BANK.R : {< n5:Nat | n4:Nat > < n3:Nat | n6:Nat >

[[n5:Nat <-> n3:Nat]]c7:Configuration credit(n1:Nat) < n1:Nat | n2:Nat >} =>1

S:State .

Solution 1 (state 1)

states: 2 rewrites: 5 in 0ms cpu (0ms real) (113636 rewrites/second)

S:State --> {< n5:Nat | n4:Nat > < n3:Nat | n6:Nat > < [[n5:Nat <-> n3:Nat]]n1:Nat

| s(n2:Nat) > [[n5:Nat <-> n3:Nat]]c7:Configuration}

No more solutions.

states: 2 rewrites: 5 in 0ms cpu (0ms real) (40322 rewrites/seconds

Only one state is reached (state 1). What is left to do is to check whether
that state is reachable (in BANK/PERMUTATION) from the state that results from
applying the unifier Solution 1 to the right hand side of rule credit2.

Maude> search [1] in BANK/PERMUTATION : { < n1 | s(n2) > c7 < n3 | n4 > < n5

| n6 > } =>* {< n5 | n4 > < n3 | n6 > < [[n5 <-> n3]] n1 | s(n2) > [[n5 <->

n3]] (c7)} .

search in BANK/PERMUTATION : {< n1 | s(n2) > c7 < n3 | n4 > < n5 | n6 >} =>*

{< n3 | n6 > < n5 | n4 > < [[n5 <-> n3]]n1 | s(n2) > [[n5 <-> n3]]c7} .

Solution 1 (state 6)

states: 7 rewrites: 54 in 0ms cpu (4ms real) (82442 rewrites/second)

empty substitution

The search is successful, and so are the rest of the needed checks. Therefore,
we can conclude that object permutations yield a bisimulation.

Step (v): Building the c-reduction BANK/C. Building the c-reduction for
our running example is then quite easy. All we need to do is to define the module
BANK/C as a protecting extension of BANK+C with the rules of BANK.R refactored
as defined in Def. 12. The result is basically as follows:

16 We actually use a simple auxiliary module BANK.PERMUTATION that imports both
BANK.R and BANK+PERMUTATION since we need to rewrite terms containing symbols
from BANK+PERMUTATION.

State Space c-Reductions of Concurrent Systems in Rewriting Logic 31

mod BANK/C is

protecting BANK+C .

...

rl [credit1] :

{ < i | x > credit(i) }

=> c({ < i | s(x) > }) .

rl [credit2] :

{ < i | x > credit(i) c1 }

=> c({ < i | s(x) > c1 }) .

endm

Step (vi): Exploring the reduced state space. We can now use the module
BANK/C for state space exploration analysis. For example, we can explore the state
space of our running example using the search command of Maude, starting
from a state with 4 empty accounts and 4 messages:

Maude> search in BANK/C : {init(4,4)} =>* s:State .

search in BANK/C : {init(4, 4)} =>* s:State .

...

states: 70 rewrites: 14333 in 26ms cpu (26ms real) (536615 rewrites/second)

which yields a state space with 70 states (against the 625 of the original state
space).

More pragmatically, we can use Maude’s LTL model checker to success-
fully verify some temporal properies. For instance, we can verify property
♦�¬some-message to determine that “eventually there will be no more messages
forever” as follows:

Maude> red modelCheck({init(4,4)}, <>[]~ some-message) .

reduce in MUTEX-CHECK : modelCheck({init(4, 4)}, <> []~ some-message) .

rewrites: 14485 in 17ms cpu (19ms real) (841906 rewrites/second)

result Bool: true

obtaining a positive result.

32 A. Lluch Lafuente, José Meseguer, A. Vandin

D Specification of the running example

This section documents the complete specification of our running example.

--- This is a simple example based on the BANK -ACCOUNT model
--- which can be found in the Maude Manual (ch. 8)
--- The example has been adapted for the sake of
--- illustrating the c-reduction technique

--- Natural numbers implementation
--- to ensure compatibility with verification tools

fmod NATURALS is

sort Nat .

op 0 : -> Nat [ctor] .
op s : Nat -> Nat [ctor] .

ops 1 2 3 4 5 6 7 8 9 10 : -> Nat .

eq 1 = s(0) .
eq 2 = s(1) .
eq 3 = s(2) .
eq 4 = s(3) .
eq 5 = s(4) .
eq 6 = s(5) .
eq 7 = s(6) .
eq 8 = s(7) .
eq 9 = s(8) .
eq 10 = s(9) .

op _ != _ : Nat Nat -> Bool .

vars n m : Nat .

eq 0 != 0 = false .
eq 0 != s(n) = true .
eq s(n) != 0 = true .
eq s(n) != s(m) = (n != m) .

op _ < _ : Nat Nat -> Bool .

eq n < 0 = false .
eq 0 < s(n) = true .
eq s(n) < s(m) = (n < m) .

endfm

--- The main module defining the signature
--- (simplified CONFIGURATION -like notation)

fmod BANK.E is

protecting NATURALS .

sorts Object Message Configuration State .
subsort Message Object < Configuration .

op <_|_> : Nat Nat -> Object [ctor] .
op credit : Nat -> Message [ctor] .
op __ : Configuration Configuration -> Configuration [assoc comm] .

State Space c-Reductions of Concurrent Systems in Rewriting Logic 33

op none : -> Configuration [ctor] .
op {_} : Configuration -> State [ctor frozen] .

vars c1 : Configuration .

--- Identity of object yuxtaposition
eq c1 none = c1 .

--- A generator of initial state
op init : Nat Nat -> Configuration .
op credits : Nat Nat -> Configuration .

vars n m : Nat .

eq init(0,m) = none .
eq init(s(n),m) = < n | 0 > credits(m,n) init(n,m) .

eq credits(0,n) = none .
eq credits(s(m),n) = credit(n) credits(m,n) .

endfm

--- The behavioural rules of the example

mod BANK.R is

protecting BANK.E .

vars i x : Nat .
vars c1 : Configuration .

--- A simple rule for crediting an account
rl [credit1] :

{ < i | x > credit(i) }
=> { < i | s(x) > } .

rl [credit2] :
{ < i | x > credit(i) c1 }

=> { < i | s(x) > c1 } .

endm

--- Implementation of object permutations

fmod BANK+PERMUTATION is

protecting BANK.E .

vars i j k x y : Nat .
vars obj1 : Object .
vars msg1 : Message .
vars c1 c2 : Configuration .

sort Transposition .

op _<->_ : Nat Nat -> Transposition [ctor comm] .

op [[_]] _ : Transposition State -> State [frozen] .
op [[_]] _ : Transposition Configuration -> Configuration [frozen] .
op [[_]] _ : Transposition Nat -> Nat .

eq [teq1] : [[i <-> j]]({c1}) = {[[i <-> j]](c1)} .
eq [teq2] : [[i <-> j]](none) = none .

34 A. Lluch Lafuente, José Meseguer, A. Vandin

eq [teq3] : [[i <-> j]](c1 c2) = ([[i <-> j]](c1)) ([[i <-> j]](c2))
.

eq [teq4] : [[i <-> j]](< k | x >) = < [[i <-> j]](k) | x > .
eq [teq5] : [[i <-> j]](credit(k)) = credit ([[i <-> j]] k) .
eq [teq6] : [[i <-> j]](i) = j .
ceq [teq7] : [[i <-> j]](k) = k if (i != k) /\ (j != k) .

--- This is useful for verification purposes
--- and is anyhow something one has to prove to hold
--- for the implementation of transpositions to be correct
eq [teq8] : [[i <-> i]] (c1) = c1 .
eq [teq9] : [[i <-> j]] ([[i <-> j]] (c1)) = c1 .
eq [teq10] : [[i <-> i]] (k) = k .
eq [teq11] : [[i <-> j]] ([[i <-> j]] (k)) = k .

endfm

--- Module that (partially) defines the atomic propositions
--- (state observations)

fmod BANK.APP is

protecting BANK+PERMUTATION .

vars i j x y : Nat .
vars c1 : Configuration .

ops empty -account two -dollars some -message : State -> [Bool] [frozen] .

--- It is important to note that this module partially defines
--- the propositions (only true cases) since it will be only used
--- for checking their stability under permutations with InvA
--- and InvA does not need a total definition
--- (and cannot handle the [owise] directive)

--- Some account has no money
eq [empty -account -eq1] : empty -account ({ < i | 0 > }) = true .
eq [empty -account -eq1] : empty -account ({ < i | 0 > c1 }) = true .

--- Some account has at least 2 dollars
eq [two -dollars -eq1] : two -dollars ({ < i | s(s(x)) > }) = true .
eq [two -dollars -eq2] : two -dollars ({ < i | s(s(x)) > c1 }) = true .

--- There is a message for some object
eq [some -message -eq1] : some -message ({ < i | x > credit(i) }) = true .
eq [some -message -eq2] : some -message ({ < i | x > credit(i) c1 }) = true .

endfm

--- Module that totally defines the atomic propositions
--- (state observations)

fmod BANK.AP is

protecting BANK.APP .

vars c1 : Configuration .

--- Some account has no money
eq [empty -account -eq2] : empty -account ({c1}) = false [owise] .

--- Some account has at least 2 dollars
eq [two -dollars -eq1] : two -dollars ({c1}) = false [owise] .

--- There is a message for some object

State Space c-Reductions of Concurrent Systems in Rewriting Logic 35

eq [some -message -eq1] : some -message ({c1}) = false [owise] .

endfm

--- The full system

mod BANK is

protecting BANK.AP .
protecting BANK.R .

endm

--- Permutations as rules for proving AP -preservation

mod BANK/PERMUTATION is

protecting BANK+PERMUTATION .

vars i j k x y : Nat .
vars c1 : Configuration .

rl [transposition1] :
{ < i | x > < j | y > }

=> { [[i <-> j]] (< i | x > < j | y >) } .

rl [transposition2] :
{ < i | x > < j | y > c1 }

=> { [[i <-> j]] (< i | x > < j | y > c1) } .

--- Auxiliary constructors useful for verification purposes
ops n1 n2 n3 n4 n5 n6 n7 n8 : -> Nat .
ops c3 c4 c5 c6 c7 c8 : -> Configuration .

endm

--- Auxiliary module for checking bisimulation

mod BANK.BISIMULATION is

protecting BANK.R .
protecting BANK+PERMUTATION .

endm

--- The c-extension of BANK that defines the c-canonizer
--- for object permutations

mod BANK+C is

protecting BANK+PERMUTATION .

op c : [State] -> [State] .

vars i j x y : Nat .
vars c1 : Configuration .

ceq c({ < i | x > < j | y > c1 })
= c({ [[i <-> j]](< i | x > < j | y > c1) })
if i < j
/\ x < y .

36 A. Lluch Lafuente, José Meseguer, A. Vandin

eq c({c1}) = {c1} [owise] .

endm

--- The c-reduction of BANK -RULES

mod BANK/C is

protecting BANK.AP .
protecting BANK+C .

vars i x : Nat .
vars c1 : Configuration .

--- A simple rule for crediting an account
rl [credit1] :

{ < i | x > credit(i) }
=> c({ < i | s(x) > }) .

rl [credit2] :
{ < i | x > credit(i) c1 }

=> c({ < i | s(x) > c1 }) .

endm

load model -checker.maude .

--- Module with predicates for the LTL model checker

mod BANK -PREDS is

protecting BANK/C * (sort State to c-State , sort Nat to c-Nat) .
including SATISFACTION .

subsort c-State < State .

op some -message : -> Prop .

vars c1 : Configuration .

eq {c1} |= some -message = some -message ({c1}) .

endm

--- Module for model checking the c-reduction

mod MUTEX -CHECK is

protecting BANK -PREDS .
including MODEL -CHECKER .
including LTL -SIMPLIFIER .

endm

State Space c-Reductions of Concurrent Systems in Rewriting Logic 37

E Algebraic Specifications of Group Actions

In this section we describe a simple way to specify a group action in an algebraic
way and how to verify that an action is indeed a group action.

Monoid and group actions. We start defining the action of a monoid on a
set of A.

Definition 13 (monoid action). Given a monoid M = (M, •, e) and a set A
a monoid action of M on A is a monoid homomorphism J·K : M → (A → A),
that is (i) JeK = idA (with idA the identity on A), and (ii) Jg • g′K = JgK ◦ Jg′K,
where ◦ denotes function composition in (A→ A), i.e. given f, f ′ ∈ (A→ A),
a ∈ A, (f ◦ f ′)(a) = f(f ′(a).

A monoid action can be equivalently described in a uncurried form as a
function J·K : M ×A→ A defined by the equality JgKa = JgK(a). In this case J·K
is a monoid homomorphism iff (i) JeKa = a, and (ii) Jg • g′Ka = JgK(Jg′Ka).

Now, we can define the action of a group G = (G, •, e, ()−1) on a set A simply
as a monoid action J·K : G→ (A→ A) (as we did in Definition 5).

It is trivial to prove that if G is a group, M is a monoid, and f : G→M is a
monoid homomorphism, then the image of G by f , f [G] is a group. Therefore,
for any group action J·K : G → (A → A) we have JGK ⊆ Bij(A) as a subgroup
inclusion, where Bij(A) is the set of all bijective functions f : A→ A.

Implicit specification of group actions. A subset H ⊆ G is a (monoid)
generator (see Definition 5) of a group G if the unique monoid homomorphism

H∗
j
� G : g1 . . . gn 7→ g1 • · · · • gn

induced by the inclusion j : H ↪→ G is surjective, where (H∗, , ε) denotes the
free monoid of strings on H, with string concatenation as juxtaposition and
the empty string ε.

Note also that we can always define a function i : H → H∗ such that
j(i(g)) = g−1 since by the surjectivity of j, for each g ∈ H there must exist a
(not necessarily unique) w ∈ H∗ such that g−1 = j(w).

Note that if G → (A → A) is a group action and j : H ↪→ G is a set of
monoid generators, then the composed homomorphism

H∗
j
� G

J·K−→ (A→ A)

is a monoid action.
furthermoreF, that the quotient monoid H∗/i = H∗/{gi(g) = ε | g ∈ H} ∪

{i(g)g = ε | g ∈ H} is a group, since each i-equivalence class [g1, . . . , gn] has an
inverse element [i(g1), . . . , i(gn)], so that we have a further factorization

H∗ � H∗/i� G
J·K
� JGK ↪→ Bij(A) ↪→ (A→ A)

38 A. Lluch Lafuente, José Meseguer, A. Vandin

The particular choice of G in the above diagram does not matter much: G
can be any group which is a quotient of H∗/i and has JGK as a quotient. In
particular we could choose G = A/i∗ or G = JGK.

This suggests defining a group action implicitly as follows.

Definition 14 (implicit group action). Given a set of generators H, and a
function i : H → H∗, an implicit group action of H on a set A is a function
J·K : H → (A→ A) such that for each g ∈ H we have (inv1) JgK◦Ji(g)K = idA, and
(inv2) Ji(g)K ◦ JgK = idA, where J·K : H∗ → (A→ A) is the unique homomorphic
extension of J·K.

It can be shown that an implicit group action is indeed a group action.

Proposition 6. Let H be a set of generators, and J·K : H → (A → A) be an
implicit group action on a set A. Then J·K is the action on A by the group G
generated by H.

Proof. First, note that J·K : H → (A→ A) has a unique homomorphic extension
to a monoid action (overloaded as J·K) J·K : H∗ → (A→ A)

Since J·K is an implicit group action it satisfies the conditions (inv1) and (inv2)
and it is trivial to check that these conditions mean that we have a factorization
of homomorphims:

H∗

����

J·K
// (A→ A)

H∗/i
J·K
// // JH∗K �

�
// Bij(A)
?�

OO

Therefore, we can view the implicit group action as either (i) an action of the
group H∗/i, (ii) an action of the group JH∗K, or (iii) an action of any group G
such that we have a surjective homomorphism H∗/i� G� JH∗K. ut

Note that we can always specify an implicit group action in uncurried form.

Definition 15 (implicit group action (uncurried)). Given a set H of gen-
erators and a function i : H → H∗, an implicit group action on a set A is a
function J·K : H ×A→ A such that for each g ∈ H and a ∈ A we have (inv’1)
JgK(Ji(g)KKa) = a, and (inv’2) JgK(Ji(g)KKa) = a where J·K : H∗ ×A→ A is the
unique function extending J·K : H × A → A such that for each a ∈ A, g ∈ H,
w ∈ H∗ it holds JεKa = a and JwgKa = JwK(JgKa).

