
Intelligenza Artificiale 5 (2011) 119–125
DOI 10.3233/IA-2011-0014
IOS Press

119

Program transformation for development,
verification, and synthesis of programs

Fabio Fioravantia, Alberto Pettorossib, Maurizio Proiettic,∗ and Valerio Sennib
aDepartment of Sciences, University of ‘G. D’Annunzio’, Viale Pindaro 42, Pescara, Italy
bDepartment of Informatics, Systems, and Production, University of Rome ‘Tor Vergata’,
Via del Politecnico 1, Rome, Italy
cCNR-IASI, Viale Manzoni 30, Rome, Italy

Abstract. This paper briefly describes the use of the program transformation methodology for the development of correct and
efficient programs. In particular, we will refer to the case of constraint logic programs and, through some examples, we will show
how by program transformation, one can improve, synthesize, and verify programs.

Keywords: Constraint logic programming, model checking, program development, program synthesis, unfold/fold program
transformation, software verification

1. Introduction

The program transformation methodology has been
introduced in the case of functional programs by
Burstall and Darlington [4] and then it has been adapted
to logic programs by Hogger [13] and Tamaki and
Sato [30]. The main idea of this methodology is to trans-
form, maybe in several steps and by applying various
transformation rules, the given initial program into a
final program with the aim of improving its efficiency
and preserving its correctness. If the initial program
encodes a declarative specification of a problem and
the final program encodes an efficient algorithm to solve
that problem, then program transformation is equivalent
to program synthesis. Thus, program transformation
can be viewed as a technique both: (i) for program
improvement and advanced compilation, and (ii) for
program synthesis and program derivation.

∗Corresponding author. CNR-IASI, Viale Manzoni 30, 00185
Rome, Italy. E-mails: maurizio.proietti@iasi.cnr.it (M. Proietti);
pettorossi@disp.uniroma2.it (A. Pettorossi); senni@disp.uniroma2.
it (V. Senni); fioravanti@sci.unich.it (F. Fioravanti).

In recent years program transformation has also been
used as a technique for program verification. It has been
shown, in fact, that via program transformation one
can perform model checking and, in general, one can
prove properties of infinite state systems that cannot be
analyzed by using standard model checking techniques.

In this paper we will illustrate the three uses of the
program transformation methodology we mentioned
above, namely, program improvement, program syn-
thesis, and program verification. In particular, we will
consider the case of specifications and algorithms writ-
ten as constraint logic programs [14] and we will
consider the following transformation rules: defini-
tion, unfolding, folding, goal replacement, and clause
splitting [2, 7, 10, 11, 27, 30]. These rules are cor-
rect in the sense that they preserve the perfect model
semantics [27], and they are applied according to
some specific strategies, which ensure that the objec-
tives of the transformations are actually achieved. This
approach to program transformation is, thus, called the
‘rules + strategies approach’.

Transformation rules similar to those we consider,
have been proposed also for: (i) concurrent constraint
logic programs [8], (ii) constraint handling rules [29],

1724-8035/11/$27.50 © 2011 – IOS Press and the authors. All rights reserved

120 F. Fioravanti et al. / Program transformation for development, verification, and synthesis of programs

and (iii) functional logic programs [1], and thus, the
transformation methodology we will present, can also
be used for those classes of programs. In the litera-
ture one can find also other sets of transformation rules
which are shown to be correct with respect to other
semantics (see, for instance [28] for rules which pre-
serve the well-founded semantics).

2. Program improvement

Programs are often written in a parametric form so
that they can be reused in different contexts, and when
a parametric program is reused, one may want to trans-
form it for taking advantage of the new context of use.
This transformation, called program specialization [12,
15, 18], often allows great efficiency improvements.
Let us present an example of this transformation by
deriving a deterministic, specialized pattern matcher
starting from a given nondeterministic, parametric pat-
tern matcher and a given specific pattern.

In this example we consider the matching relation
le m(P, S) on strings of numbers which holds between
a pattern P= [p1, . . . , pn] and a string S iff in S

there is a substring Q= [q1, . . . , qn] such that for
i=1, . . . , n, pi ≤ qi. (This example can be general-
ized by considering, instead of pi ≤ qi, any relation
that can be expressed via a constraint logic program.)
The following constraint logic program can be taken
as the specification of our general pattern matching
problem:

1. le m(P, S)←ap(B, C, S)∧ap(A, Q, B)∧le(P, Q)
2. ap([],Ys,Ys)←
3. ap([X|Xs],Ys, [X|Zs])← ap(Xs,Ys,Zs)
4. le([], [])←
5. le([X|Xs], [Y |Ys])← X≤Y∧le(Xs, Ys)

where ap denotes the familiar list concatenation pred-
icate. Now let us specialize this general program for a
specific patternP , say [1,0,2]. The transformation starts
off by applying the so-called definition rule, thereby
introducing the following clause:

6. le ms (S)← le m([1,0,2], S)

The transformation rules will be applied according to
the so-called Determinization Strategy [10]. This strat-
egy, which will not be presented here, allows a fully
automatic derivation of a deterministic, efficient pat-
tern matcher. First, clause 6 is unfolded w.r.t. the atom

le m([1,0,2], S), that is, the atom le m([1,0,2], S),
which is an instance of the head of clause 1, is replaced
by the corresponding instance of the body of clause 1.
The result is:

7. le ms (S)← ap(B, C, S)∧ap(A, Q, B)
∧le([1,0,2], Q)

Then, in order to fold clause 7, the following defini-
tion is introduced :

8. new1(S)← ap(B, C, S)∧ap(A, Q, B)
∧le([1,0,2], Q)

and then clause 7 is folded, that is (the instance of) the
body of clause 8 which occurs in the body of clause 7
is replaced by (the corresponding instance of) the head
of clause 8. The result is:

9. le ms (S)← new1(S)

Then, clause 8 is unfolded w.r.t. the atoms ap and le,
thereby obtaining:

10. new1([X|Xs])← 1≤X∧ap(Q, C,Xs)
∧le([0,2], Q)

11. new1([X|Xs])← ap(B, C,Xs)∧ap(A, Q, B)
∧le([1,0,2], Q)

Now, the clause splitting rule is applied to clause 11.
We have two cases: (i) 1≤X, and (ii) 1 > X, and we
get the following two clauses:

12. new1([X|Xs])←1≤X∧ap(B,C,Xs)∧ap(A,Q,B)
∧le([1,0,2], Q)

13. new1([X|Xs])←1>X∧ap(B,C,Xs)∧ap(A,Q,B)
∧le([1,0,2], Q)

Next, in order to fold clauses 10 and 12, we introduce
these two clauses defining the predicate new2:

14. new2(Xs)←ap(Q,C,Xs)∧le([0, 2], Q)
15. new2(Xs)←ap(B,C,Xs)∧ap(A,Q,B)

∧le([1,0,2],Q)

Then clauses 10 and 12 are folded by using clauses 14
and 15. Moreover, clause 13 is folded by using clause 8.
The resulting two clauses are the following:

16. new1([X|Xs])← 1≤X∧new2(Xs)
17. new1([X|Xs])← 1>X∧new1(Xs)

F. Fioravanti et al. / Program transformation for development, verification, and synthesis of programs 121

They are mutually exclusive because of the
constraints 1≤X and 1>X. Now the program transfor-
mation process continues in a way similar to the one we
have followed above, when deriving clauses 16 and 17
starting from clause 8. By starting from clauses 14 and
15, the new predicates new3 through new6 are intro-
duced, and by application of the unfold and fold rules,
their defining clauses are derived. Eventually, the fol-
lowing deterministic, specialized program is obtained:

9. le ms (S)← new1(S)
16. new1([X|Xs])← 1≤X∧new2(Xs)
17. new1([X|Xs])← 1>X∧new1(Xs)
18. new2([X|Xs])← 1≤X∧new3(Xs)
19. new2([X|Xs])← 0≤X∧1>X∧new4(Xs)
20. new2([X|Xs])← 0>X∧new1(Xs)
21. new3([X|Xs])← 2≤X∧new5(Xs)
22. new3([X|Xs])← 1≤X∧2>X∧new3(Xs)
23. new3([X|Xs])← 0≤X∧1>X∧new4(Xs)
24. new3([X|Xs])← 0>X∧new1(Xs)
25. new4([X|Xs])← 2≤X∧new6(Xs)
26. new4([X|Xs])← 1≤X∧2>X∧new2(Xs)
27. new4([X|Xs])← 1>X∧new1(Xs)
28. new5([X|Xs])←
29. new6([X|Xs])←

This program is deterministic, in the sense that at
most one clause at a time can be applied during the eval-
uation of any ground goal. The efficiency of this pro-
gram is very high because it behaves like a deterministic
finite automaton as the Knuth-Morris-Pratt matcher.

3. Program synthesis

Program synthesis is a technique for deriving pro-
grams from formal specifications (see, for instance [13,
26] for the derivation of logic programs from first-
order logic specifications). In this section we present
an example of use of program transformation for pro-
gram synthesis and we derive a constraint logic program
from its specification provided as a first-order formula.

We consider the N-queens problem, which is often
used in the literature for introducing techniques such
as recursion and backtracking. That problem can be
described as follows: N (≥ 0) queens are to be placed
on an N×N chess board, so that no two queens attack
each other, that is, they do not lie on the same row,
column, or diagonal. Since no two queens should lie on
the same column, the positions of the N queens on the
chess board can be denoted by the list L = [i1, . . . , iN]

such that, for 1≤k≤N, ik is the row where the queen
on column k is placed. A specification of the solution
L for the N-queens problem is given by the following
first-order formula ϕ(N, L):

nat(N) ∧ nat list(L) ∧ length(L, N) ∧
∀X (member (X, L)→ in(X, 1, N)) ∧
∀A,B,K,M ((1≤K ∧K<M

∧occurs(A, K, L) ∧occurs(B,M,L))

→ (A /=B ∧ A−B /=M−K ∧ B−A /=M−K))

where: nat(N) holds iff N is a natural number,
nat list(L) holds iff L is a list of natural num-
bers, length(L, N) holds iff L is a list of length N,
member (X, L) holds iff X is an element of the list L,
in(X, M, N) holds iff M≤X≤N, and occurs(X, I, L)
holds iff X occurs in the list L at position I, with
1≤I≤N, where N is the length of L. Let P be the pro-
gram made out of the clauses defining the predicates
nat , nat list , member , in , and occurs .

Now, our goal is to synthesize a constraint logic pro-
gram R which computes a predicate queens(N, L) such
that the following Property (π) holds:

(π) M(R) |= queens(N, L) iff M(P) |= ϕ(N, L)

where M(R) and M(P) denote the perfect model of
the program R and P , respectively. Now we apply
the technique presented in [11] starting from the
formula queens(N, L)← ϕ(N, L). The first step of
that technique consists in applying a variant of the
Lloyd-Topor transformation [19] which, starting from
queens(N, L)← ϕ(N, L), derives the following con-
straint logic program F :

queens(N, L)← nat(N) ∧ nat list(L)
∧length(L, N) ∧ ¬aux1(L, N) ∧ ¬aux2(L)

aux1(L, N)← member (X, L) ∧ ¬in(X, 1, N)

aux2(L)← 1≤K ∧K<M ∧ ¬(A /=B

∧A−B /=M−K ∧ B−A /=M−K)

∧occurs(A, K, L) ∧ occurs(B, M, L)

It can be shown that this variant of the Lloyd-Topor
transformation preserves the perfect model semantics.
As a consequence:

M(P ∪ F) |= queens(N, L) iff M(P) |= ϕ(N, L).

Unfortunately, the performance of the derived pro-
gram P∪F is not satisfactory, because it exhibits an

122 F. Fioravanti et al. / Program transformation for development, verification, and synthesis of programs

inefficient generate-and-test behavior, whenever we
evaluate queries by applying the usual depth-first search
strategy with the left-to-right computation rule. In par-
ticular, for any query of the form queens(n, L), where
n is a natural number and L is a variable list, program
P∪F first generates a value l for the list L and then tests
whether or not length(l, n) ∧ ¬aux1(l, n) ∧ ¬aux2(l)
holds. Note that this generate-and-test behavior may
even lead to nontermination, because an infinite number
of lists may be generated.

Thus, the process of program synthesis proceeds by
applying the definition, unfolding, folding, and goal re-
placement rules (see [11] for details), with the objective
of deriving a more efficient, terminating program. The
result of this transformation is the following program R:

queens(N, L)← new2(N, L, 0)

new2(N, [], K)← N=K

new2(N, [H |T], K)← N ≥K+1

∧new2(N, T, K+1)

∧new3(H, T, N, 0)

new3(A, [], N, M)← in(A, 1, N) ∧ nat(A)

new3(A, [B|T], N, M)← A /=B ∧ A−B /=M+1

∧B−A /=M+1 ∧ nat(B)
∧new3(A, T, N, M+1)

together with the clauses defining the predicates in
and nat . Since the transformation rules preserve the
perfect model semantics, M(R) |= queens(N, L) iff
M(P ∪ F) |= queens(N, L) and, thus, Property (π)
holds. It can be shown that R terminates for all queries
of the form queens(n, L). Note that program R solves
the N-queens problem in a clever way: each time a new
queen is placed on the board, R tests whether or not it
attacks another queen already on the board.

4. Program verification

Proof of program properties are often needed for
checking the correctness of software components with
respect to their specifications. This section illustrates
the use of program transformation for proving program
properties specified by either first-order formulas or
temporal logic formulas.

Proofs performed by using program transformation
are strongly related to proofs by mathematical induction
(see [3] for a survey on inductive proofs). In partic-
ular, the unfolding rule can be used for decomposing
a formula of the form ϕ(t(X)), where t(X) is a com-

plex term, into a combination of n formulas of the form
ϕ1(X), . . . , ϕn(X), and the folding rule can be used for
applying inductive hypotheses.

The unfold/fold transformations introduced in [4, 30]
can be used for proving several kinds of program
properties, such as equivalences of functions defined
by recursive equation programs [16], equivalences of
predicates defined by logic programs [22], first-order
properties of predicates defined by constraint logic
programs [23], and temporal properties of concurrent
systems [9, 25].

4.1. The unfold/fold proof method

Now we present, by means of a simple example taken
from [23], a technique called unfold/fold proof method
which is based on program transformation and can
be used for proving first-order properties of constraint
logic programs.

Let us consider the following program Member
which defines the membership relation for lists:

member (X, [Y |L])← X=Y

member (X, [Y |L])← member (X, L)

The following formula ϕ states that every finite list
of numbers has an upper bound:

ϕ : ∀L ∃U ∀X (member (X, L)→ X ≤ U)

To show that ϕ holds, we apply the unfold/fold proof
method which consists of the following two steps. In the
first step, ϕ is transformed into a set of clauses by apply-
ing a variant of the Lloyd-Topor transformation [19],
thereby deriving the following program Prop1 which
defines the predicate prop:

prop ← ¬p

p← list(L) ∧ ¬q(L)
q(L)← list(L) ∧ ¬r(L, U)
r(L, U)←X>U ∧ list(L) ∧member (X, L)

The predicate prop is equivalent to ϕ in the sense that
M(Member) |= ϕ iff M(Member ∪ Prop1) |= prop.
In the second step, the existential variables occurring
in Prop1 (that is, the variables occurring in the body of
a clause and not in its head) are eliminated by apply-
ing the transformation strategy presented in [23]. As a
result we get the following program Prop2:

prop ← ¬p p← p1 p1 ← p1

F. Fioravanti et al. / Program transformation for development, verification, and synthesis of programs 123

Now, Prop2 is a propositional program and its finite
perfect model M(Prop2) is {prop}. Since it can be
shown that every transformation we have applied pre-
serves the perfect model, we get that M(Member) |= ϕ

iff M(Prop2) |= prop. Therefore, we have that ϕ holds
for the program Member because prop belongs to
M(Prop2).

Note that the unfold/fold proof method can be viewed
as an instance of the quantifier elimination method
which has well-known applications in the field of auto-
mated theorem proving (see [24] for a brief survey).

4.2. Infinite-state model checking

In this section we present a method [9] for veri-
fying temporal properties of infinite state systems by
transforming constraint logic programs.

As indicated in [5], the behavior of a concurrent sys-
tem that evolves over time according to a given protocol
can be modeled by means of a state transition system,
that is, (i) a set S of states, (ii) an initial state s0 ∈ S, and
(iii) a transition relation t ⊆ S × S. Let us assume that
t is a total relation, that is, for every state s ∈ S there
exists a state s′ ∈ S, called the successor state of s, such
that t(s, s′) holds. A computation path starting from a
state s1 is an infinite sequence of states s1 s2 . . . such
that, for every i≥1, there is a transition from si to si+1,
that is, t(si, si+1) holds.

The properties of the evolution over time of a con-
current system are specified by using formulas of the
temporal logic called Computation Tree Logic (or CTL,
for short [5]) which specify the properties of the com-
putation paths. The formulas of CTL are built from a
given set of elementary properties of the states by using:
(i) the usual connectives:¬ (‘not’) and∧ (‘and’), (ii) the
following quantifiers along single computation paths:
g (‘for all states on the path’ or ‘globally’), f (‘there
exists a state on the path’ or ‘in the future’), x (‘next
time’), and u (‘until’), and (iii) the two quantifiers over
computation paths:a (‘for all paths’) and e (‘there exists
a path’).

There exist very efficient algorithms and tools which
use model checking techniques for verifying tempo-
ral properties of finite state systems, that is, systems
where the set S of states is finite [5]. Unfortunately,
many concurrent systems cannot be modeled by finite
state systems and one should look for verification meth-
ods for infinite state systems. Various methods based on
automated theorem proving have been proposed in the
literature and, in particular, a method based on con-

straint logic programming is described in [6]. Note that
all of the verification methods for infinite state systems
are necessarily incomplete, because the problem of ver-
ifying CTL properties of those systems is in general
undecidable.

As an example of use of program transformation for
verifying CTL properties of infinite state systems, now
we will consider the Bakery protocol [17] and we will
verify that it satisfies the mutual exclusion property. Let
A and B be two agents which want to access a shared
resource in a mutual exclusive way by using the Bakery
protocol. A state of agent A is represented by the pair
〈A1, A2〉, whereA1 is a control state that takes values in
the set {t,w,u} (where t, w, and u stand for think, wait,
and use, respectively), and A2 is a counter that takes
values in the set of natural numbers. Analogously, the
state of agent B is represented by a pair 〈B1, B2〉 of
the control state B1 and the counter B2. Then the state
of the system consisting of the two agents A and B

is represented by the 4-tuple 〈A1,A2,B1,B2〉, and the
transition relation t from an old state OldS to a new
state NewS , is defined by:

t(OldS ,NewS)← tA(OldS ,NewS)
t(OldS ,NewS)← tB (OldS ,NewS)

where the transition relation tA for the agent A is given
by the following clauses whose bodies are atomic con-
straints (in general, they may be conjunctions of atomic
constraints) (see also Fig. 1):

tA(〈t, A2, B1, B2〉, 〈w , A21, B1, B2〉)
← A21=B2+1

tA(〈w , A2, B1, B2〉, 〈u, A2, B1, B2〉)← A2<B2
tA(〈w , A2, B1, B2〉, 〈u, A2, B1, B2〉)← B2=0
tA(〈u, A2, B1, B2〉, 〈t, A21, B1, B2〉)← A21=0

Fig. 1. The Bakery protocol: a graphical representation of the transi-
tion relation tA for agent A.

124 F. Fioravanti et al. / Program transformation for development, verification, and synthesis of programs

In a similar way the following clauses define the
transition relation tB for the agent B:

tB (〈A1, A2, t, B2〉, 〈A1, A2,w , B21〉)
← B21=A2+1

tB (〈A1, A2,w , B2〉, 〈A1, A2, u, B2〉)← B2<A2
tB (〈A1, A2,w , B2〉, 〈A1, A2, u, B2〉)← A2=0
tB (〈A1, A2, u, B2〉, 〈A1, A2, t, B21〉)← B21=0

Note that the system has an infinite number of states,
because counters may increase in an unbounded way.

The temporal properties of a transition system are
specified by defining a predicate sat(S, P) which holds
if and only if the temporal formula P holds at state S.
The clauses defining sat(S, P) for the cases where P

is: (i) an elementary formula F , (ii) a formula of the
form¬F , (iii) a formula of the form F1 ∧ F2, and (iv) a
formula of the form ef (F), are the following:

sat(S, F)← elem(S, F)
sat(S,¬F)← ¬sat(S, F)
sat(X, F1 ∧ F2)← sat(X, F1) ∧ sat(X, F2)
sat(S, ef (F))← sat(S, F)
sat(S, ef (F))← t(S, T) ∧ sat(T, ef (F))

where elem(S, F) holds iff F is an elementary property
which holds at state S. In particular, for the Bakery
protocol, the following clause:

elem(〈u, A2, u, B2〉, unsafe)←

encodes that unsafe holds at a state where both agents
A and B are in the control state u (that is, both agents
are accessing the shared resource at the same time).
Note that ef denotes the composition of e (there exists
a computation path) and f (there exists a state on the
path) and, indeed, sat(S, ef (F)) holds iff there exists a
computation path π starting from S and a state s on π

such that F holds at s.
The mutual exclusion property holds for the Bakery

protocol if there is no computation path π starting
from the initial state such that at a state on this path π

the unsafe property holds. Thus, the mutual exclusion
property holds if sat(〈t,0,t,0〉,¬ef (unsafe)) belongs
to the perfect model M(Pmex), where: (i) 〈t,0,t,0〉
is the initial state of the system, and (ii) Pmex is the
program consisting of the clauses, given above, defin-
ing the predicates t, tA, tB, sat, and elem. In order
to show that sat(〈t,0,t,0〉,¬ef (unsafe)) ∈ M(Pmex),
the following clause, defining the new predicate mex ,
is introduced:

(µ) mex ← sat(〈t,0,t,0〉,¬ef (unsafe))

and the program Pmex ∪ {µ} is transformed into a new
program Q which contains a clause with empty
body of the form: mex ← (see [9] for details). This
transformation is performed by using the definition,
unfolding, and folding rules according to the spe-
cialization strategy [12, 15, 18] that in our case
derives the clauses specialized to the evaluation of
the predicate mex . By the correctness of the rules,
mex ∈ M(Q) iff mex ∈ M(Pmex ∪ {µ}) and, hence,
sat(〈t,0,t,0〉,¬ef (unsafe))∈M(Pmex), that is, the
mutual exclusion property holds, because mex ← is
a clause of Q.

The derivation needed for verifying the mutual exclu-
sion property was performed in a fully automatic way by
using our experimental constraint logic program trans-
formation system MAP [20].

5. Conclusions and future directions

This paper presents a brief overview of the program
transformation methodology and illustrates its use for:
(i) the derivation of correct software modules from their
formal specifications, and (ii) the proof of properties
of programs. Since program transformation preserves
correctness and improves efficiency, it is very effective
for constructing programs which are provably correct
and whose performance is very high.

In order to make program transformation even more
effective in the future, it is necessary to further develop
and automate the transformation strategies for program
improvement, program synthesis, and program verifi-
cation, and incorporate them into powerful program
development tools.

Topics for future research include the investigation
of new application areas concerning, for instance, secu-
rity properties of distributed systems, safety properties
of hybrid systems, and protocol conformance of multi-
agent systems. A more challenging long term goal is
the fully automatic synthesis of programs which, by
construction, are guaranteed to enjoy the properties
expressed by their specification.

Acknowledgements

Many thanks to the guest editors of the Intelligenza
Artificiale Journal for their kind invitation to write a
paper in honor of Alberto Martelli. His paper [21] taught
us how to write algorithms in a structural way.

F. Fioravanti et al. / Program transformation for development, verification, and synthesis of programs 125

References

[1] M. Alpuente, M. Falaschi, G. Moreno and G. Vidal, A trans-
formation system for lazy functional logic programs, in: Proc
4th Fuji Int Symp Functional and Logic Programming, A.
Middeldorp and T. Sato, eds, Springer-Verlag, Berlin (Ger-
many), LNCS 631, 1999, pp. 147–162.

[2] A. Bossi, N. Cocco and S. Etalle, Transforming normal pro-
grams by replacement, in: Meta ’92, Springer-Verlag, Berlin
(Germany), LNCS 649, 1992, pp. 265–279.

[3] A. Bundy, The automation of proof by mathematical induc-
tion, in: Handbook of Automated Reasoning, A. Robinson
and A. Voronkov, eds, North Holland, Elsevier Science B.V.,
Amsterdam (The Netherlands), vol. I, 2001, pp. 845–911.

[4] R.M. Burstall and J. Darlington, A transformation system for
developing recursive programs, J ACM, 24(1) (1977), 44–67.

[5] E.M. Clarke, O. Grumberg and D. Peled, Model Checking, MIT
Press, Cambridge, MA (USA), 1999.

[6] G. Delzanno and A. Podelski, Constraint-based deductive
model checking, Int J Software Tools for Technology Transfer,
3(3) (2001), 250–270.

[7] S. Etalle and M. Gabbrielli, Transformations of CLP modules,
Theo Comp Sci 166 (1996), 101–146.

[8] S. Etalle, M. Gabbrielli and M.C. Meo, Transformations of
CCP programs, ACM TOPLAS 23(3) (2001), 304–395.

[9] F. Fioravanti, A. Pettorossi and M. Proietti., Verifying CTL
properties of infinite state systems by specializing constraint
logic programs, in: Proc VCL’01, Florence, Italy, Univ.
Southampton, UK, 2001, pp. 85–96.

[10] F. Fioravanti, A. Pettorossi and M. Proietti, Specialization with
clause splitting for deriving deterministic constraint logic pro-
grams, in: IEEE Int Conf on Systems, Man and Cybernetics,
Hammamet, Tunisia, IEEE Computer Society Press, New York,
NY (USA), Vol. 1, 2002, pp. 188–193.

[11] F. Fioravanti, A. Pettorossi, and M. Proietti, Transformation
rules for locally stratified constraint logic programs, in: Pro-
gram Development in Computational Logic, Springer-Verlag,
LNCS 3049, 2004, pp. 292–340.

[12] J.P. Gallagher, Tutorial on specialisation of logic programs, in:
PEPM ’93, Copenhagen, Denmark, ACM Press, 1993, New
York, NY (USA), pp. 88–98.

[13] C.J. Hogger, Derivation of logic programs, J ACM 28(2) (1981),
372–392.

[14] J. Jaffar and M. Maher, Constraint logic programming: A sur-
vey, J of Logic Programming 19/20 (1994), 503–581.

[15] N.D. Jones, C.K. Gomard and P. Sestoft, Partial Evaluation
and Automatic Program Generation, Prentice Hall, 1993.

[16] L. Kott, The McCarthy’s induction principle: ‘oldy’ but ‘goody’.
Calcolo 19(1) (1982), 59–69.

[17] L. Lamport, A new solution of Dijkstra’s concurrent pro-
gramming problem, Communications ACM 17(8) (1974),
453–455.

[18] M. Leuschel and M. Bruynooghe, Logic program specialisation
through partial deduction: Control issues, Theory and Practice
of Logic Programming 2(4&5) (2002), 461–515.

[19] J.W. Lloyd, Foundations of Logic Programming, Springer-
Verlag, Berlin, Second Edition, 1987.

[20] MAP. The MAP transformation system, http://www.iasi.cnr.it/˜
proietti/system.html, 1995–2010.

[21] A. Martelli and U. Montanari, An efficient unification algo-
rithm, ACM TOPLAS 4(12) (1982), 258–282.

[22] A. Pettorossi and M. Proietti, Synthesis and transformation of
logic programs using unfold/fold proofs. J of Logic Program-
ming 41(2&3) (1999), 197–230.

[23] A. Pettorossi, M. Proietti and V. Senni, Proving properties of
constraint logic programs by eliminating existential variables,
in: ICLP ’06, Springer, Berlin (Germany), LNCS 4079, 2006,
pp. 179–195.

[24] M.O. Rabin, Decidable theories. in: Handbook of Mathemati-
cal Logic, Jon Barwise, ed., Elsevier Science B.V., Amsterdam
(The Netherlands), 1977, pp. 595–629.

[25] A. Roychoudhury, K. Narayan Kumar, C.R. Ramakrishnan, I.V.
Ramakrishnan and S.A. Smolka, Verification of parameterized
systems using logic program transformations, in: TACAS 2000,
Berlin, Germany, Springer, Berlin (Germany), LNCS 1785,
2000, pp. 172–187.

[26] T. Sato and H. Tamaki, Transformational logic program synthe-
sis, in: Proc Int Conf on Fifth Generation Computer Systems,
ICOT, 1984, pp. 195–201.

[27] H. Seki, Unfold/fold transformation of stratified programs,
Theo Comp Sci 86 (1991), 107–139.

[28] H. Seki, Unfold/fold transformation of general logic programs
for well-founded semantics, Journal of Logic Programming,
16(1&2) (1993), 5–23.

[29] P. Tacchella, M. Gabbrielli and M.C. Meo, Unfolding in
CHR, in: Proc 9th Int ACM SIGPLAN Conference on Prin-
ciples and Practice of Declarative Programming, 2007, pp.
179–186.

[30] H. Tamaki and T. Sato, Unfold/fold transformation of logic
programs, in: Proc ICLP’84, Uppsala University, Uppsala,
Sweden, 1984, pp. 127–138.

http://www.iasi.cnr.it/{{setbox @tempboxa hbox {global mathchardef accent@spacefactor spacefactor }accent 126 }spacefactor accent@spacefactor }proietti/system.html
http://www.iasi.cnr.it/{{setbox @tempboxa hbox {global mathchardef accent@spacefactor spacefactor }accent 126 }spacefactor accent@spacefactor }proietti/system.html

