PhysiCs

Physics 5, 105 (2012)

Viewpoint
The Longevity of Rankings

Guido Caldarelli

IMT Alti Studi Lucca, Piazza S. Ponziano 6, 55100 Lucca, Italy

Published September 17, 2012

A phase transition controlled by moise determines how volatile rankings are.
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Whenever we use Google’s search engine, shop for bar-
gains on Amazon, or evaluate a colleague through ci-
tation measures such as the h-index, we are relying on
rankings to bring order into large and complex datasets.
We would be much better at making decisions if we could
thoroughly understand the mechanisms that drive these
rankings. Can we trust a ranking system to point out
the items of highest quality? Can lousy items occasion-
ally reach the top of a ranking? Will valuable ones al-
ways emerge? Certain rankings, like those measuring the
number of times scientists are cited, show remarkable
stability: it would take some effort to replace Einstein
or Darwin as the most talked about scientists. Others,
like bestseller lists, have a very volatile nature and fluc-
tuate on a daily basis. Why such a different behavior?
In Physical Review Letters, Nicholas Blumm at North-
eastern University and the Dana-Farber Cancer Institute,
both in Boston, Massachusetts, and colleagues report on
a study of the volatility of several prominent ranking sys-
tems [I]. From their analysis, a unified theory of ranking
stability emerges.

Researchers apply theories rooted in statistical me-
chanics to explain the properties of particularly impor-
tant rankings. A ranking is typically described by dis-
tribution functions, relating the probability that an item
is ranked at a certain position to key parameters of the
system [2]. For example, the American linguist George
Kingsley Zipf [3] observed that the usage rank of a word
is, to a good approximation, inversely proportional to its
frequency: the most frequent word will occur twice as of-
ten as the second most frequent word, three times as often
as the third most frequent word, etc. This scaling applies
to all languages and has been interpreted by Zipf [3] and
more recent studies [4] in terms of a least-effort principle:
minimization of the efforts of both hearer and speaker in
a conversation leads to a Zipf-like distribution law, a hall-
mark of the efficient mechanisms by which human lan-
guages are generated. Similar scaling laws are observed
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in other rankings unrelated to language, such as the dis-
tribution of incomes described by the Italian economist
Vilfredo Pareto [5], who noticed that a small proportion
of a population owns a large part of the wealth. The
coefficient of the Pareto’s power law is often taken as an
indicator of a society’s inequalities. These examples il-
lustrate how statistical analysis can reveal profound and
sometimes hidden mechanisms that govern the system
being ranked.

Blumm et al. go beyond the description of ranking dis-
tribution functions and focus instead on what determines
their stability in time. The authors search for a common
law regulating ranking dynamics by analyzing six promi-
nent ranking systems: the use of individual words in pub-
lished literature, the hourly page views in Wikipedia, the
frequency of certain keywords used in Twitter, the daily
market capitalization of companies, the number of diag-
nosis of a specific disease recorded by Medicare, and the
number of article citations in the Physical Review corpus.
Each ranking system is based on a different mechanism
for assigning scores to different items of a list. The rank
of a specific item is obtained by comparing its score to
those of other items. Rank is thus a collective measure,
depending both on an item’s score and on what happens
to the rest of the ranked system.

The authors observe that the stability of an item’s rank
depends on the fluctuations of the score around its mean
value. An item ranked at a certain position (r) is rank-
stable if the score fluctuates less than the gap to the con-
secutively ranked items (r £1). To describe the score dy-
namics, Blumm et al. apply a universal stochastic equa-
tion (a Langevin equation) that can describe the evolu-
tion of systems under the simultaneous action of deter-
ministic and stochastic forces. The authors assume that
the deterministic and stochastic terms can be represented
by power-law functions of the item’s score, weighted by
a series of constants A; (for every item) and B. The con-
stant A captures the “fitness” of each item, describing
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the aptitude to increase its score. For example, in social
media, A measures the ability to acquire new friends or
followers, or in publishing, the capacity of an article to
get new citations. B, instead, models a Gaussian random
noise that determines stochastic score fluctuations. For
the six investigated rankings, the authors derive empiri-
cal values of A and B by fitting historical data.

The interplay of these two weights determines the
ranking within the system and, more importantly, its sta-
bility. The authors calculate the probability that a cer-
tain item with fitness A has a certain score x at a given
time. Under the assumption that the system reaches a
steady-state solution, they find that the most likely score
depends on the relative value of fitness compared to other
items’ fitness. The effect of the noise is to make the score
fluctuate by a certain amount. The outcome depends
critically on the value of the noise parameter B. If the
noise is lower than a certain critical value B, the score
remains localized around the original value. If the noise
is larger than B, the solution is no longer stable. Since
the stability of the score does not necessarily imply rank
stability, two distinct regimes can be found below B,.. For
noise between B, and a certain value B, each item has a
stable score, but the fluctuations are sufficient for items
with comparable score to swap their rank. Below B,,
both ranks and scores are stable. Blumm et al. demon-
strate that the volatility of ranking can be captured by
a phase diagram in the A-B plane (shown in Fig. [1f),
where ranking stability properties are plotted as a func-
tion of the two parameters A and B. Three phases are
identified in analogy to the classical phases of statistical
mechanics: ranking and score stable (solid), score-only
stable (liquid), and volatile (gas). Transitions between
different regimes of ranking volatility can be described
as phase transitions in which the random noise (B) is
the control parameter.

The authors test the validity of this approach by con-
sidering the ranking dynamics for the top five items of
the six investigated examples. In the A-B diagram, one
can represent every real system with a line correspond-
ing to the experimental value measured for B (see Fig.
. Medicare, word usage, and market cap are in the
rank-stable regime, in which highly ranked items should
display rank stability, a prediction that agrees with em-
pirical results. Conversely, Twitter keywords usage and
Wikipedia page views are in the unstable phase, with
high volatility of both score and ranking. Finally, Phys-
ical Review citations fall in the score-stable, liquidlike
phase: the scores fluctuate around a well-defined aver-
age, but this is not sufficient to maintain rank stability.

The work of Blumm et al. delivers a fresh contribution
to the study of ranking in social and economic systems,
formulating a universal, scale-invariant theory that cap-
tures the dynamics of a variety of rankings with wildly
different volatility properties. Most of the differences
can be attributed to a phase transition controlled by the
stochastic noise strength. It is tempting to conclude that
the ephemeral nature of modern social media like Twitter
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FIG. 1: Phase diagram of ranking stability in the A—B plane
(A: fitness, B: noise). For a given ranking system, A is a vec-
tor of constants (A;) representing the “fitness” of all items
of the ranked list, B is a parameter measuring the rank-
ing’s noise. Every real ranking system is represented by a
line corresponding to the experimentally determined value of
B. In analogy to the classical phases of statistical mechan-
ics, three phases are identified based on the stability of the
top-ranked items: rank stable (solid), score stable (liquid),
and unstable or volatile (gas). B is the control parameter
of the phase transition. The lower panel shows the rank
evolution for the top-ranked items of a stable system (dis-
eases diagnosis in Medicare) and a volatile one (page views
in Wikipedia). (N. Blumm et al.[I]; Image on homepage: iS-
tockphoto/JeffreyRasmussen)

or Wikipedia explains the larger noise (hence volatility)
compared to established rankings such as that of word us-
age in English literature. Further studies should explore
in more detail the origin of noise in ranking. Another im-
portant direction for future research is the extension to
correlated noise (in real-life systems, ranking fluctuations
of different items may be mutually dependent).

It is reassuring to know that Darwin and Einstein will
continue to top scientific rankings for the foreseeable fu-
ture. However, as a statistical physicist, I am also in-
trigued by the fact that, in our ranking-obsessed world,
a small fluctuation (or a bit of luck) may be all it takes
to turn today’s also-ran into tomorrow’s number one.
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