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Abstract

An interesting problem in reliability is to determine the optimal burn-in time.
In a previous work, the authors studied the solution of such a problem under
a particular cost structure. It has been shown there that a key role in the
problem is played by a function p, representing the reward coming from the
use of a component in the field. A relevant case in this investigation is the one
when p is linear.

In this paper, we explore further the linear case and use its solutions as a
benchmark for determining the locally optimal times when the function p is

not linear or under a different cost structure.
Keywords: Burn-in; Bathtub shape; Multiple change points distributions;

Reward functions.
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Introduction

A well-known problem in reliability is determining the optimal duration of burn-in
for a component to be put into operations. This topic is very widespread; we will
recall, in the present section and in the next one, basic definitions and results about it
and essential references.

In the present paper, we take the cue from [3] and broaden some more analytical
aspects of the optimization problem related to the burn-in time (see in particular
Theorem 2.1 and Corollary 2.1 below). In [3], the optimal burn-in time problem has
been analyzed from the point of view of its connections with ageing and risk-aversion

concepts. Such an optimization problem has been formulated under a particular reward
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function R,, defined by
R,(t,6) = [p(t — 6) + k]L{;55) + kl{i<s) + cmin(t, d). (0.1)

We investigate here in detail the role of the term p within the reward function in
Eq. (0.1). Also, we will show that this particular reward function may be used as a
reference point for the solution of the optimization problem concerning different reward
functions (see Section 5).

In this respect, we recall that several cost structures have been proposed in the
literature (for a detailed survey, see [1] and references therein) and several are the
versions of the problem we could obtain by modifying our reward function, so as to
model different kinds of usage of burned-in units.

The reward function R,(t,d) depends on

e the burn-in time, § > 0;

e the total lifetime of the unit, ¢ > 0 (burn-in time plus time in operations).

In the following, ¢ will represent the value taken by a random variable T', with proba-
bility distribution G, and § will be the quantity to be determined in view of optimizing
the expected value of R, (T, ¢).

The reward function in Eq. (0.1) consists of:

e a cost of conducting burn-in, ¢min(¢, §), proportional to the actual burn-in time,

by means of the constant cost rate ¢ < 0;
e a fixed cost due to failure during the burn-in, k < 0;
e a fixed cost due to failure during the use, k<o0;

e areward p: [0,400) — [0,+00), that is an increasing function of the duration of

the unit in the operations.

In order to avoid the optimization problem to be trivial, we assume k<k< 0, i.e.
the cost of losing the unit during burn-in is smaller than the cost of failure during
operation.

Even if the case when p is linear was discussed at length in [3], some analytical
and technical aspects require a further investigation, that we will carry on here.

Subsequently, part of the present paper is devoted to the application of our results
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for the linear case to the case when p is not linear. In fact, the solution for the burn-in
problem in the non-linear case does not follow straightly from the results we got in
the linear case. Finding a solution for some relevant non-linear cases, by providing a
generalization of the results for the linear case, is the central aim of this paper.

As a main achievement in this respect, we will provide upper and lower bounds for the
optimal burn-in time, when p is concave or convex. We can determine the interval, or
more generally the union of intervals S, that will contain the optimal burn-in time, by
setting up a comparison among different functions p. In providing these bounds, a key
role is played by the results about the optimal burn-in time J; obtained in the case
when p is linear. For the computation of such a ¢;, we can rely on the (sufficient and
necessary) conditions provided in [3, Prop. 2]. Furthermore, we give conditions on 4;
under which the set S is bounded.

The paper is organized as follows. In Section 1, we recall definitions and results from
[3], that are preliminary for our developments here. In Section 2, we study in detail
the burn-in problem associated with a reward function of the kind in Eq. (0.1). We
provide analytical-type results for the case when p is linear, releasing the hypothesis G
bathtub or upside down bathtub. We will use these results as a benchmark in Sections
3 and 4. In Section 3, we come back to consider G bathtub or upside down bathtub
and use results of Section 2 to obtain bounds for the optimal burn-in time in the case
when p is concave or convex. In Section 4, we extend the results of Section 3, again
dropping the hypothesis G bathtub or upside down bathtub. Finally, in Section 5, we
compare the burn-in problem corresponding to the reward function in Eq. (0.1) to
another version of it, obtained by implementing in the model a surcharge for a failure
occurred during a mission time. The conditions on reward function needed for applying
previous theorems do not hold. We can however provide some bounds for the optimal
burn-in time in the case when p is concave or convex, starting from the local optimal

burn-in times for the linear case.
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1. Notation and basic results

Let T be a random variable, representing the lifetime of the unit that will undergo

the burn-in, with probability distribution G, survival function G, and density g. Its

hazard rate is denoted by r(t) = rg(t) = g:((?)

Such a definition implies that G(¢) > 0 for all ¢ where 7(t) is defined.

By assuming G twice differentiable, we denote by

a(t) = aglt) = -2 0 (1)

the risk aversion coefficient associated with G (see e.g. [3, 6, 8]).
For our purposes, it is convenient to recall the definition of ageing properties of
G (or, that is the same, of G) in terms of monotonicity properties of r(t) and some

connected concepts:

Definition 1.1. ¢ € (0,+400) is called a change (or turning) point for r(t) (or for G),
if, for some ¢ € (0,0), it is such that r(¢) is decreasing (increasing) for ¢t € (o — ¢, 0)

and increasing (decreasing) for t € (0,0 + ¢).

Remark 1.1. Since G twice differentiable implies 7 differentiable, we can equivalently
define o as a change point, if it is a root of 7’ with odd multiplicity, i.e. a local minimum
or maximum point for r.

For a result on change points, also involving their relation with the coeflicient «/(t), see
[6].
Definition 1.2. We say that G is

e IFR (DFR), if r(¢) is increasing (decreasing) for any ¢ > 0;

e J-IFR (6-DFR), if r(¢) is increasing (decreasing) for any ¢ > 0;

e bathtub shaped, if an only change point o € (0, +00) exists such that r(t) is
decreasing for t € (0, 0) and increasing for ¢ € (o, +00);

e upside down bathtub ( = UB) shaped, if an only change point o € (0,+00)

exists such that r(¢) is increasing for ¢ € (0,0) and decreasing for t € (o, +00).

From now on, we will focus on the conditions G bathtub or upside down bathtub

(UB) shaped or with multiple change points. DFR and IFR follow as particular cases of
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bathtub distributions, for ¢ = 0 or o = 400, while 6-IFR or §-DFR are not particular
cases, in that the monotonicity character of r(t) for ¢ < J is not determined.
The criterion under which the optimal burn-in time has to be determined depends

on the cost structure of the model:

Definition 1.3. Given a reward function R,(t,d), the optimal burn-in time is

65 € (0,+00) such that, for any ¢ € (0, +00),
E[R,(T,0,)] = E[Ry(T,0)].

If such an optimal point does not exist, we set §; = +o0.

In practice, the condition §3 = +o00 will mean than the burn-in will be not carried out.

As mentioned, we will analyze in detail the burn-in problem associated with a reward
function of the kind in Eq. (0.1). However the results for this particular case may be
used as a benchmark also for different versions of the reward function.

Our optimization problem will amount to maximizing the expected reward
o +o0 . §
R,(8) =E[R,(T,0)] = kG(6) + kG(6) + / p(t)g(t + 0)dt + cdG(9) + c/ tg(t)dt
0 0

with respect to the variable §. We remind that § has the meaning of the duration of
the burn-in procedure.

We use the standard procedure for maximizing a function of one variable: finding
¢’s such that R/,(0) = 0 and looking for the global maximum point among such d’s and
d’s where R, is not differentiable. For sake of simplicity, we will suppose from now
on p to be twice differentiable. Under our regularity hypotheses on G and p, the only
point where R, is not differentiable is 6 = 0. For ¢ € (0, +00),

+oo
R,(8) = (k= k)g(d) + /0 p(t)g'(t + 8)dt + cG(9) (1.2)

(see [3]).
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2. Locally optimal burn-in times in the linear case

We devote this section to the specific case when p linear (i.e. p(t) = pot). Some
aspects of this case have already been treated in detail in [3]. Here we complete the
study from a more analytical point of view. In the next section, the linear case will be
compared with the cases when p is, respectively, concave or convex.

The linearity of p makes the corresponding optimal burn-in problem more mathemat-
ically tractable.

The first good property the linear case manifests, when G is bathtub or upside
down bathtub, is the uniqueness of the optimal solution ;. Such a uniqueness result
is obtained as a corollary (Corollary 2.1) from Theorem 2.1. Theorem 2.1 is the main
result of this section, allowing us also to drop the condition G bathtub or upside down
bathtub.

Before stating and proving the theorem, we need some preliminary remarks.

First of all, we notice that, when p is linear, Eq. (1.2) becomes

R)(8) = (k—Fk)g(d)+ po /+OO tg'(t + 6)dt + cG(6) (2.1)
= (k—k)g(0) + (c — po)G(d) (2.2)
= GOk —k)r(8) + (¢ — po)] (2.3)

(see [3] for detailed computations).

Remark 2.1. By letting

we can write

it straightly follows that
sgn(b(9)) = sgn(R;(9)),
where
1 if x >0,
sgn(z):=4¢ 0 ifz=0,
-1 ifz<0.
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Similarly, since b'(8) = (k — k)r'(9),
sgn(t'(6)) = sen(r’(5)).

Lemma 2.1. Ifr'(§) > 0 and R}(6) <0, then R} (d) > 0.
If r'(6) <0 and R;(6) > 0, then R} (§) <O0.

Proof. Let § € (0,+00) be such that r'(§) > 0 and R}(6) < 0. Then R} (5) > 0.
In fact,

R (0) = —g(6)b(6) + G(6)(k — k)r'(6);

the thesis follows by Remark 2.1 and by noticing that g(§) > 0 and G(8) > 0.
Similarly, if r'(§) < 0 and R;j(4) > 0, then R} () <O0.

As mentioned in the previous section, we treat the cases when

e G is bathtub or upside down bathtub;

e changes its monotonicity an arbitrary finite number n of times.

We point out that the condition G is bathtub or upside down bathtub amounts
to require that r/(¢) has at most one change of sign, while the second condition is
equivalent to 7/(t) to have n roots with odd multiplicity. This last case is considered in
the following Theorem 2.1, allowing us to qualitatively study the graph of the function
R; and providing an upper bound for the number of roots of R} and, consequently, for
the number of points of local optimum of R;.

We denote respectively by 6/, dmin € (0,+00) the point of maximum and of
minimum of R;(4). Analogously to what has been done for the maximum points
(see Def. 1.3), we set pin = 400 if the minimum does not exist in (0, +00).

Let also d; € (0,+00) be a point of inflection of R;(d); we can more precisely denote
such a point by 6;‘%1 when it is a point of rising inflection or by 5% if it is a point of
falling inflection. Let correspondingly be D% the set of the points of rising inflection,

D?l the one of the points of falling inflection and Dy; := D}, U D?l.

Theorem 2.1. Let 01 < --- < g, be the change points of r and set

o9 =0, opy1 = +o00.

e R; admits at most n + 1 extremal points in (0, +00).
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o Furthermore, Dy C {o1,...,00}.

Proof. The proof is structured in three parts. In the first one, we prove that in
any open interval (o;,0;41) falls at most one extremal point, that is one point of

maximum or of minimum. For sake of simplicity, we suppose that /(¢) # 0 for any
n

te U(O’i, oi+1), neglecting therefore the occurrence of inflection points for r.
i=0
n
In a second step, we take into account the points ¢ € U(ai, 0;+1) such that
i=0
r'(t) = 0, showing that the thesis of the theorem is not affected by their existence:

also in presence of inflection points for r, we can conclude that R; admits no inflection
n

points in U(O’Z‘, Ui+1)~
i=0
In the third part, we take into account the behaviour of " and Rj in the change points.
Notice that, by construction, if 7/(t) > 0 for some ¢ € (0;,0;41), then r/(¢) > 0 for
any t € (04,0;41), 1.e. the sign of v’ cannot change within any interval (o;,0;41).
We consider then an arbitrary interval (o;,0;41). Four alternatives may manifest,

by scrutinizing all the possible cases about the signs of r’ and Rj(c;):

o 7'(t) >0, Rj(0;) <0

/

(
o 1/
(
(

) (03)

t) >0, Rj(o;) > 0;
e r'(t) <0, Rj(o;) > 0;
e r'(t) <0, Rj(o;) <O0.

To make the proof more legible, we consider here the strict inequalities, in place of the
non-strict ones. As we will see in a second part of the proof, this restriction does not
affect the thesis.

Let us discuss the first two cases; the situation presented in the last two cases is
symmetric and the proof is analogous.

Thus, let 7/(t) > 0 and R;(0;) < 0; by continuity, it implies that ¢ > 0 exists such
that Rj(0; +¢) < 0. By Lemma 2.1,

R;l(é) >0 Vde (0i70i+1) ord € (ai,émin) C (O’i,O'i+1),
if a Opmin € (04, 0441) exists; in this last case, it would be

RZ((szn) =0 and R;(é) >0 Vée (5min;0i+1)-
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In fact, for ¢’s such that R;(6) > 0, R;’s monotonicity character is not determined by
conditions provided by the Lemma, therefore it may both increase (resulting in such a
case R different from zero) and decrease. In this last case, some se (Omin, Oig1) may
exist such that R}(§) = 0. However, for 6§ € (8,0,41), it cannot be R}(§) < 0, because,
by Lemma 2.1, R}/(§) > 0, so that R} is increasing. Since we cannot a priori exclude
the existence of a certain number of &’s, such that R}(5) = 0, internal to intervals
(Omin, Ti+1), R} could have a priori an infinite number of zeros, corresponding to rising
points of inflection for R;. But, since

po—¢C

k—k

R)(5) >0 < r(6) >

and r is increasing, it cannot happen that

— — C — —
r(d) = PO C for & > 0, 0 € (04,0i11);
k—k
therefore no inflection points are admitted in any open interval.

This last argument also covers the case when r/(¢) > 0 and Rj(o;) > 0.

Therefore, in any interval, there is at most one point of maximum or minimum.

Till now, however, we neglect to consider that, for some ¢ € (0, 0;41), it could be
r'(t) = 0. We take into account now this eventuality. Suppose then to be in the case
when 7/(t) > 0 and R;j(0;) > 0.

The arguments of the previous part of the proof is preserved intact if, for those d’s
such that r'(§) = 0, R})(8) # 0. By Lemma 2.1, in those points R} is strictly increasing
or strictly decreasing. If, on the contrary, for some § is both /(&) = 0 and R}(5) = 0,
again by Lemma 2.1, R}(5) = 0 as well. This fact however has no repercussions
on the proof if 7/(5) # 0 for any § € (8,0,41). If instead 7/(§) = 0 on an entire
interval [6,8 +¢) C [6,0441), then R}(§) = 0, for any & € [§,8 + ¢). We recall that, as
described in the previous part of the proof, in (0;,8) R; is increasing; in [0 + &, 0441)
its monotonicity character is not determined, but it has necessarily to be sgn(R;]) > 0.
Therefore [§,5 + ¢) is a set of local minimum points for R;. However, since R}(§) = 0
for any § € [5,6 + ¢), Ry(8) is constant on [, + ¢). Therefore, actually, the whole

interval [d, 8 corresponds to a unique minimum value R;(J). The same argument

+¢)
holds if [0, 8 + €) is a set of local maximum points for R;.
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As concerns the inflection points, since

r(§+¢e) > Po _];;C and 7/(8) >0 for § € (0 +¢,0441),

it must be
Po—C T
r(0) > T for any 6 € (0 + &,0441).

n
Therefore, even if r had inflection points internally to U(O’i,gi_i'_l), R; would have
i=0

none.
At last, we take into account the behaviour of Rj in the change points of r. Such a

completion of the analysis is needed since we want to study the optimization problem

on the connected set (0, +00) and not only on the union of the disjoint open intervals

(04,0i41)’s.

Let us consider the interval (o;-1,0441) = (04-1,0;) U {0} U (04, 0i41)-

As we saw along the proof, for any J, if 7/(6) = 0 but R}(J) # 0, the arguments we

used in the case when r'(§) # 0 are not undermined. We are therefore interested in

examining the case when Rj(c;) = 0 (being r’(0;) = 0 by definition).

Let us suppose
r'(t) <0 forte (o;_1,0;) and r'(t) >0 fort e (04,0:11)

(the case r'(¢t) > 0 for t € (04-1,0;) and 7/(¢t) < 0 for t € (0;,0:41) is symmetric)
and Rj(c;—1) > 0. As we will see along the proof, this case will also comprehend the
illustration of the one when Rj(0;—1) < 0.

Only the following two subcases are possible:
1. §f € (04-1,0;) exists, such that

Ry(67) =0 and Rj(6) <0 V4§ € (§,0:);

2. Rj(6) > 0 for any ¢ € (0,1, 0).
In the first case (and therefore also when Rj(0;_1) < 0), it has to be
R;(0;) # 0. In fact, for any 6 € (67, 0;),

RIB) <0 < r(8) < P0—°
1(0) (9) T
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On the other hand, r'(§) <0 for ¢ € (0;-1,0;) implies that, for any
o€ (5, O’i),

< pPo—C
r(d) <r(d) < —.
(6) < (7)< 2=
Therefore r(d) = 20 _]5 is possible once that is again r/(§) > 0, that is out of the

considered interval (o;_1,0;) and, by continuity, of its closure as well.
Hence 6] € (0;_1, 0;) implies Rj(0;) # 0. Therefore o; cannot be a point of minimum
(nor of maximum, in the symmetric case).

In the second case, since for § € (0y,0;41) it has to be R}(d) > 0, o; is a rising (or
falling) inflection point.

Therefore only the change points may be inflection points for R;.

From this theorem, in the particular case G is bathtub or UB, one obtains the

following

Corollary 2.1. Let r'(t) have one change of sign. Then R; admits at most one point

of optimum §; € (0, +00).

An analogous reasoning to the one used in the proof of Theorem 2.1 for showing
the non-existence of inflection points leads to the following proposition. It is not a
corollary of Theorem 2.1, but it consists in an additional and more precise result we

manage in obtaining by requiring stronger hypotheses.
Proposition 2.1. Let G be bathtub shaped and R}(0) < 0, then §; = +oo.

Remark 2.2. Notice that we are not questioning here about the global optimum, but
about local optima, for which it is enough looking for the points where R;(5) =0
and R};(6) < 0. In particular, we are not considering the possibility that § = 0 is the
optimal burn-in time.

In our treatment of the linear case, however, we need not to know whether ¢; is a local
or global point of optimum, because, for the use we will make of it in the next section,

it is sufficient that ¢ is a local optimum.
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3. Bounds for the optimal burn-in time for concave and convex p

In this section, we come back to consider G bathtub or upside down bathtub, but
p non-linear. In this case, we generally lose the uniqueness of the optimal solution.
However, when p is concave or convex, we manage at least in providing some bounds
for the optimal solution of the corresponding burn-in problem. Such bounds will be
obtained by setting up a comparison with the case of p linear, where we have necessary
and sufficient conditions for a value d; € (0,400) to be the (unique) optimal solution
(see [3]).

For any po € R, let Cv,, and Czx,, respectively denote the class of concave and
convex functions p : [0, +00) — [0, +00) such that

p'(0) = lim p'(t) = po.

t—0t

We notice that, for any fixed pg, the class of linear functions such that p’'(0) = po
consists of the only element p(t) = pot, that we have considered till now and which we
continue to refer to. The proofs of our results (stated in Theorems 3.1 and 3.2 below)

are based on the following fact:
Lemma 3.1. For any fized pg € Ry and for any § > 0,

e R,(0) > Ry(0) for any p € Cup,;

e Ry(0) >R (3) for any p € Cxy,.

Proof. Since p concave (resp. convex) implies that
- / Gt + )0 (t)dt > 0 (resp. < 0),
0

the thesis follows.

Remark 3.1. We point out that the inequalities in Lemma 3.1 are strict. In fact, a
non-strict inequality would imply p”(t) = 0 for any ¢ € (0, 4+00). This fact, on its turn,
in view of the twice-differentiability of p, would imply p to be linear. This circumstance
has the following consequence (see proof of Theorems 3.1 and 3.2): if Rj(d) = 0 and

p € Cvpy UCxzp,, § cannot be an extremal point for R/,

The following result is a straight consequence of Lemma 3.1:
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Corollary 3.1. If p € Cv,, and §; € (0,+00) is the optimal burn-in time, it belongs
to the set
D ={6€(0,+00) | R;() < 0}.

Similarly, if p € Czp, and 6, € (0, +00) is the optimal burn-in time, it belongs to the
set

I={6€(0,+0c0) | R}(8) > 0}.

This corollary is of straight application in the following Theorems 3.1 and 3.2, which
provide regions for values of the possible optimal burn-in time in the concave and
convex cases. Such regions are determined in terms of maxima and minima of R;.
Results about the latter point have been provided in [3]. The proof is based on the
previous results: we will use in particular Lemma 2.1, to qualitatively establish the
shape of R}, Theorem 2.1 and its Corollary 2.1, to state the uniqueness of d,,;, and
¢; and to determine inflection points, affecting the set of the possible values of 7, and
Lemma 3.1, to display the graph of R, over or under the one of R;.

In Theorems 3.1 and 3.2 the case of G bathtub or upside down bathtub is considered,
that is when r’ changes sign only once. In the next section, we will see how to obtain

this kind of results when such hypothesis is weakened.
Theorem 3.1. Let p € Cv,,.

e IfRj(0) >0, then 6, € (6}, Gmin) U {+00};
e if R;(0) <0, then 5 € (0, dpmin) U (6], +00].

Proof. In view of Lemma 2.1, several situations may occur, depending on the shape

of G and the sign of R}(0). We can distinguish four different cases:
1. G bathtub, R;}(0) > 0;
2. G bathtub, R}(0) < 0;
3. G upside down bathtub, R}(0) > 0;
4. G upside down bathtub, R}(0) < 0.

1. We recall that G bathtub means that an only change point o € [0, +00] exists
such that r'(§) < 0 for any § € (0,0) and »'(§) > 0 for any ¢ € (0,4+00). By
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Lemma 2.1, for any § € (0,0), R}(d) < 0; therefore R}(J) may eventually change

sign in a point ¢; € (0,0).

When Rj(6) < 0, its monotonicity character is not determined, but R cannot
become positive, since, if, for some &, R)(5) = 0, it would be R/ (5) < 0 again.
Thus, in (0,0), R} may change sign at most once and therefore R; can have (by

Theorem 2.1) at most one point of optimum.

If Rj(c) < 0, by Lemma 2.1, R/(c) > 0. Again Rj(6) may change its sign in
a point dmin € (0,4+00). When Rj(§) > 0, for § € (o, +00), the monotonicity
character of Rj is not determined, but, for such §’s, it cannot be R;j(4) < 0,
since, as soon as, for some §, R}(5) = 0, it would be R/(§) > 0 and therefore
R increasing again. Hence, for any 6 > 0.,in, Rj(6) > 0. The same happens if
Rj(o) > 0: for any 6 > o, R;(d) > 0.

Thus, in (0, 400), R; can only have, again by Theorem 2.1, at most one point of
optimum or alternatively one (rising) inflection point in o.

By Lemma 3.1, if 05 € (0,+00), it has to be 8% € (J], dmin); otherwise we set
0, = +oo.

. For the argument presented in the previous point, in (0,0) it must be Rj(4) <0

and, because of Theorem 2.1, R; has no points of inflection. In (¢, +00), at most

one point &,y exists such that Rj(dmin) = 0.

Therefore, by Lemma 3.1, if §5 € (0, +00), it must be 6 € (0, §,nin); otherwise,
by definition, J; = +o0.

We recall that in this case, by Proposition 2.1, it is §; = +oo, therefore the

condition &% € (0, dymin) U {+00} coincides with the thesis

6, € (0, 0min) U (6], +00].

. In (0,0), by Lemma 2.1, it cannot be Rj(6) < 0. Therefore, by Theorem 2.1,

R, has neither extremal nor inflection points. In (o, +00), it exists at most one

point ¢; such that R;(4;) = 0, that is a point of optimum for R;.

For § > &, Rj(6) < 0. Therefore, §; € (5], +o0].
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Since, in this case, d,pin = +00, the previous condition coincides with the thesis
0%y € (6], Omin) U {+o0}.
4. In (0,0), R} (6) > 0 till a possible 0,y such that R;(0min) = 0.
For ¢ € (0ymin, o), Rj(6) > 0.
If Rj(0) <0, Rj(0) <0 for any § € (0,400); in such a case 0] = dpin = +00.
Again in (o, +00), if Rj(o) > 0, R} (d) < 0.
At most one point 0 € (o, +00) may exist such that Rj(d;) = 0. For any 6 > ¢},
R;(8) < 0.
Therefore, 67 € (0, dmin) U (07, +00].
Remark 3.2. In the previous proof, we neglect to consider the case when Rj(o) = 0.
Only when G is upside down bathtub and R}(0) < 0 (see point 4.), Rj(c) = 0 implies
that o is a falling inflection point for R; and therefore it must be excluded from the

set of the possible values for 47.

An analogous result holds when p is convex. The proof is analogous to the case

when p is concave and therefore it is omitted.

Theorem 3.2. Let p € Czy,.
e IfR}(0) >0, then &5 € (0,6]) U (dmin, +00J;
e if R)(0) <0, then 6, € (6min, ;) U {+o00}.

Remark 3.3. Theorem 3.2 presents some differences from Theorem 3.1. Such differ-
ences are due to the opposite point of view that we adopt in comparing the present
case to the linear one. One may imagine that we observe a symmetric behaviour for
the concave and convex cases. In fact the theses are in some way inverted with respect
to Theorem 3.1, as it may be intuitive. Less intuitively, we notice that also the roles

of 6min and 0] are inverted.

Remark 3.4. Also for p € Cz,,, we neglect to consider in Theorem 3.2 the case when
Rj(0) = 0. Only when G is bathtub and R}(0) > 0 (notice again that such conditions
are inverted with respect to the previous case, when p € Cv,,), Rj(c) = 0 implies that
o is a rising inflection point for R; and therefore it must be excluded from the set of

the possible values for 4.
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4. Multiple change points distributions

So far, we considered the case when r’ changes sign at most once. We suitably extend
Theorems 3.1 and 3.2 to the case when G has multiple change points o1, ..., 0,.

Theorems 3.1 and 3.2 are based on the uniqueness of §;, in the case when 7" has
at most one change of sign. Theorem 2.1 instead concerns distributions that are
not bathtub nor upside down bathtub, having multiple change points. In the case
considered therein, R; admits at most n + 1 extremal points, J,...,d, € (0,+00),
dg < -+ < 0p, and eventual inflection points only at o1, ...,0,. More in particular, R;
admits at most one extremal point in any interval (o;,0;11) and at most one optimal
point in any interval (o;_1,0;+1) and therefore at most LSJ + 1 optimal points on
(0, 400).

By iteratively applying Theorems 3.1 and 3.2 to any interval (c;_1,0411), we obtain
bounds for d; also if G is not bathtub nor upside down bathtub.
To perform such an iteration, we have to extract from dg,...,d, two sequences: the
one of the local optima, {d;}, and the one of the local minima, {57}

If Rj(0) > 0, then
do = min({5 | R;(6) =0} \{o1,...,0n})

is a maximum point, and we set

87 = do;
&1 = min({d | R}(5) = 0} \ {60, 01,-..,00})

is a minimum point, and we set

min .
61 = 517

and so on.
R; admits at most n + 1 extremal points, but not necessarily n + 1, meaning that it

may happen that for a certain index n < n, we find that
6 =min({§ | R;(6) =0} \ {d0,--.,07-1,00,01,...,0n}) = +00.
If n is even, we set

§F = 400, 6" = o0, fork:g—i—l?...,{fJ—i—l;



17

Interval bounds for the optimal burn-in times

n+1 VzJ
5 0 |5

if n is odd, it will be
- n+1
0" = 400, for k= %,..., LgJ +1, 6054y = +oo, fork =
Symmetrically, if Rj(0) < 0, the above-defined d¢ is a minimum point, and we set

min .
51 = 507

01 is instead a maximum point and we set
3
0] =1,

and so on.
If R; admits less than n+ 1 extremal points, that is if 7 < n exists, such that & 400

when 7 is even, we set
8F = 400, &M = oo, fork:%Jrl,..., {gJ +1;
when 7 is odd, it will be
n+1 n
min for k=""=,....| ]
+o00, Ior 5 5

n+1 n
0y = o0, fork:T,..., {§J +1, 5k+1 =
We are now in a position to state the following theorem

Theorem 4.1. Let p € Cv,,
If Rj(0) > 0, then
2]+
65,67 U {+o0};

se | 65,0

=1

if R;(0) <0, then
e
6, € (0,67"") U (67, Z’Tl" ((5’[%J+1,+oo].
=1
Let p € Cxy,.
If Rj(0) > 0, then
1 %]
&5 € (0,67) U (07", d711) | U ( r”]+1,+oo];
i=1
if R;(0) <0, then
L8]+
sve |J @ o) 0 {+oo}.

i=1
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5. Reward functions with mission time

Till now, we have considered the special case where the reward function is the one
in Eq. (0.1). We want to point out that however our results are extendible, at the
cost of slight changes, to other cases. In this section, we describe in particular a model

with the presence of a mission time 7, whose reward function turns out to be
Rep(t,6) = p(t — 6)1(isrisy + klsctaris) + klesy + cmin(d,t). (5.1)

First, along the line of [3, Proposition 2], we give conditions for finding the locally
optimal burn-in times for the version of the reward function R, ,(t,4) in the case when

p is linear (see Proposition 5.1 below), that we denote by R, ,(t,9).

g(t+9)
9(8)

mining the monotonicity character of R’ ; (see Remark 5.1 below), therefore we lose

In doing that the function plays an additional role to the one of r in deter-
the monotonicity relationship between r and of R we have had till now (see Lemma
2.1). As a consequence, even for linear p, we do no manage in determining a maximum
number of extremal points for R/ .

In particular, if we come back again to consider G bathtub or upside down bathtub,
we lose the uniqueness of §;. Therefore, for the discussion of the present case, we draw
inspiration from Theorem 4.1, providing for the eventuality of more than one optimal
point. However the result of this section differs from it for what concerns the other
hypotheses and assumptions on the number of extremal and inflection points and their
localization with respect to the change points. In order to prove the following Theorem
5.1, we can rely only on a result analogous to Lemma 3.1, holding for R’ ; and R , as
well.

Even if some hypotheses satisfied by the previous reward function are lost, still
we can provide bounds for the solutions of the convex or concave case based on the
solutions in the linear case. However, in applying the theorem, we have to pay attention
to the fact that, even if part of the thesis is still satisfied, we lose any link with ageing
properties represented by the bathtub or UB shape of G or by the multiple change
points form of r. In fact, the reward function in Eq. (5.1) does not allow us to find
immediate relations with them. Therefore the proof of the following Theorem 5.1 only
can use an analogous relation of Lemma 3.1.

Correspondingly to Eq. (5.1), we have
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R:,(0) =E[R, ,(T,9)] =
B +o0 o )
k[G(T 4+ 06) — G(6)] + EG(d) + / p(t)g(t + 0)dt + cdG(d) + c/ tg(t)dt  (5.2)
0 0

and

+oo
RL,(6) = (k—k)g(0) — /0 p"'(t)G(t + 0)dt + (c — po)G(6) + kg(T +6).  (5.3)
Remark 5.1.

LIS an ecreasing 1n 0 an < 0 1mply > V.
5 dg(;(;’)5)d ing in 0 and R, (8) < 0 imply R (5) > 0

g(T +9)
9(5)

For this reward function, even in the linear case, we have not warranted the uniqueness

e 7(9) and

increasing in § and «(0)R7 ,(6) > 0 imply R ,(6) < 0.

of the optimum, as the following proposition let argue.

Proposition 5.1. Let p be linear. 6* > 0 is a locally optimal burn-in time if and only

if
r(5%) = Po—¢ (5.4)
~ g(T 4+ 6%)
’“"“(l‘ 4(0°) )
and

o8 (k@) ) N
< (- fry et £m) ¥ @) <atres)

(5.5)

g(T +6%) kr(6) —a7)
o(5) ><1 7 (0% —alr + 6%

Proof. Maximizing the expected reward R, ;(6) with respect to § is equivalent to

) if r(6%) > a(r +6%)

finding § > 0 such that

In the linear case
1 1(6) = (k = k)g(8) + (¢ = po)G(8) + kg(T + b),

that straightly leads us to Eq. (5.4).

710) = (k= k)g'(6) + (po — ¢)g(6) + kg'(T + 9).
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Therefore R () < 0 if and only if

(k — k)a(5) + p'(0) — ¢ — ka(r + 6)9(7(—;)6) <0.
g
Since we are interested in computing R’T’ ,(8) for those ¢’s already satisfying Eq. (5.4),
we obtain
- - )
(k — k)(a(8) — (8)) + k(r(6) — a(r + 5))% <0,
By discussing the sign of r(d) — a7 + J), we get the condition (5.5).

g(t+9)
9(9)
no solutions if a(d) < r(d) < «(r + J), while condition (5.5) is always satisfied if

alT +9) < r(d) < afd).

Remark 5.2. Since > 0 for any 7,0 > 0, the optimization problem has

Also for the expected reward in Eq. (5.2), Lemma 3.1 and Corollary 3.1 hold. More

precisely:
1. for any fixed py € R and for any § > 0,

* R ,(6) >R, ,(0) for any p € Cvjy;

e R ,(6) >R. ,(0) for any p € Cxyy;

2. e if p € Cvy, and 6}, € (0,+00) is the optimal burn-in time, it belongs to the
set

D = {6 € (0,+00) | R7,;(0) < 0};

e if p € Cz), and J; € (0, +00) is the optimal burn-in time, it belongs to the
set

I={5€(0,+00) | R.,(5) > 0},

Suitably modified, an analog of Theorem 4.1 holds even under weaker hypotheses.
We lose the statement about the non-existence of the inflexion points and d;’s just are
the points where R’T’p(é) = 0, without relation with the change points of r, oy’s.

We also notice that, again, also for the reward function in Eq. (5.1), in view of
finding bounds for the possible solutions of concave or convex burn-in problems, we
need not to find the global optimum of the linear problem, but only the local ones.

So like Theorem 4.1, the following theorem uses local maximum and minimum points

for R, to determine the set where local maximum points of R, , can fall.
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We denote by h € N the number of solutions of Eq.’s (5.4) and (5.5). Now, the
sequences {07}, {0} respectively consist of the solutions of Eq.’s (5.4) and (5.5)
and of the ones of Eq. (5.4) satisfying Eq. (5.5) with the reverted inequality signs.

Theorem 5.1. Let p € Cv,;
if R, ,(0) >0, then

e U 57,67 U (oo} \ Dl (5.6
if R;(0) <0, then
. h_l .
d, € (0,67"") U (U( i ﬁT)) U (8, +00] \ D,.
i=1
Let p € Cxpy;
if R ,(0) >0, then
h—1
5, € (0,67) U <U (Cr 57,+1)> (65", +o00] \ D3 (5.7)
i=1

if R, ,(0) <0, then
5 € U 57 67) U {+oo} \ DY

Notice that, in Eq.’s (5.6), (5.7), it can be 6" € (&}, 4+00) or 6" = +o0, while,

in the other two equations, it has necessarily to be 7" € (65 _,,65).

6. Conclusions

In [3], some results are provided, linking ageing to the solution of the optimal burn-
in time problem for the cost structure described by Eq. (0.1). We chose therein such
a reward function, presenting a form that allows us to highlight connections between
the optimal burn-in problem and relevant ageing properties.

We start from such results, that are, under some aspects, preliminary for the analytical
study we carried on in the present paper. We provide here results about the optimal
burn-in time under a given cost structure, with p linear and a hazard rate with a finite

number of monotonicity change points. When p is linear, at most one locally optimal
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burn-in time falls in any time interval where r is monotonic. As a particular instance
of this result, under the hypothesis that G is bathtub or upside down bathtub, we get
the uniqueness of the optimal burn-in time.
Determining the local maximum points under the hypothesis of p’s linearity serves as
a basis for establishing bounds for the set where the local maximum points may fall,
in the cases when p is concave or convex. The locally optimal times when p is linear
can be determined by applying the condition provided in [3, Proposition 2].

In the bathtub or upside down bathtub case, we can also state a more schematic
criterion to establish the existence or the position of §;, provided that we know the

sign of Rj(c) and 7’(¢) (with 0 < e < 0):
o Rj(o)r'(e) <0 implies that both 6; and 0y, do not exist in (0, +00);
o Rj(0) <0, r(e) <0 imply 6; € (0,0);
o Rj(o) >0, v(e) > 0 imply Opmin € (0,0).

By combining it with Theorem 3.1 or 3.2, we obtain conditions for existence of d,
also in the case when p is concave or convex.

Such a criterion can be straightly extended to the case of r with multiple change
points, to establish the existence or the position of a local optimum point §} in any
interval (o;_1,0541), @ = 1,...,n, provided that we know the sign of Rj(c;) and
r'(o; —e) (with 0 <e <oy —0y-1).

We also show how our results, obtained under a particular cost structure, can be
used as a starting point for obtaining analogous ones under a modification of the cost

structure, where a surcharge, associated with a mission time, is inserted.
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