
Deciding Full Branching Time Logic by
Program Transformation

Alberto Pettorossi1, Maurizio Proietti2, and Valerio Senni1

1 DISP, University of Rome Tor Vergata, Via del Politecnico 1, I-00133 Rome, Italy
{pettorossi,senni}@disp.uniroma2.it

2 IASI-CNR, Viale Manzoni 30, I-00185 Rome, Italy
proietti@iasi.cnr.it

Abstract. We present a method based on logic program transforma-
tion, for verifying Computation Tree Logic (CTL∗) properties of finite
state reactive systems. The finite state systems and the CTL∗ properties
we want to verify, are encoded as logic programs on infinite lists. Our
verification method consists of two steps. In the first step we transform
the logic program that encodes the given system and the given property,
into a monadic ω-program, that is, a stratified program defining nullary
or unary predicates on infinite lists. This transformation is performed by
applying unfold/fold rules that preserve the perfect model of the initial
program. In the second step we verify the property of interest by using
a proof method for monadic ω-programs.

1 Introduction

The branching time temporal logic CTL∗ is among the most popular temporal
logics that have been proposed for verifying properties of reactive systems [4]. A
finite state reactive system, such as a protocol, a concurrent system, or a digital
circuit, is formally specified as a Kripke structure and the property to be verified
is specified as a CTL∗ formula. Thus, the problem of checking whether or not a
reactive system satisfies a given property is reduced to the problem of checking
whether or not a Kripke structure is a model of a CTL∗ formula.

There is a vast literature on the problem of model checking for the CTL∗ logic
and, in particular, its two fragments: (i) the Computational Tree Logic CTL, and
(ii) the Linear-time Temporal Logic LTL (see [2] for a survey). Most of the known
model checking algorithms for CTL∗ either combine model checking algorithms
for CTL and LTL [2], or use techniques based on translations to automata on
infinite trees [6].

In this paper we extend to CTL∗ a method proposed in [11] for LTL. We
encode the satisfaction relation of a CTL∗ formula ϕ with respect to a Kripke
structure K by means of a locally stratified logic program PK,ϕ. The program
PK,ϕ belongs to a class of programs, called ω-programs, which define predicates
on infinite lists. Predicates of this type are needed because the definition of the
satisfaction relation is based on the infinite computation paths of K. The seman-
tics of PK,ϕ is provided by its unique perfect model [12] which for ω-programs is
defined in terms of a non-Herbrand interpretation for infinite lists.

Our verification method consists of two steps. In the first step we transform
the program PK,ϕ into a monadic ω-program, that is, a stratified program that
defines nullary or unary predicates on infinite lists. This transformation is per-
formed by applying unfold/fold transformation rules similar to those presented
in [5,14,15] according to a strategy which is a variant of the specialization strategy
presented in [5]. Similarly to [5,14], the use of those unfold/fold rules guarantees
the preservation of the perfect model of PK,ϕ.

In the second step of our verification method we apply a proof method for
monadic ω-programs which is sound and complete with respect to the perfect
model semantics.

The paper is structured as follows. In Section 2 we introduce the class of
ω-programs and we show how to encode the satisfaction relation for any given
Kripke structure and CTL∗ formula as an ω-program. In Section 3 we present
our verification method. In particular, in Section 3.1 we present the special-
ization strategy for transforming an ω-program into a monadic ω-program and
in Section 3.2 we present the proof method for monadic ω-programs. Finally,
in Section 4 we discuss related work in the area of model checking and logic
programming.

2 Encoding CTL∗ Model Checking as a Logic Program

In this section we describe a method which, given a Kripke structure K and
a CTL∗ state formula ϕ, allows us to construct a logic program PK,ϕ and to
define a nullary predicate prop such that ϕ is true in K, written K � ϕ, iff
prop is true in the perfect model of PK,ϕ, written M(PK,ϕ) � prop. Thus, the
problem of checking whether or not K � ϕ holds, also called the problem of model
checking ϕ with respect to K, is reduced to the problem of testing whether or
not M(PK,ϕ) � prop holds.

Now we briefly recall the definition of the temporal logic CTL∗ (see [2]
for more details). A Kripke structure is a 4-tuple 〈Σ, s0, ρ, λ〉, where: (i) Σ =
{s0, . . . , sh} is a finite set of states, (ii) s0 ∈ Σ is the initial state, (iii) ρ ⊆ Σ×Σ
is a total transition relation, and (iv) λ :Σ→P(Elem) is a total function that
assigns to every state s ∈ Σ a subset λ(s) of the set Elem of elementary prop-
erties. A computation path of K from a state s is an infinite list [a0, a1, . . .] of
states such that a0 = s and, for every i≥0, (ai, ai+1) ∈ ρ. Given an infinite list
π = [a0, a1, . . .] of states, by πj , for any j≥ 0, we denote the infinite list which
is the suffix [aj , aj+1, . . .] of π.

Definition 1 (CTL∗ Formulas). Given a set Elem of elementary properties,
a CTL∗ formula ϕ is either a path formula ϕp or a state formula ϕs defined as
follows:

(path formulas) ϕp ::= ϕs | ¬ϕp | ϕp ∧ ϕp | X ϕp | ϕp U ϕp

(state formulas) ϕs ::= d | ¬ϕs | ϕs ∧ ϕs | E ϕp

where d∈Elem.

2

As the following definition formally specifies, (i) Xϕ holds on a computation
path π if ϕ holds in the second state of π, (ii) ϕ1 Uϕ2 holds on a computation
path π if ϕ2 holds in a state s of π and ϕ1 holds in every state preceding s in π,
and (iii) Eϕ holds in a state s if there exists a computation path starting from s
on which ϕ holds.

Definition 2 (Satisfaction Relation for CTL∗). Let K = 〈Σ, s0, ρ, λ〉 be a
Kripke structure. For any CTL∗ formula ϕ and infinite list π ∈ Σω, the relation
K, π � ϕ is inductively defined as follows:

K, π � d iff π = [a0, a1, . . .] and d∈λ(a0)
K, π � ¬ϕ iff K, π 6� ϕ
K, π � ϕ1 ∧ ϕ2 iff K, π � ϕ1 and K, π � ϕ2

K, π � X ϕ iff K, π1 � ϕ
K, π � ϕ1 U ϕ2 iff there exists i≥0 such that K, πi � ϕ2

and, for all 0≤j<i, K, πj � ϕ1

K, π � E ϕ iff π = [a0, a1, . . .] and there exists a computation path π′

from a0 such that K, π′ � ϕ.

Given a state formula ϕ, we say that K is a model of ϕ, written K � ϕ, iff there
exists an infinite list π ∈ Σω such that the first state of π is the initial state s0
of K and K, π � ϕ holds.

The above definition of the satisfaction relation for CTL∗ formulas is a shorter,
yet equivalent, version of the usual definition one can find in the literature [2].

In order to encode the satisfaction relation for CTL∗ formulas as a logic
program, we will introduce in the next section a class of logic programs, called
ω-programs. In this class the arguments of predicates may denote infinite lists.

2.1 Syntax and Semantics of ω-Programs

Let us consider a Kripke structure K. Let us also consider a first order lan-
guage Lω given by a set Var of variables, a set Fun of function symbols, and
a set Pred of predicate symbols. We assume that Fun includes: (i) the set Σ
of the states of K, each state being a constant of Lω, (ii) the set Elem of the
elementary properties of K, each elementary property being a constant of Lω,
and (iii) the binary function symbol [|] which is the constructor of infinite lists.
Thus, for instance, [H|T] is the infinite list whose head is H and whose tail is
the infinite list T .

We assume that Lω is a typed language [9] with the following three basic
types: (i) fterm, which is the type of finite terms, (ii) state, which is the type
of states, and (iii) ilist, which is the type of infinite lists of states. Every
function symbol in Fun − (Σ ∪ {[|]}), with arity n (≥0), has type fterm×· · ·×
fterm → fterm, where fterm occurs n times to the left of →. Every function
symbol in Σ has arity 0 and type state. The function symbol [|] has type
state×ilist→ilist. A predicate symbol of arity n (≥0) in Pred has type of
the form τ1×· · ·×τn, where τ1, . . . , τn ∈ {fterm, state, ilist}. An ω-program is
a logic program constructed as usual (see, for instance, [9]) from symbols in the

3

typed language Lω. In what follows, for reasons of simplicity, we will feel free to
say ‘program’, instead of ‘ω-program’.

Given a term or a formula t, by vars(t) we denote the set of variables occur-
ring in t. The same notation will be used for sets of terms and sets of formulas.
The existential closure of a formula ϕ, denoted ∃(ϕ), is the formula ∃X1 . . . ∃Xn ϕ
where {X1, . . . , Xn} is the set of the free variables occurring in ϕ. The universal
closure of a formula ϕ, denoted ∀(ϕ), is defined in a similar way by using ∀,
instead of ∃. Note that if vars(ϕ) = ∅, then ∃(ϕ) is ϕ itself.

An interpretation for our typed language Lω, called ω-interpretation, is given
as follows. Let HU be the Herbrand universe constructed from the set Fun−(Σ∪
{[|]}) of function symbols and let Σω be the set of the infinite lists of states.
An ω-interpretation I is an interpretation such that: (i) I assigns to the types
fterm, state, and ilist, respectively, the sets HU, Σ, and Σω, (ii) I assigns
to the function symbol [|] the function [|]I such that, for any state a ∈ Σ
and infinite list [a1, a2, . . .] ∈ Σω, [a|[a1, a2, . . .]]I is the infinite list [a, a1, a2, . . .],
(iii) I is an Herbrand interpretation for all function symbols in Fun−(Σ∪{[|]}),
and (iv) I assigns to every n-ary predicate p ∈ Pred of type τ1×. . .×τn a relation
on D1×· · ·×Dn, where, for i = 1, . . . , n, Di is either HU or Σ or Σω, according
to the case where τi is either fterm or state or ilist, respectively. We say that
an ω-interpretation I is an ω-model of a program P iff for every clause γ∈P we
have that I � ∀(γ).

A level mapping is a function ` : Pred → N. A level mapping is extended to
literals as follows: for any literal L having predicate p, if L is a positive literal,
then `(L) = `(p) and, if L is a negative literal then `(L) = `(p) + 1. An ω-
clause γ of the form H ← L1 ∧ . . . ∧ Lm is stratified w.r.t. ` if, for i = 1, . . . ,m,
`(H) ≥ `(Li). An ω-program P is stratified if there exists a level mapping ` such
that all clauses of P are stratified w.r.t. `.

A valuation is a function v : Var →HU ∪ Σ ∪ Σω such that: (i) if X has
type fterm then v(X)∈HU , (ii) if X has type state then v(X)∈Σ, and (iii) if
X has type ilist then v(X) ∈ Σω. For any term t, literal L, and clause γ,
we define v(t), v(L), and v(γ), by induction on the structure of t, L, and γ,
respectively. We will say that v(t), v(L), and v(γ), is ‘a term’, ‘a literal’, and
‘a clause’, respectively, also when they are infinite structures.

We extend the notion of Herbrand base [9] to the case of ω-programs by
introducing the set Bω defined as follows:

Bω ={p(v(X1), . . . , v(Xn)) | p is an n-ary predicate symbol and

v is a valuation}

Thus, any ω-interpretation can be identified with a subset of Bω.

A local stratification is a function σ: Bω →W , where W is the set of countable
ordinals. Given A ∈ Bω, we define σ(¬A) = σ(A)+1. Given a clause γ of the
form H ← L1 ∧ . . . ∧ Lm in an ω-program P and a local stratification σ, we
say that γ is locally stratified w.r.t. σ if for i = 1, . . . ,m, for every valuation v,
σ(v(H)) ≥ σ(v(Li)). An ω-program P is locally stratified w.r.t. σ, or σ is a
local stratification for P , if every clause in P is locally stratified w.r.t. σ. An

4

ω-program P is locally stratified if there exists a local stratification σ such that
P is locally stratified w.r.t. σ.

Clearly, every stratified ω-program is a locally stratified ω-program. Similarly
to the case of logic programs, for every locally stratified ω-program P (and,
hence, for every stratified ω-program P), we can construct a unique perfect ω-
model (or perfect model, for short) denoted by M(P) [1,12] (an instance of this
construction is presented in Example 1).

Definition 3 (Monadic ω-Programs). A monadic ω-clause is an ω-clause of
the form A0 ← L1 ∧ . . . ∧ Lm, with m ≥ 0, such that: (i) A0 is an atom of the
form p0 or q0([s|X0]), where q0 is a predicate of type ilist and s∈Σ, (ii) for
i = 1, . . . ,m, Li is either an atom Ai or a negated atom ¬Ai, where Ai is of the
form pi or qi(Xi), and qi is a predicate of type ilist, and (iii) there exists a level
mapping ` such that, for i = 1, . . . ,m, if Li is an atom and vars(A0) 6⊇ vars(Li),
then `(A0) > `(Li) else `(A0) ≥ `(Li). A monadic ω-program is a finite set of
monadic ω-clauses.

Note that in Definition 3 the predicate symbols p0, q0, . . . , pm, qm and the
variables X0, . . . , Xm are not necessarily distinct. Condition (iii) ensures that
a monadic ω-program is stratified. This condition, which is actually stronger
than stratification, is also needed for guaranteeing the completeness of the proof
method for monadic ω-programs (see Section 3.2).

Example 1. Let r, q, and p be predicates of type ilist. The following set of
clauses is a monadic ω-program P (and, thus, also an ω-program):

p([a|X])← p(X) q([a|X])← q(X) r([a|X])← r(X)
p([b|X])← ¬ q(X) q([a|X])← ¬ r(X) r([b|X])←

q([b|X])← q(X)

Program P is stratified by the level mapping ` : Pred → N such that `(p) = 2,
`(q)=1, and `(r)=0. The perfect model M(P) is constructed starting from the
ground atoms of level 0 and going up, level-by-level, as we now indicate. We start
from the ground atoms of level 0, that is, the ground atoms with predicate r.
For all w ∈ {a, b}ω, r(w) ∈ M(P) iff w ∈ a∗b(a + b)ω. Thus, r(w) 6∈ M(P) iff
w∈ aω, that is, ¬ r(w) holds in M(P) iff w∈ aω. Then we consider the ground
atoms of level 1, that is, the ground atoms with predicate q. For all w∈{a, b}ω,
q(w)∈M(P) iff w∈(a+b)∗aω (that is, w has finitely many occurrences of b). Thus,
¬ q(w) holds in M(P) iff w∈ (a∗b)ω (that is, w has infinitely many occurrences
of b). Finally, we consider the ground atoms of level 2, that is, the ground atoms
with predicate p. For all w ∈ {a, b}ω, p(w) ∈M(P) iff w ∈ (a∗b)(a∗b)ω, that is,
p(w)∈M(P) iff w∈(a∗b)ω.

2.2 Encoding the CTL∗ Satisfaction Relation as an ω-Program

Given a Kripke structure K and a CTL∗ state formula ϕ, we introduce a locally
stratified ω-program PK,ϕ which defines, among others, the following three pred-
icates: (i) the unary predicate path such that path(π) holds iff π is an infinite list

5

representing a computation path of K, (ii) the binary predicate sat that encodes
the satisfaction relation for CTL∗ formulas, in the sense that for all computation
paths π and CTL∗ formulas ψ, we have that M(PK,ϕ) � sat(π, ψ) iff K, π � ψ,
and (iii) the nullary predicate prop that encodes the property ϕ to be verified,
in the sense that prop holds iff there exists an infinite list π whose first element
is the initial state s0 of K and K, π � ϕ.

When writing terms that encode CTL∗ formulas, such as the second argument
of the predicate sat , we will use the function symbols e, x, and u standing for
the operator symbols E, X, and U, respectively.

Definition 4 (Encoding Program).Given a Kripke structureK=〈Σ, s0, ρ, λ〉
and a CTL∗ formula ϕ, the encoding program PK,ϕ is the following ω-program:

1. prop ← sat([s0|X], ϕ)
2. sat([S|X], F)← elem(F, S)
3. sat(X,not(F))← ¬ sat(X,F)
4. sat(X, and(F1, F2))← sat(X,F1) ∧ sat(X,F2)
5. sat([S|X], x(F))← sat(X,F)
6. sat(X,u(F1, F2))← sat(X,F2)
7. sat([S|X], u(F1, F2))← sat([S|X], F1) ∧ sat(X,u(F1, F2))
8. sat([S|X], e(F))← exists sat(S, F)
9. exists sat(S, F)← path([S|Y]) ∧ sat([S|Y], F)

10. path(X)← ¬notpath(X)
11. notpath([S1, S2|X])← ¬ tr(S1, S2)
12. notpath([S|X])← notpath(X)

together with the clauses defining the predicates tr and elem, where:
(1) for all states s1, s2∈Σ, tr(s1, s2) holds iff (s1, s2)∈ρ, and
(2) for every property d∈Elem and state s∈Σ, elem(d, s) holds iff d∈λ(s).

Clause 1 of Definition 4 asserts that the property ϕ holds for an infinite list
of states whose first element is s0. Clauses 2–9 define the satisfaction relation
sat(X,ϕ) for any infinite list X and CTL∗ formula ϕ. The definition of sat(X,ϕ)
is by structural induction on ϕ. Clauses 10–12 establish that path(X) holds iff for
every pair (ai, ai+1) of consecutive elements on the infinite list X, we have that
(ai, ai+1) ∈ ρ. Indeed, clauses 11 and 12 establish that notpath(X) holds iff in the
list X there exist two consecutive elements ai and ai+1 such that (ai, ai+1) 6∈ ρ.

The program PK,ϕ is locally stratified w.r.t. the stratification function σ
from ground literals to natural numbers, defined as follows (in what follows,
for any CTL∗ formula χ, we will denote by |χ| the number of occurrences of
function symbols in r): for all states a ∈ Σ, for all infinite lists π ∈ Σω, and
for all CTL∗ formulas ψ, (i) σ(prop) = |ϕ|+ 1, where prop ← sat([s0|X], ϕ),
(ii) σ(sat(π, ψ)) = |ψ|+1, (iii) σ(exists sat(a, ψ)) = |ψ|+2, (iv) σ(path(π)) = 2,
(v) σ(notpath(π)) = 1, (vi) for every ground atom A, σ(¬A) = σ(A)+1, and
(vii) in all other cases σ returns 0.

Example 2. Let us consider: (i) the set Elem = {a, b, tt} of elementary prop-
erties, where tt is the elementary property which holds in every state, and

6

(ii) the Kripke structure K = 〈{s0, s1, s2}, s0, ρ, λ〉, where ρ is the transition
relation {(s0, s0), (s0, s1), (s1, s1), (s1, s2), (s2, s1)} and λ is the function such
that λ(s0) = {a}, λ(s1) = {b}, and λ(s2) = {a}. Let us also consider the for-
mula ϕ = E (aU¬E (tt U¬ (tt U b))), which can be abbreviated as E (aUAGF b),
where: (i) for every state formula ψ, Fψ (read ‘eventually ψ’) stands for tt Uψ,
and Gψ (read ‘always ψ’) stands for ¬F¬ψ, and (ii) for every path formula ψ,
Aψ (read ‘for all computation paths ψ’) stands for ¬E¬ψ. The encoding pro-
gram PK,ϕ is as follows:

prop ← sat([s0|X], e(u(a,not(e(u(tt ,not(u(tt , b))))))))
tr(s0, s0)← tr(s0, s1)← tr(s1, s1)← tr(s1, s2)← tr(s2, s1)←
elem(a, s0)← elem(b, s1)← elem(a, s2)← elem(tt , S)←

together with clauses 2–12 of Definition 4 defining the predicates sat, path, and
notpath.

Since K � ϕ holds iff there exists an infinite list π ∈ Σω such that the first
state of π is the initial state s0 of K and K, π � ϕ holds (see Definition 2), we
have that the correctness of PK,ϕ can be expressed by stating that K � ϕ holds
iff M(PK,ϕ) � ∃X sat([s0|X], ϕ) iff (by clause 1 of Definition 4) M(PK,ϕ) � prop.
The correctness of PK,ϕ is stated in the following theorem.

Theorem 1 (Correctness of the Encoding Program). Let PK,ϕ be the
encoding program for a Kripke structure K and a state formula ϕ. Then, K � ϕ
iff M(PK,ϕ) � prop.

3 Transformational CTL∗ Model Checking

In this section we present a technique based on program transformation for check-
ing whether or not, for any given structure K and state formula ϕ, M(PK,ϕ) �
prop holds, where PK,ϕ is constructed as indicated in Definition 4 above. Our
technique consists of two steps. In the first step we transform the ω-program PK,ϕ
into a monadic ω-program T such that M(PK,ϕ) � prop iff M(T) � prop. In the
second step we check whether or not M(T) � prop holds by using a proof method
for monadic ω-programs.

3.1 Transformation to Monadic ω-Programs

The first step of our model checking technique is realized by applying special-
ized versions of the following transformation rules: definition introduction and
elimination, instantiation, positive and negative unfolding, clause deletion, pos-
itive and negative folding (see, for instance, [5,14,15]). These rules are applied
according to a strategy which is a variant of the specialization strategy presented
in [5].

Our specialization strategy starts off from the clause γ1: prop ← sat([s0|X], ϕ)
in PK,ϕ (see clause 1 in Definition 4) and a set of clauses, called InDefs which is
initialized to {γ1}. Then, our strategy iteratively applies two procedures: (i) the

7

instantiate-unfold procedure, and (ii) the define-fold procedure. At each itera-
tion, the set InDefs is transformed into a set Ds of monadic ω-clauses, at the
expense of possibly introducing some auxiliary, non-monadic clauses which are
stored in the set NewDefs. These auxiliary clauses are given as input to a subse-
quent iteration of the strategy. The strategy terminates when no new auxiliary
clauses are introduced and, when this happens, in a final step we apply the defi-
nition elimination rule by keeping only the clauses whose head predicate is either
prop or a predicate on which prop depends.

The Specialization Strategy.
Input: An ω-program PK,ϕ for a Kripke structure K and a state formula ϕ.
Output: A monadic ω-program T such that M(PK,ϕ) � prop iff M(T) � prop.

Q := PK,ϕ; InDefs := {prop ← sat([s0|X], ϕ)}; Defs := InDefs;

while InDefs 6=∅do
instantiate-unfold(Q , InDefs,Cs);
define-fold(Cs,Defs,NewDefs,Ds);
Q := (Q− InDefs) ∪NewDefs ∪Ds;
InDefs := NewDefs; Defs := Defs ∪NewDefs

od;

T := {γ | γ ∈ Q and the head predicate of γ is either prop or a predicate on
which prop depends}.

Let us now introduce two notions which are needed for presenting the instantiate-
unfold and the define-fold procedures. A definition clause is a non-monadic
ω-clause of the form H ← A where: (1) H is an atom of the form p or q(X),
where q is a predicate of type ilist, (2) A is an atom, and (3) vars(H) =
vars(A). A quasi-monadic clause is an ω-clause of the form H ← L1 ∧ . . . ∧ Lk,
with k ≥ 0, such that: (i) H is an atom of the form p or q([s|X]), where p is
a predicate of type ilist and s ∈ Σ, and (ii) for i = 1, . . . , k, there exists a
variable Y (possibly equal to X) of type ilist such that vars(Li) ⊆ {Y }.

The instantiate-unfold procedure transforms a given set InDefs of definition
clauses into a set Cs of quasi-monadic clauses by: (1) instantiating each clause
in InDefs, (2) applying the positive (or negative) unfolding rule to clauses of the
form p([s|X])← BL ∧ L ∧ BR, whenever L is a positive literal (or a negative
literal, respectively), and (3) deleting subsumed clauses.

Given a clause δ, a variable X, and a term t, we denote by δ{X/t} the clause δ
with every occurrence of X replaced by t.

The instantiate-unfold Procedure.
Input : An ω-program Q and a set InDefs ⊆ Q of definition clauses.
Output : A set Cs of quasi-monadic clauses.

(Instantiation)
Let Y be a new variable of type ilist and let Σ be the set of states of K;

S := { δ{X/[s|Y]} | δ ∈ InDefs and vars(δ)={X} and s∈Σ}∪
{ δ | δ ∈ InDefs and vars(δ) = ∅};

8

Cs := ∅;
(Unfolding)
while there exists a clause γ in S do

(Case 1. Positive Unfolding)
if (i) γ is of the form H← BL ∧A ∧BR, where A is an atom,

(ii) K1 ← B1, . . . ,Km ← Bm are all clauses in PK,ϕ such that A is
unifiable with K1, . . . ,Km with most general unifiers ϑ1, . . . , ϑm, and
(iii) for i = 1, . . . ,m, A = Kiϑi (that is, A is an instance of Ki)

then S := (S − {γ}) ∪ {H ← BL ∧B1ϑ1 ∧BR, . . . ,H ← BL ∧Bmϑm ∧BR}
(Case 2. Negative Unfolding)

elseif (i) γ is of the form H← BL ∧ ¬A ∧BR, where A is an atom,
(ii) K1 ← B1, . . . ,Km ← Bm are all clauses in PK,ϕ such that A is
unifiable with K1, . . . ,Km with most general unifiers ϑ1, . . . , ϑm,
(iii) for i = 1, . . . ,m, A = Kiϑi (that is, A is an instance of Ki), and
(iv) for i = 1, . . . ,m, vars(Bi) ⊆ vars(Ki)

then from BL∧¬(B1ϑ1 ∨ . . . ∨ Bmϑm)∧BR we get an equivalent disjunction
Q1 ∨ . . . ∨Qr of conjunctions of literals, with r ≥ 0, by first pushing ¬
inside and then pushing ∨ outside;
S := (S − {γ}) ∪ {H ← Q1, . . . ,H ← Qr}

(Case 3. No Unfolding)
else S := S − {γ}; Cs := Cs ∪ {γ} fi

od;

(Subsumption)
while there exists a unit clause γ1 in Cs of the form H← and a variant of a
clause γ2 in Cs − {γ1} of the form H ← B do Cs := Cs − {γ2} od

The define-fold procedure transforms the quasi-monadic ω-clauses of Cs into
monadic ω-clauses by applying the definition introduction rule and the (positive
or negative) folding rule. In particular, for any given quasi-monadic clause γ:
H ← L1∧ . . .∧Lk in Cs and for i = 1, . . . ,m, the define-fold procedure performs
the following steps.

Let Li be either the positive literal Ai or the negative literal ¬Ai. We consider
the following two cases. Case (1): If in Defs ∪NewDefs there is a clause δi of the
form Ki ← Ai, then γ is folded using δi, that is, the occurrence of Li in the body
of γ is replaced either (i) by Ki, if Li = Ai (positive folding), or (ii) by ¬Ki, if
Li = ¬Ai (negative folding). Case (2): Otherwise, if in Defs ∪ NewDefs there is
no clause of the form Ki ← Ai, then the definition clause δi: Ki ← Ai, where
Ki has a new predicate symbol newpi, is added to NewDefs (by applying the
definition introduction rule). Then, clause γ is folded using the newly introduced
clause δi as in Case (1).

The clause H ←M1∧ . . .∧Mk derived by folding γ using clauses δ1, . . . , δk is
a monadic ω-clause. Indeed, we have that: (1) H is either of the form p or of the
form q([s|X]) (because γ is quasi-monadic), (2) for i = 1, . . . , k, Mi is either the
atom Ki or the negated atom ¬Ki, where Ki is either of the form newpi or of the

9

form newpi(Y) (this follows from the definition of δi and the fact that γ is quasi-
monadic), and (3) Condition (iii) of Definition 3 holds by defining ` as follows: let
σ be the stratification function for the encoding program PK,ϕ (see Section 2.2),
(i) `(prop) = σ(prop) = |ϕ| + 1, and (ii) for every predicate newpi that occurs
in the head of a clause Ki ← Ai introduced during any execution of the define-
fold procedure, `(newpi) = σ(A′i), where A′i is any ground instance of Ai. For
example, if we introduce the definition clause newpi(X) ← sat(X, e(u(a, b))),
then we define `(newpi) = σ(sat(π, e(u(a, b)))) = |e(u(a, b)))| + 1 = 5, where π
is any infinite list. Note that ` does not depend on the particular instance of Ai,
because the value of σ is independent of the infinite list which (possibly) occurs
as an argument of Ai.

The define-fold Procedure.
Input : (i) A set Cs of quasi-monadic clauses and (ii) a set Defs of definition
clauses;
Output : (i) A set NewDefs of definition clauses, and (ii) a set Ds of monadic
ω-clauses.

NewDefs := ∅; Ds := ∅;
for each clause γ in Cs do

let the clause γ be of the form H ← L1 ∧ . . . ∧ Lk;

for i = 1, . . . , k do

let Li be either Ai or ¬Ai, for some atom Ai;

(Definition Introduction)

if a clause δ with body Ai has a variant in Defs ∪NewDefs

then take Ki to be the head of δ

else take Ki to be: (i) newpi(Y), if vars(Ai) = {Y }, and (ii) newpi, if
vars(Ai)=∅, where newpi is a new predicate symbol;
NewDefs :=NewDefs ∪ {Ki←Ai} fi;

(Positive or Negative Folding)

if Li is Ai then Mi := Ki else Mi := ¬Ki fi

od; Ds := Ds ∪ {H ←M1 ∧ . . . ∧Mk}
od

The specialization strategy, which from the initial program PK,ϕ produces
the final program T , is correct w.r.t. the perfect model semantics, in the sense
that M(PK,ϕ) � prop iff M(T) � prop. This correctness result can be proved
similarly to [5,14]. Note that the instantiation rule that we use in the unfold
procedure, is not present in [5,14], but its application can be viewed as an un-
folding of an additional atom ilist(X) defined by the clauses: ilist([s0|Y]) ←,
. . . , ilist([sh|Y])←, where Σ = {s0, . . . , sh} is the set of states of K.

Our specialization strategy terminates for every input program PK,ϕ because:
(i) both the instantiate-unfold and define-fold procedures terminate, and (ii) the
while loop of the strategy terminates.

The termination of the instantiate-unfold procedure is a consequence from
the following properties. (1) The Instantiation and Subsumption steps terminate.

10

(2) The predicates path, tr, and elem do not depend on themselves in program
PK,ϕ. (3) For each clause in PK,ϕ defining the predicate notpath, either the
predicate of the body literal does not depend on notpath (see clause 11) or the
term occurring in the body is a proper subterm of the term occurring in the
head (see clause 12). (4) For each clause in PK,ϕ whose head is of the form
sat(l1, ψ1) and for each literal of the form sat(l2, ψ2) occurring (positively or
negatively) in the body of that clause, either ψ2 is a proper subterm of ψ1 or
ψ1 = ψ2 and l2 is a proper subterm of l1. (5) For each state s and formula ψ,
the literal esists sat(s, ψ) depends on itself through a call to the predicate sat
(see clauses 8 and 9) and by consuming at least one operator e in the formula
ψ. (6) The applicability conditions given in the instantiate-unfold procedure (see
Point (iii) of Case 1 and Case 2) do not allow the unfolding of a clause γ if this
unfolding instantiates a variable in γ.

The termination of the define-fold procedure is straightforward.

Finally, the proof of termination of the while loop of the specialization strat-
egy follows from the fact that only a finite number of definition clauses can be
introduced by the define-fold procedure. Indeed, every definition clause is of the
form H ← A, where: (i) A is an atom in the finite set ∆ = {notpath([s|X]) |
s∈Σ}∪ {exists sat(s, ψ) | s∈Σ and ψ is a subformula of ϕ} ∪ {sat(X,ψ) | ψ is
a subformula of ϕ}, and (ii) for any A∈∆ the define-fold procedure introduces
at most one definition clause.

Theorem 2 (Correctness and Termination of the Specialization
Strategy). Let PK,ϕ be the encoding program for a Kripke structure K and
a state formula ϕ. The specialization strategy terminates for the input program
PK,ϕ and returns an output program T such that: (i) T is a monadic ω-program
and (ii) M(PK,ϕ) � prop iff M(T) � prop.

Example 3. Let us consider program PK,ϕ of Example 2. Our specialization strat-
egy starts off from the sets Q = PK,ϕ and InDefs = Defs = {γ1}, where γ1 is
the following definition clause (that is, clause 1 of PK,ϕ):

γ1: prop ← sat([s0|X], e(u(a,not(e(u(tt ,not(u(tt , b))))))))

In the first execution of the loop body of our strategy we apply the instantiate-
unfold procedure to the set InDefs. We get the set Cs = {γ2, γ3} of quasi-
monadic clauses, where:

γ2: prop ← ¬notpath([s0|X]) ∧ sat(X,u(a,not(e(u(tt ,not(u(tt , b)))))))

γ3: prop ← ¬notpath([s0|X]) ∧ ¬ exists sat(s0, u(tt ,not(u(tt , b))))

Then, by applying the define-fold procedure, we get the set NewDefs ={γ4, γ5, γ6}
of definition clauses and the set Ds = {γ′2, γ′3} of monadic ω-clauses, where:

γ4: p1(X)← notpath([s0|X])

γ5: p2(X)← sat(X,u(a,not(e(u(tt ,not(u(tt , b)))))))

γ6: p3 ← exists sat(s0, u(tt ,not(u(tt , b))))

γ′2: prop ← ¬ p1(X) ∧ p2(X)

γ′3: prop ← ¬ p1(X) ∧ ¬ p3

11

At the end of the first execution of the body of the while loop of our strat-
egy, we get: Q = (PK,ϕ − {γ1}) ∪ {γ′2, γ′3}, InDefs = {γ4, γ5, γ6}, and Defs =
{γ1} ∪ {γ4, γ5, γ6}. Since InDefs 6= ∅ the execution of the while loop continues.
After a few more executions of the loop body, the define-fold procedure does not
introduce any new clause in NewDefs. Thus, we get InDefs = ∅ and we derive
the final program Q. By keeping every clause in Q whose head predicate is ei-
ther prop or a predicate on which prop depends, we get the following monadic
ω-program T :

prop ← ¬ p1(X) ∧ p2(X)
prop ← ¬ p1(X) ∧ ¬ p3
p1([s0|X])← p1(X)
p1([s1|X])← p4(X)
p1([s2|X])←
p2([s0|X])← ¬ p3
p2([s0|X])← p2(X)
p2([s1|X])← ¬ p5
p2([s2|X])← ¬ p6
p2([s2|X])← p2(X)

p3 ← ¬ p1(X) ∧ ¬ p7(X)
p3 ← ¬ p1(X) ∧ p8(X)
p4([s0|X])←
p4([s1|X])← p4(X)
p4([s2|X])← p9(X)
p5 ← ¬ p4(X) ∧ p8(X)
p6 ← ¬ p9(X) ∧ ¬ p7(X)
p6 ← ¬ p9(X) ∧ p8(X)
p7([s0|X])← p7(X)
p7([s1|X])←

p7([s2|X])← p7(X)
p8([s0|X])← ¬ p7(X)
p8([s0|X])← p8(X)
p8([s1|X])← p8(X)
p8([s2|X])← ¬ p7(X)
p8([s2|X])← p8(X)
p9([s0|X])←
p9([s1|X])← p4(X)
p9([s2|X])←

3.2 A Proof Method for Monadic ω-Programs.

In this section we present the second step of our model checking technique. In
particular, we present a method for checking whether or not M(P) � F holds,
for any monadic ω-program P and any formula F which is either of the form p
or of the form ∃X(L1∧ . . .∧Ln), with n≥1, where, for i=1, . . . , n, Li is either a
positive literal qi(X) or a negative literal ¬qi(X). In what follows the set of the
formulas F of this form will be denoted by F . In particular, our method allows
us to check whether or not M(T) � prop holds for the monadic ω-program T
that we derive by the specialization strategy presented in Section 3.1.

First, we introduce the notion of a derivation tree and, then, the notion of
a proof of a formula F in F w.r.t. a monadic ω-program P . Every node of a
derivation tree has: (i) a depth which is the number of its ancestor nodes (in
particular, the root has depth 0), and (ii) a label which is either
(1) the empty conjunction true, or
(2) the empty disjunction false, or
(3) a literal of the form: either p, or ¬ p, or q(X), or ¬ q(X), or
(4) a formula of the form: either ∃X (L1∧ . . .∧Ln) or ¬∃X (L1∧ . . .∧Ln), with

n≥1, where, for i = 1, . . . , n, Li is either qi(X) or ¬ qi(X).
We denote by L the set of formulas of the forms (3) and (4). Let us also introduce
the following notation: (i) for any atom A, A denotes ¬A and ¬A denotes A,
and (ii) for any formula B, ∃X B denotes ¬∃X B.

In order to construct a derivation tree of a formula in F w.r.t. a given monadic
ω-program P , we begin by rewriting the program P as follows. (Recall that in
the body of a monadic ω-clause at most one variable occurs in a literal and two
distinct literals may have a variable in common.) For every clause H←B in P

12

and for every variable Y in vars(B)−vars(H), we replace the literals L1, . . . , Lm

of B such that vars(L1)= . . .=vars(Lm)={Y } by the formula ∃Y (L1∧. . .∧Lm).
Thus, every clause in P is rewritten as H←F1 ∧ . . .∧Fk, where, for i=1, . . . , k,
Fi is a formula in L.

For instance, clause q0([s|X])←q1(X)∧ q2(Y)∧p1∧¬ q3(Y)∧p2 is rewritten
as q0([s|X])←q1(X) ∧ ∃Y (q2(Y) ∧ ¬ q3(Y)) ∧ p1 ∧ p2.

Definition 5 (Derivation Tree). Given a monadic ω-program P and a for-
mula F in F , a derivation tree of F w.r.t. P is a finite tree T constructed as
follows:
1. the root node is labeled by F , and if F is of the form ∃X (L1 ∧ . . . ∧ Ln)

then the root node has n children labeled by L1, . . . , Ln, respectively,
2. if a non-root node N is labeled by: (i) true, or (ii) false, or (iii) ∃X B, or

(iv) ¬∃X B (that is, N is not labeled by a literal), then N is a leaf,
3. for every integer d≥0, consider the nodes N1, . . . , N`, with `≥1, of depth d:

if there exists an integer c, with 0≤ c < d, such that for every literal L
labeling a node of depth d, there exists a node of depth c labeled by L

then the nodes N1, . . . , N` are leaves
else choose a state s∈Σ and, for i= 1, . . . , `, if the node Ni is labeled by

a literal Li, then construct a child node of Ni with label F , for each
formula F in the set Ci of formulas in L ∪ {true, false} constructed
from the state s, the literal Li, and the program P , as we now indicate.
There are two cases.
Case (i): Li is an atom q(X) (or p). If in P there is no clause whose
head is q([s|X]) (or p), then take Ci to be {false}. Otherwise, choose a
clause q([s|X])← F1 ∧ . . . ∧ Fk (or p← F1 ∧ . . . ∧ Fk) in P , where, for
i = 1, . . . , k, Fi ∈ L. If k = 0 then take Ci to be {true}, else take Ci to
be {F1, . . . , Fk}.
Case (ii): Li is a negated atom ¬q(X) (or ¬p). Let q([s|X])← B1, . . . ,
q([s|X])← Bk (or p← B1, . . . , p← Bk) be all clauses in P whose head
is q([s|X]) (or p). If k=0 then take Ci to be {true}. If k≥1 and there
exists i, with 1≤ i≤k, such that Bi is the empty conjunction, then take
Ci to be {false}. Otherwise, for i = 1, . . . , k, choose a formula Fi ∈ L
such that Bi = G1 ∧ Fi ∧ G2, where G1 and G2 are (possibly empty)
conjunctions, and take Ci to be {F 1, . . . , F k}.

By construction, for any derivation tree T there exist: (i) an integer m which is
the maximal depth of a node of T , and (ii) a least integer c, with 0≤c<m, such
that for every literal L labeling a node of depth m, there exists a node of depth
c labeled by L. Now, we introduce a relation rT between literals as follows. For
any two literals L1 and L2, rT (L1, L2) holds iff: (i) there exists a node M of
depth c in T whose label is L1, (ii) there exists a node N of depth m in T whose
label is L2, and (iii) M is an ancestor of N in T . We denote by r+T the transitive
closure of rT .

Proposition 1. Let P be a monadic ω-program and F be a formula in F . (i) Ev-
ery derivation tree T of F w.r.t. P is minimal, in the sense that no proper subtree

13

of T is itself a derivation tree of F w.r.t. P . (ii) There exists a finite number of
derivation trees of F w.r.t. P .

Now we present the definitions of proof and refutation, which are based on
the notion of derivation tree.

Definition 6 (Proof and Refutation). Let P be a monadic ω-program and F
be a formula in F . We say that F has a proof w.r.t. P iff there exists a derivation
tree T of F w.r.t. P which satisfies the following conditions:

1. every leaf N of T is labeled by: either (i) true, or (ii) a literal of the form
p, or ¬p, or q(X), or ¬q(X), or (iii) a formula of the form ∃X B that has a
proof w.r.t. P , or (iv) a formula of the form ¬∃X B such that ∃X B has a
refutation w.r.t. P ,

2. for every positive literal L labeling a leaf of T , r+T (L,L) does not hold.

We say that F has a refutation w.r.t. P iff no derivation tree of F w.r.t. P is a
proof of F w.r.t. P .

By Proposition 1 it is decidable whether or not a there exists a proof of a
formula in F w.r.t. a monadic ω-program. Moreover, by induction on the level
of the predicates occurring in the monadic ω-program P , we can show that our
proof method is sound and complete for showing that a formula in the set F is
true in the perfect model of P . Thus, we have the following result.

Theorem 3. Let P be a monadic ω-program and F a formula in F . Then:
(i) there is an algorithm to check whether or not F has a proof w.r.t. P , and
(ii) F has a proof w.r.t. P iff M(P) � F .

Now we present an example of application of the second step of our trans-
formational method for proving CTL∗ properties of the Kripke structures which
encode reactive systems.

Example 4. Let us consider: (i) the monadic ω-program T , obtained as the out-
put of our specialization strategy (see Example 3), and (ii) the formula prop,
that encodes the CTL∗ property ϕ of the Kripke structure K introduced in Ex-
ample 2. We can construct a proof for the formula prop w.r.t. T as shown by the
various derivation trees depicted in Figure 1. As a consequence, we have that
M(PK,ϕ) � prop holds and, thus, the formula ϕ holds in the Kripke structure K.

4 Related Work and Concluding Remarks

Various logic programming techniques and tools have been developed for model
checking. In particular, tabled resolution has been shown to be quite effec-
tive for implementing a modal µ-calculus model checker for CCS value pass-
ing programs [13]. Techniques based on logic programming, constraint solving,
abstract interpretation, and program transformation have been proposed for

14

prop

∃X (¬ p1(X) ∧ p2(X))

(A)

∃X (¬ p1(X) ∧ p2(X))

@
@

�
�

¬ p1(X)

s1

p2(X)

s1

¬ p4(X)

s1

¬ p5

¬ p4(X) ¬∃X (¬ p4(X) ∧ p8(X))

(B)

∃X (¬ p4(X) ∧ p8(X))

@
@

�
�

¬ p4(X)

s0

p8(X)

s0

false ¬ p7(X)

∃X (¬ p4(X) ∧ p8(X))

@
@

�
�

¬ p4(X)

s0

p8(X)

s0

false p8(X)

∃X (¬ p4(X) ∧ p8(X))

@
@

�
�

¬ p4(X)

s1

p8(X)

s1

¬ p4(X) p8(X)

∃X (¬ p4(X) ∧ p8(X))

@
@

�
�

¬ p4(X)

s2

p8(X)

s2

¬ p9(X)

s0

¬ p7(X)

s0

false ¬ p7(X)

∃X (¬ p4(X) ∧ p8(X))

@
@

�
�

¬ p4(X)

s2

p8(X)

s2

¬ p9(X)

s1

¬ p7(X)

s1

¬ p4(X) false

∃X (¬ p4(X) ∧ p8(X))

@
@

�
�

¬ p4(X)

s2

p8(X)

s2

¬ p9(X)

s2

¬ p7(X)

s2

false ¬ p7(X)

∃X (¬ p4(X) ∧ p8(X))

@
@

�
�

¬ p4(X)

s2

p8(X)

s2

¬ p9(X)

s0

p8(X)

s0

false ¬ p7(X)

∃X (¬ p4(X) ∧ p8(X))

@
@

�
�

¬ p4(X)

s2

p8(X)

s2

¬ p9(X)

s0

p8(X)

s0

false p8(X)

∃X (¬ p4(X) ∧ p8(X))

@
@

�
�

¬ p4(X)

s2

p8(X)

s2

¬ p9(X)

s1

p8(X)

s1

¬ p4(X) p8(X)

∃X (¬ p4(X) ∧ p8(X))

@
@

�
�

¬ p4(X)

s2

p8(X)

s2

¬ p9(X)

s2

p8(X)

s2

false ¬ p7(X)

∃X (¬ p4(X) ∧ p8(X))

@
@

�
�

¬ p4(X)

s2

p8(X)

s2

¬ p9(X)

s2

p8(X)

s2

false p8(X)

(C)

Fig. 1. The tree in (A) is a proof of prop w.r.t. T . The tree in (B) is a proof of
∃X (¬ p1(X) ∧ p2(X)) w.r.t. T . The 11 trees in (C) are all the derivation trees of
∃X (¬ p4(X) ∧ p8(X)) w.r.t. T and none of them is a proof. The labels of the arcs are
the states s∈Σ to be chosen according to Point (3) of Definition 5.

15

performing CTL model checking of finite and infinite state systems (see, for in-
stance, [3,5,8,10]). In this paper we have extended to CTL∗ model checking the
transformational approach which was proposed for LTL model checking in [11].

The main contributions of this work are the following. (i) We have proposed a
method for specifying CTL∗ properties of reactive systems based on ω-programs,
that is, logic programs acting on infinite lists. This method is a proper exten-
sion of the methods for specifying CTL or LTL properties, because CTL and
LTL are fragments of CTL∗. (ii) We have introduced the subclass of monadic
ω-programs for which the satisfaction relation w.r.t. the perfect model is de-
cidable. This subclass of programs properly extends the class of linear monadic
ω-programs introduced in [11]. (iii) Finally, we have shown that we can trans-
form, by applying semantics preserving unfold/fold rules, the logic programming
specification of a CTL∗ property into a monadic ω-program.

Our transformation strategy can be viewed as a specialization of the Encod-
ing Program (see Definition 4) w.r.t. a given Kripke structure K and a given
CTL∗ formula ϕ. However, it should be noted that this program specialization
could not be achieved by using partial deduction techniques (see [7] for a brief
survey). Indeed, our specialization strategy performs instantiation and negative
unfolding steps that cannot be realized by partial deduction.

Our two step verification approach bears some similarities with the automata-
theoretic approach to CTL∗ model checking, where the specification of a fi-
nite state system and a CTL∗ formula are translated into alternating tree au-
tomata [6]. The automata-theoretic approach is quite appealing because many
useful techniques are available in the field of automata theory. However, we
believe that also our approach has its advantages because of the following rea-
sons. (1) The specification of properties of reactive systems, together with the
transformation of these specifications into monadic ω-programs, and the proofs
of properties of monadic ω-programs, can all be done within the single frame-
work of logic programming, while in the automata-theoretic approach one has to
translate the temporal logic formalism into the distinct formalism of automata
theory. (2) The translation of a specification into a monadic ω-program can be
performed by using semantics preserving transformation rules, thereby avoid-
ing the burden of proving the correctness of the translation by ad-hoc methods.
(3) Finally, due its generality, we believe that our approach can be extended
without much effort to the case of infinite state systems.

Issues that can be investigated in the future include: (i) the complexity of
our verification method and, in particular, an efficient implementation of the
proof method presented in Section 3.2, (ii) the relationship between monadic
ω-programs and alternating tree automata, (iii) the applicability of our trans-
formational approach to other logics, such as the monadic second order logic of
successors, and (iv) the experimental evaluation of the efficiency of our trans-
formational approach by considering various test cases and comparing its per-
formance in practical examples w.r.t. that of other model checking techniques
known in the literature.

16

References

1. K. R. Apt and R. N. Bol. Logic programming and negation: A survey. Journal of
Logic Programming, 19, 20:9–71, 1994.

2. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
3. G. Delzanno and A. Podelski. Constraint-based deductive model checking. Inter-

national Journal on Software Tools for Technology Transfer, 3(3):250–270, 2001.
4. E. A. Emerson and J. Y. Halpern. “sometimes” and “not never” revisited: on

branching versus linear time temporal logic. Journal of the ACM, 33(1):151–178,
1986.

5. F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying CTL properties of infi-
nite state systems by specializing constraint logic programs. In Proceedings of
the ACM Sigplan Workshop on Verification and Computational Logic VCL’01,
Florence (Italy), Technical Report DSSE-TR-2001-3, pages 85–96. University of
Southampton, UK, 2001.

6. O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking. Journal of the ACM, 47(2):312–360, 2000.

7. M. Leuschel. Logic program specialisation. In J. Hatcliff and P. Thiemann (Eds.)
T. Mogensen, editors, Partial Evaluation - Practice and Theory, Lecture Notes in
Computer Science 1706, pages 155–188. Springer, 1998.

8. M. Leuschel and T. Massart. Infinite state model checking by abstract interpreta-
tion and program specialization. In A. Bossi, editor, Proceedings of the 9th Inter-
national Workshop on Logic-based Program Synthesis and Transformation (LOP-
STR ’99), Venezia, Italy, Lecture Notes in Computer Science 1817, pages 63–82.
Springer, 2000.

9. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987.
Second Edition.

10. U. Nilsson and J. Lübcke. Constraint logic programming for local and symbolic
model-checking. In J. W. Lloyd, editor, Proceedings of the First International
Conference on Computational Logic (CL 2000), London, UK, 24-28 July, Lecture
Notes in Artificial Intelligence 1861, pages 384–398. Springer-Verlag, 2000.

11. A. Pettorossi, M. Proietti, and V. Senni. Transformational verification of linear
temporal logic. In 24th Italian Conference on Computational Logic June 24-26,
2009, Ferrara, Italy (CILC ’09). http://www.ing.unife.it/eventi/cilc09.

12. T. C. Przymusinski. On the declarative semantics of stratified deductive databases
and logic programs. In J. Minker, editor, Foundations of Deductive Databases and
Logic Programming, pages 193–216. Morgan Kaufmann, 1988.

13. Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka,
T. Swift, and D. S. Warren. Efficient model checking using tabled resolution. In
Proceedings of the 9th International Conference on Computer Aided Verification
(CAV ’97), Lecture Notes in Computer Science 1254, pages 143–154. Springer-
Verlag, 1997.

14. H. Seki. Unfold/fold transformation of stratified programs. Theoretical Computer
Science, 86:107–139, 1991.

15. H. Tamaki and T. Sato. Unfold/fold transformation of logic programs. In S.-Å.
Tärnlund, editor, Proceedings of the Second International Conference on Logic Pro-
gramming (ICLP’84), pages 127–138, Uppsala, Sweden, 1984. Uppsala University.

17

