
An Algebra of Hierarchical Graphs ?

Roberto Bruni1, Fabio Gadducci1, and Alberto Lluch Lafuente2

1 Department of Computer Science, University of Pisa, Italy
2 IMT Institute for Advanced Studies Lucca, Italy

Abstract. We define an algebraic theory of hierarchical graphs, whose
axioms characterise graph isomorphism: two terms are equated exactly
when they represent the same graph. Our algebra can be understood as a
high-level language for describing graphs with a node-sharing, embedding
structure, and it is then well suited for defining graphical representations
of software models where nesting and linking are key aspects.

1 Introduction

As witnessed by a vast literature, graphs offer a convenient ground for the
specification and analysis of software systems. Roughly, graphical models expose
the structure of a system in terms of its computational components, their ports
and their connectivity. Using plain hypergraphs (i.e. graphs where nodes and
edges form just sets, with no additional structure), components and connectors
become hyperedges and their ports become nodes. Moreover, nodes, hyperedges
and their tentacles can be typed so to discard erroneously linked systems.

In [4] we argue that structured graphs are most suited for service-oriented
systems, where scalable techniques and open-ended specifications are important is-
sues that are not immediately met by plain hypergraphs alone. Structured graphs
offer better support for “understanding” graphs (like parsing and browsing large
systems), for designing systems (like expressing requirements and specifications,
facilitating abstraction and refinement, allowing modularity and seamless aggre-
gation), supporting automated analysis and verification (like model construction,
model conformance, behavioural analysis, assessing sound reconfiguration and
refactoring transformations) and last but not least, for sound and complete visual
encoding of computational systems.

Different kinds of structures can be super-imposed on graphs. First, a graph
G can be enclosed in some sort of box whose label L implicitly defines some
properties of the enclosed graph, i.e., its style (e.g. see the graph transformation
framework in [11]). Figure 1 (left) shows one example of “topologically” labelled
graph, that can be written, e.g., Seq [G] (for the obvious plain graph G derivable
from the figure) or, equivalently, as a membership annotation G : Seq , where Seq
can be read as the set of all (well-linked) sequential graphs.

The “graphs within boxes” view can be enhanced into a “graphs within
edges” view, where boxes have their own tentacles and boxing can be iterated.
? Research supported by the EU, FET integrated project IST-2005-016004 Sensoria.

2 R. Bruni, F. Gadducci, A. Lluch Lafuente

Fig. 1. Graphs within boxes (left) and graphs within edges (right) views

For example, Fig. 1 shows that the sequential composition of sequential graphs
still yields a sequential graph. Note that the boxed interfaces are equipped with
tentacles and dotted lines make explicit the link between inner nodes, exposed
by interfaces, and actual nodes (analogous notation will be used in Fig. 6 (right)
and Fig. 7). This way, boxes can be read as enhanced interfaces allowing for
more sophisticated forms of containment, (well-typed) composition, modular
specification, logical hierarchies or node sharing.

The encoding of configurations given with an algebraic specification language
(e.g. as in process calculi) is best defined by structural induction. In absence of an
algebraic presentation for the target model, an ad-hoc algebraic syntax must be
developed in order to benefit from structural induction in proofs, transformations
or definitions. An example of this is the algebraic presentation of MOF (Meta
Object Facility) metamodels of [2]. Still, most graph models are not equipped
with algebraic syntaxes and those that exist require advanced skills to deal
with sophisticated models involving set-theoretic definitions of graphs with
interfaces (e.g. [15]) or complex type systems (e.g. [7]), hampering definitions
and proofs. Moreover, one encounters a severe drawback: namely, the syntax
of graph formalisms are often very different from the source language and not
provided with suitable primitives to deal with features that commonly arise in
algebraic specifications, like names (e.g. references, channels), name restrictions
(e.g. hiding, nonce generation) or hierarchical aspects (e.g. ambients, scopes)
in the case of process calculi. Additionally, any graphical encoding involves
the challenge of preserving structural equivalence of system configurations, i.e.
ensuring that structurally equivalent configurations are mapped to isomorphic
graphs. For example, in graph transformation approaches [10] the soundness of
the encoding is necessary to model dynamic aspects like operational semantics,
reconfigurations, refactorings or model transformations, because the matching of
redexes is based on (sub)graph isomorphism.

In order to overcome such challenges, we have developed a handy syntax
for representing nested graphs and reducing the representation distance w.r.t.
specification languages. The syntax has been first presented in [3] together with
a methodology to encode process calculi like, among other case studies, a sophis-
ticated calculus for the description of service-oriented applications, CaSPiS [1],
whose features posed further challenges to visualisation, due to the interplay of
name handling, nested sessions and a pipeline operator.

An Algebra of Hierarchical Graphs 3

Fig. 2. SPS metamodel for our running scenario

The contribution of this paper is to equip the syntax with a set of axioms
and a suitable domain of interpretation, thus resulting in a novel algebra of
hierarchical graphs. The domain of interpretation is a (sound and complete)
initial model that serves as an original flavour of (layered) graphs: the axioms
allow for term normalization and the interpretation of terms over set-theoretical
models allow us to use the algebra as some sort of intermediate language, reducing
the representation distance between specification languages and structured graph
models. This paper, hence, is the foundational counterpart of our methodological
approach to the visual specification of systems initiated in [3].

Synopsis. We take a scenario based on a simple metamodel of service oriented
entities as a running example, introduced in § 2. The algebra of nested graphs
is defined in § 3 and its set-theoretical interpretation is defined in § 4, together
with the main result establishing the soundness and completeness of the interpre-
tation. Finally, related and future works are discussed in § 5 together with some
concluding remarks. A short appendix addresses a practical issue, raised in [3],
concerning the possibility of flattening certain layers of a hierarchical graph.

2 Sites, processes and services

Nesting and linking are two key structural aspects that arise repeatedly in
computer systems: consider e.g. the structure of file systems, composite diagrams,
networks, membranes, sessions, transactions, locations, structured state machines
or XML files. Identifying the right structure and level of abstraction is fundamental
to enjoy scalability. In particular, nesting (called composition in MOF) plays a
fundamental role for abstracting the complexity of a system by offering different
levels of detail. We argue that nesting and linking must be treated as first-
class concepts, conveniently represented with a suitable syntax that allows one
to express and exploit them. Various graphical models of nesting and sharing
structures already exist but (as we argue in § 5) it seems to us that none of them
offers a syntax as simple and intuitive as the one proposed in this paper.

4 R. Bruni, F. Gadducci, A. Lluch Lafuente

Fig. 3. An SPS instance as a flat diagram (left) and as a nested graph (right)

As a simple running example, we consider the metamodel SPS (for sites,
processes and services) shown in Fig 2. It fixes an alphabet of (attributed)
entities (sites, processes, derivative and proprietary services) and their possible
relations: processes and services are associated to sites (containment is given
by composition relations, which are denoted by lines decorated with diamonds
on the container end), proprietary services may use processes, and derivative
services may also require services (association relations are denoted with ordinary
arrows). The algebraic presentation of [2] basically consists of representing models
as multisets of (typed) objects with some attributes used for their interrelations
(i.e. references to object identifiers) Roughly, each configuration (object multiset)
corresponds to a flat graph where nodes and edges are used to represent objects
and their relations as depicted in the example instance of Fig. 3 (left), where a
site provides a client certification service (Know Your Customer) built out from
an internal process. Composition is represented just as any other relation (the
has and provides relations) which makes it difficult to exploit the compositional
structure to abstract or manipulate such models. For instance, it is not easy
to write a term site(x) that matches a site with any possible configuration x
of processes and services because the multiset representation requires us to see
the configuration as site(x), C, where site(x) is a configuration containing the
process and all its contents for which we need to check that C (the rest of the
configuration) does not contain any object referring to the site as its container.
Matching a term like site(x) in a graphical representation would mean to match
an entire subgraph which is clearly facilitated when graphs are structured (e.g.
hierarchical). For instance, the graph on Fig. 3 (right) offers an explicit, visual
representation of composition by containment Now, site(x) can be used to denote
a Site-labelled box embedding x (the content of the site).

An Algebra of Hierarchical Graphs 5

3 An algebra of hierarchical graphs

We introduce here our algebra of (typed) hierarchical graphs with edge-like
interfaces that we call designs. The algebraic presentation of designs has emerged
during our studies on Architectural Design Rewriting [6] (hence the name) and it
has been inspired by the graph algebra of [9].

Definition 1 (design). A design is a term of sort D generated by the grammar

D ::= Lx[G] G ::= 0 | x | l〈x〉 | G | G | (νx)G | D〈x〉

where l and L are drawn from alphabet E and D of edge and design labels,
respectively, x is taken from a set N of nodes and x ∈ N ∗ is a list of nodes.

As a matter of notation, we let bxc denote the set of elements of a list x and
overload | · | to denote both the length of a list and the cardinality of a set.

Terms generated by G and D are meant to represent (possibly hierarchical)
graphs and “edge-encapsulated” hierarchical graphs, respectively. The syntax
has the following informal meaning: 0 represents the empty graph, x is a discrete
graph containing node x only, l〈x〉 is a graph formed by an l-labeled (hyper)edge
attached to nodes x (the i-th tentacle to the i-th node in x, sometimes denoted
by x[i]), G | H is the graph resulting from the parallel composition of graphs
G and H (their disjoint union up to shared nodes), (νx)G is the graph G after
making node x not visible from the outside (borrowing nominal calculus jargon
we say that the node x is restricted), and D〈x〉 is a graph formed by attaching
design D to nodes x (the i-th node in the interface of D to the i-th node in x).

A term Lx[G] is a design labeled by L, with body graph G whose nodes x are
exposed in the interface. To clarify the exact role of the interface of a design, we
can use a programming metaphor: a design Lx[G] is like a procedure declaration
where x is the list of formal parameters. Then, term Lx[G]〈y〉 represents the
application of the procedure to the list of actual parameters y; of course, in this
case the length of x and y must be equal (more precisely, the applicability of a
design to a list of nodes must satisfy other requirements to be detailed later in
the definition of well-formedness).

Restriction (νx)G acts as a binder for x in G and similarly Lx[G] binds bxc
in G, leading to the usual (inductively defined) notion of free nodes fn(·)

fn(Lx[G]) = fn(G) \ bxc fn(0) = ∅ fn(x) = {x} fn(l〈x〉) = bxc
fn(G | H) = fn(G) ∪ fn(H) fn((νx)G) = fn(G) \ {x} fn(D〈x〉) = fn(D) ∪ bxc

Example 1. Let a, b ∈ E , A ∈ D, u, v, w, x, y ∈ N . We write and depict in Fig. 4
some terms of our algebra. Nodes are represented by circles, edges by small
rounded boxes, and designs by large shaded boxes with a top bar. The first
tentacle of an edge is represented by a plain arrow with no head, while the second
one is denoted by a normal arrow. If a node is exposed in the interface we put it
on the outermost layer and overlap the edges of the various layers denoting this

6 R. Bruni, F. Gadducci, A. Lluch Lafuente

Fig. 4. Some terms of the graph algebra

with black boxes on design borders. In the particular examples only free nodes are
annotated with their identities. Note that this representation is informal (alike
Fig. 3 (right) and Fig. 5) to give a first intuition of our model of hierarchical
graphs. Next section offers the formal representation of the rightmost term.

In practice, it is very frequent that one is interested in disciplining the use
of edge and design labels so to be attached only to a specific number of nodes
(possibly of specific sorts) or to contain graphs of a specific topology. To this
aim it is typically the case that: 1) nodes are sorted, in which case their labels
take the form n : s for n the name and s the sort of the node; 2) each label of
E and D has a fixed arity and for each rank a fixed node sort; 3) designs can
be partitioned according to their top-level labels (i.e. the set of design labels D
can be seen as the set of sorts, with a membership predicate D : L that holds
whenever D = Lx[G] for some x and G). When this is the case, we say that a
design (or a graph) is well-typed if for each sub-term Lx[G] we have that the
(lists of) sorts of x and L coincide, and similarly for sub-terms D〈x〉 and l〈x〉.
From now on, we restrict our attention to well-formed designs.

Definition 2 (well-formedness). A design or graph is well-formed if (1) it is
well-typed; (2) for each occurrence of design Lx[G] we have bxc ⊆ fn(G); and (3)
for each occurrence of graph Lx[G]〈y〉, the substitution y/x induces a bijection.

Intuitively, the restriction on the mapping y/x allows x to account for matching
and mismatching of nodes in the interface: distinct nodes in y must correspond
to distinct nodes in x, moreover the list x can contain repetitions, in which case
all the occurrences of the same node x must correspond to the same node y.

In order to have a notion of syntactically equivalent designs (i.e. to consider
designs up to isomorphism), the algebra includes the structural graph axioms
of [9] such as associativity and commutativity for | (with identity 0) and node
restriction (respectively, axioms DA1–DA3 and DA4–DA6). In addition, it includes

An Algebra of Hierarchical Graphs 7

axioms to α-rename bound nodes (DA7–DA8), an axiom for making immaterial
the addition of a node x to a graph where x is already free (DA9) and another
one that makes sure global names are not local (DA10).

Definition 3 (design axioms). The structural congruence ≡D over well-formed
designs and graphs is the least congruence satisfying

G | H ≡ H | G (DA1) G | (νx)H ≡ (νx)(G | H) if x 6∈ fn(G) (DA6)
G | (H | I) ≡ (G | H) | I (DA2) Lx[G] ≡ Ly[G{y/x}] if byc ∩ fn(G) = ∅ (DA7)

G | 0 ≡ G (DA3) (νx)G ≡ (νy)G{y/x} if y 6∈ fn(G) (DA8)
(νx)(νy)G ≡ (νy)(νx)G (DA4) x | G ≡ G if x ∈ fn(G) (DA9)

(νx)0 ≡ 0 (DA5) Lx[z | G]〈y〉 ≡ z | Lx[G]〈y〉 if z 6∈ bxc (DA10)

where in axiom (DA7) the substitution is required to be a function (to avoid node
coalescing) and to respect the typing (to preserve well-formedness).

Note that ≡D respects free nodes, i.e. G ≡D H implies fn(G) = fn(H). Being
≡D a congruence, we remark e.g. that Lx[G] ≡D Lx[H] whenever G ≡D H.

In the following, we shall often write L[G]〈y〉 as a shorthand for Ly[G]〈y〉.

Example 2. Recall the example of Section 2 and consider the graph on the right
of Fig. 3. Its syntactical representation site0 is defined as

Site[(νKYCP)(Process[KYCP | attr(name,KnowYourCustomer)]〈KYCP〉
| PropietaryService[KYC | attr(name,KnowYourCustomer) | uses〈KYCP〉]〈KYC〉)]

where attr(l, y) def= (νy)l〈y〉 is an abbreviation for the representation of an
attribute as an edge with the name of the attribute as label attached to a new
node representing the value. Note that other representations can be chosen for a
pure graphical representation of attributes (for instance sharing values).

The syntactical presentation is very compact and clean. Note for instance
how some structural constraints are captured: the impossibility for a service
to use a process of another site (an OCL constraint not shown in Fig 2 for
brevity) is ensured by the restriction of the identity of processes inside sites. Now,
recall the convenience of being able to express a term like site(x). In our syntax
we can define site(x) def= Site[x], i.e., a Site-labelled design with some graph x
in it. Clearly, our site0 matches site(x) with x being the graph representing
processes and services of the site. We can then perform some proof based on
induction on the compositional structure of sites but also define rewrite rules
like site(x) | site(y) → site(x | y) for fusing two sites, which would require a
cumbersome set of rules when working with plain graphs or multisets.

Let us now consider the more complex instance of Fig. 5, with some non-trivial
linking modelling the fact that a derivative service (a certified mini credit service)
is built using an external client certification service (KYC). The term underlying
the graphical representation is site0 | site1 where site1 is defined as

Site[(νMCP)(Process[MCP | attr(name,MiniCredit)]〈MCP〉
| DerivativeService[CMC | attr(name,CertifiedMiniCredit)

| uses〈MCP〉 | requires〈KYC〉]〈CMC〉
| ProprietaryService[MC | attr(name,UncertifiedMiniCredit) | uses〈MCP〉]〈MC〉)]

8 R. Bruni, F. Gadducci, A. Lluch Lafuente

Fig. 5. An instance of the SPS metamodel as a hierarchical graph

It is worth to observe how the model is structured by the graph, hiding the
processes inside sites and allowing for cross-references to services only, as in the
case of the derivative service CMC of site1 that requires the proprietary service
KYC of site0.

One important aspect of our algebra is allowing the derivation of standard
representatives for the equivalence classes induced by ≡D.

Definition 4 (Normalized form). A term G is in normalized form if it is 0
or it has the shape (for some n + m + p + q ≥ 1, nodes xj and zk, and edges
lh〈vh〉 and Li

yi
[Gi]〈wi〉)

(νx1) . . . (νxm)(z1 | . . . | zn | l1〈v1〉 | . . . | lp〈vp〉 | L1
y1

[G1]〈w1〉 | . . . | Lq
yq

[Gq]〈wq〉)

where all terms Gi are in normalized form, all nodes xj are pairwise distinct, all
nodes zk are pairwise distinct and letting X = {x1, . . . , xm} and Z = {z1, . . . , zn}
we have X ⊆ Z, fn(G) = Z \X and fn(Li

yi
[Gi]〈wi〉) = Z for all i = 1...q.

Proposition 1. Any term G admits a ≡D-equivalent term norm(G) in normal-
ized form.

Roughly, in norm(G) the top-level restrictions are grouped to the left, and
all the global names zk are made explicit and propagated inside each single
component Li

yi
[Gi]〈wi〉. Up to α-renaming and to nodes and edges permutation,

the normalized form is actually proved to be unique.

An Algebra of Hierarchical Graphs 9

4 A model of hierarchical graphs

The family of hierarchical graphs. We first present the set of plain graphs and
graph layers, upon which we build our novel notion of hierarchical graphs. In
the following, N and A = AE] AD denote the universe of nodes and edges,
respectively, for A indexed over the alphabets E and D.

Definition 5 (graph layer). The set L of graph layers is the set of tuples
G = 〈NG, EG, tG, FG〉 where EG ⊆ A is a (finite) set of edges, NG ⊆ N a (finite)
set of nodes, tG : EG → N∗G a tentacle function, and FG ⊆ NG a set of free nodes.
The set P of plain graphs contains those graph layers G such that EG ⊆ AE .

Thus, we just equipped the standard notion of hypergraph with a chosen set of
free nodes, intuitively denoting those nodes that are available to the environment,
mimicking free names of our algebra. Next, we build the set of hierarchical graphs.

Definition 6 (hierarchical graph). The set H of hierarchical graphs is the
smallest set3 containing all the tuples G = 〈NG, EG, tG, iG, xG, rG, FG〉 where

1. 〈NG, EG, tG, FG〉 is a graph layer;
2. iG : EG ∩ AD → H is an embedding function (we say that iG(e) is the inner

graph of e ∈ EG ∩ AD);
3. xG : EG ∩ AD → N ∗ is an exposure function (xG(e) tells which nodes of

iG(e) are exposed and in which order), such that for all e ∈ EG ∩ AD
(a) bxG(e)c ⊆ NiG(e) \ FiG(e), i.e. free nodes of inner graphs are not exposed
(b) |xG(e)| = |tG(e)|, i.e. exposure and tentacle functions have the same

arity4

(c) ∀n,m ∈ N we have that xG(e)[n] = xG(e)[m] iff tG(e)[n] = tG(e)[m], i.e.
it is not possible to expose a node twice without attaching it to the same
external node (and vice versa);

4. rG : EG ∩AD → (NG ↪→ N) is a renaming function (rG(e) tells how nodes
NG are named in iG(e)), such that for all e ∈ EG ∩AD rG(e)(NG) = FiG(e),
i.e. the nodes of the graph are (after renaming) the free nodes of inner layers.

Thus, a hierarchical graph G is either a plain graph, or it is equipped with
a function associating to each edge in EG ∩ AD another graph. The tuple
〈NG, EG, tG, iG〉 recalls the layered model of hierarchical graphs of [11], with iG
being the function that embeds a graph (of a lower layer) inside an edge. Node
sharing is introduced by the graph component FG and the renaming function
rG, inspired by the graphs with (cospan-based) interfaces of [15]. In practice,
we shall often assume that rG(e) (when defined) is the ordinary inclusion: the
general case is useful to embedd and reuse graphs without renaming their nodes.
3 Taking the least set we exclude cyclic dependencies from containment, like a graph

being embedded in one of its edges.
4 We shall not put any emphasis on the typing of the graph, but clearly if the set

of nodes is many sorted an additional requirement should force the exposure and
tentacle functions to agree on the node types.

10 R. Bruni, F. Gadducci, A. Lluch Lafuente

Fig. 6. A hierarchical graph (left) and its simplified representation (right)

An intuitive way to understand our model is a programming metaphor where
each hierarchical edge e is seen as a procedure declaration: tG(e) are the actual
arguments, xG(e) the formal parameters, FiG(e) the global variables for which
rG(e) act as aliasing, and NiG(e) \ (FiG(e) ∪ bxG(e)c) the local variables.

Example 3. Consider the last term of Example 1 and its informal graphical
representation on Fig. 4 (right). Its actual interpretation as a hierarchical graph
appears in Fig. 6 (left) decorated with the most relevant annotations (the tentacle,
exposition and renaming functions for the two hierarchical edges). As witnessed
by Fig. 6 (right), we can introduce convenient shorthands, such as dotted lines
for mapping parameters, node-sharing represented by unique nodes and tentacles
crossing the hierarchy levels, dropping the order of tentacles in favour of graphical
decorations (missing or different heads and tails) to get a simplified notation
(reminiscent of Fig. 1 (right)) that still retains all the relevant information. Note
that such a simplified representation is very close to the informal notation of
terms of our graph algebra shown in Fig. 4 and Fig. 5.

Example 4. Recall our example of services and the instance with two sites for
which we gave its syntactical representation as site0 | site1 (see Example 2) and
its informal graphical representation (see Fig. 5). Its actual hierarchical graph is
depicted in Fig. 7 where we do not offer all the annotations as in the previous
example and we hide some useless copies of global nodes (just to allow the reader
to focus on the relevant part of the example). To a certain extent, it might be
argued that our formal model is redundant, in the sense that global nodes require
a copy at each subgraph. As we will see, this is necessary for the completeness
result. In the informal presentation, as well as e.g. in a visualising tool, all copies
are put together at the intuitively “right” level.

An Algebra of Hierarchical Graphs 11

Fig. 7. An instance of our SPS metamodel as a formal hierarchical graph

These examples should hopefully outline how our model of hierarchical graphs
works and the comparison with the informal representation should suggest how
they could be used to obtain an intuitive, clear visualisation. The examples
should also highlight that the algebra is providing a simple syntax that hides the
complexities of hierarchical models. The syntax can then be used in definitions,
proofs and transformations in a much more friendly way than would be the case
when working directly with actual graphs.

In the rest of the section we explain how such graphs are obtained out of
terms, but first we have to fix some notation and concepts. In the following,
we shall just use graph in place of hierarchical graph. Note that the embedding
structure forms a directed acyclic graph, whose unfolding we call embedding tree.
The height (resp. depth or layer) of a graph is the height (resp. depth) of its
embedding tree. The leaves of the embedding tree are actually plain graphs. In
the following, H denotes both the set of all such graphs or the category having
such graphs as objects and the following graph morphisms as arrows.

Definition 7 (graph morphism). Let G, H be graphs such that FG ⊆ FH . A
graph morphism φ : G−→H is a tuple 〈φN , φE , φI〉 where φN : NG → NH is a
node morphism, φE : EG → EH an edge morphism, and φI = {φe | e ∈ EG∩AD}
a family of graph morphisms φe : iG(e)−→iH(φE(e)) such that5

1. ∀e ∈ EG, φN (tG(e)) = tH(φE(e)), i.e. the tentacle function is respected;

5 Again, many-sorted alphabets would require the morphisms to be type consistent.

12 R. Bruni, F. Gadducci, A. Lluch Lafuente

2. ∀e ∈ EG ∩ AD, φe
N (xG(e)) = xH(φE(e)), i.e. the exposure function is re-

spected;
3. ∀e ∈ EG ∩ AD, ∀n ∈ NG, φe

N (rG(e)(n)) = rH(φE(e))(φN (n)), i.e. the
renaming function is respected;

4. ∀n ∈ FG, φN (n) = n, i.e. the free nodes are preserved.

In the above definition we abuse the notation by lifting morphisms to sets and
vectors. It is worth to observe that our morphisms are not the most general form
one can define. In particular, using the terminology of [19] they are root-level in
the sense that they represent a layer-by-layer embedding. More general notions
are the deep morphisms of [19] which embed a graph G into some lower graph
of the embedding tree of a graph H. However, for the purpose of this paper
our morphisms are enough: we can easily define isomorphisms and the category
obtained has all pushouts, which we use to define a composition operator and
which prepare the ground for some basic pushout-based graph transformations.

Proposition 2 (pushouts [10]). Let φ : G→ H, ψ : G→ I be injective graph
morphisms. Then, the pushout of φ and ψ always exists.

Here, injectiveness simply means that the underlying function on the nodes
and edges of the graph layers are also injective. The proof is then easy, since no
item coalescing is forced by the span of arrows, and all the auxiliary functions
(exposure, etc.) are defined in the expected way.

Encoding terms into graphs. The last step before introducing the algebraic
characterisation of graphs is the definition of a composition operator. We need
however a few auxiliary definitions.

Definition 8. Let N ∈ N be a subset of nodes of graph G. Then, N̂ is the
hierachical graph given by the tuple 〈N, ∅,⊥,⊥,⊥,⊥, N〉, and inN : N̂ → G is
the obviously defined, injective graph morphism.

We denote the empty function with ⊥, distinguishing it from the empty set ∅.

Definition 9 (graph composition). Let G, H be graphs. Then, the composi-
tion of G and H, denoted G⊕H, is the (codomain of the) pushout of the span

̂FG ∩ FH → G and ̂FG ∩ FH → H.

Graph composition is always defined, thanks to Proposition 2. We are now
ready to see how terms of our algebra can be interpreted as graphs. We assume
that subscripts refer to the corresponding encoded graph. For instance, JGK =
〈NG, EG, tG, iG, xG, rG, FG〉.

Definition 10 (graph interpretation). The encoding J·K, mapping well-formed
terms into graphs, is the function inductively defined as

JxK = 〈{x}, ∅,⊥,⊥,⊥,⊥, {x}〉 Jl〈x〉K = 〈bxc, {e′},⊥,⊥,⊥,⊥, bxc〉
JG | HK = JGK⊕ JHK J0K = 〈∅, ∅,⊥,⊥,⊥,⊥, ∅〉
J(νx)GK = 〈NG, EG, tG, iG, xG, rG, FG \ x〉

JLx[G]〈y〉K = 〈NG, {e}, e 7→ y, e 7→ JGK⊕ JbycK, e 7→ x, e 7→ idN , (FG \ bxc) ∪ byc〉

where e′ ∈ AE and e ∈ AD.

An Algebra of Hierarchical Graphs 13

The encoding into (plain) graphs of the empty design, isolated nodes and
single edges is trivial. Node restriction consists of removing the restricted node
from the set of free nodes. The encoding of the parallel composition is as expected:
a disjoint union of the corresponding hierarchical graphs up to common free
nodes, plus a possible saturation of the sub-graphs with the nodes now appearing
in the top graph layer. A hierarchical edge (last row) is basically a graph with a
single edge (which is mapped to the corresponding body graph) and a copy of
the free nodes of the body graph (properly mapped to the corresponding copies
in the body), while adding the names byc among the free ones.

It is worth to remark that the encoding is surjective, i.e. every graph can be
denoted by a term of the algebra.

Proposition 3. Let G be a graph. Then, there exists a well-formed term G
generated by the design algebra such that G is isomorphic to JGK.

Moreover, our encoding is sound and complete, meaning that equivalent terms
are mapped to isomorphic graphs and vice versa.

Theorem 1. Let G1, G2 be well-formed terms generated by the design algebra.
Then, G1 ≡d G2 if and only if JG1K is isomorphic to JG2K.

The proof proceeds by exploiting the normalized form of well-formed terms.
In fact, by Prop 3 each graph has associated a well-formed term in normal form,
and this can be further exploited to prove the uniqueness of such term.

5 Conclusions and Related and Future Works

We introduced a novel specification formalism based on a convenient algebra of
hierarchical graphs: its features make it well-suited for the specification of systems
with inherently hierarchical aspects ranging from process calculi with notion of
scopes and containments (like ambients, membranes, sessions and transactions) to
metamodels with composition relations. Some advantages of our approach are due
to the graph algebra. Most importantly, its syntax resembles standard algebraic
specifications and, in particular, it is close to the syntax found in nominal calculi.
The key point is to exploit the algebraic structure of both designs and graphs
when proving properties of an encoding, i.e. to facilitate proofs by structural
induction. Indeed, the main result of the paper already guarantees that equivalent
terms correspond to isomorphic graphs.

On the algebra of graphs. Our most direct source of inspiration is an approach
for the reconfiguration of software architectures called Architectural Design
Rewriting (ADR) [6], where architectures are encoded as terms of a particular
graph algebra and reconfigurations are defined using standard term rewriting
techniques. Our model of hierarchical graphs extends ADR graphs with node
sharing and our algebra equips ADR with a suitable syntax. In particular, original
ADR specifications can be seen as rewrite theories over a signature formed by

14 R. Bruni, F. Gadducci, A. Lluch Lafuente

derived operations defined by terms closed with respect to nodes. Our algebra,
hence, inherits the characteristics of ADR, like the ability to nicely model style-
preserving architectural reconfigurations [6].

Our syntax is inspired by the graph algebra proposed in [9]. The main idea
there was to have constructors such as the empty graph, single edges, and
parallel composition, and axioms like associativity and commutativity of such
composition, in order to consider graphs up to isomorphism. Our richer design
algebra includes hierarchical features and it is intended to enable a more suitable
representation for nominal calculi and their behaviour. A key difference is that in
our initial model, a node restriction cannot cross the boundaries of hierarchical
edges in which it is contained. Adding the corresponding axiom is feasible, even
if it would result in a quite different set-theoretic notion of hierarchical graph.
A less demanding, yet quite useful alternative is linked with the possibility of
“flattening” some of the designs, in order to consider them just as type annotations
Accomodating for these axioms, fruitfully used in [3], would not change our class
of hierarchical class, as shown in the Appendix of the present paper.

As far as set-theoretical formalisms are concerned, our most direct reference is
the framework for hierarchical graph transformation introduced in [11], of which
our proposal can be considered an extension, dealing with free names, along the
lines of so-called graph with interfaces discussed in e.g. [15]. Indeed, as far as the
mapping of processes is concerned, our solution follows closely [15]: the operators
verifying the AC1 axioms basically disappear, while name restriction is dealt
with by handling the interfaces. Some other models of hierarchical graphs exist
in the line of [11] (e.g. [8, 19]) but most of them lack of a simple algebraic syntax
and an associated set of axioms.

On structured graphical models. Our approach is closely related to other for-
malisms that adopt a graphical representation of concurrent systems. Among
those, we mention Bigraphical Reactive Systems (BRSs) [18] and Synchronized
Hyperedge Replacement (SHR) [14].

The syntax of SHR is basically the one of [9], and it is subsumed by our
algebra. Instead, the SHR approach focuses on the description of the operational
behaviour of a system by a set of suitably labelled inference rules, which may
involve complex synchronisations. We discuss later some of the rewriting features
we intend to add to our approach. However, we can safely say that so far the
concerns of the two proposals have been largely orthogonal.

A bigraph is given by the superposition of two independent graphs, repre-
senting the locality and the connectivity structure of a system, respectively. In
our terms, the first specifies the hierarchical structure of the system, while the
second the naming topology. We believe that the two approaches have the same
expressiveness, but argue for the better usability of our syntax and the small,
intuitive set of axioms. Most importantly, BRSs have been mostly studied in
connection with the relative pushout (RPO) technique [17], in order to distill
a bisimilarity congruence from a set of rewrite rules. Our hierarchical graphs
form a category with pushouts (indeed, possibly an adhesive one), and the DPO
approach could be then lifted, as in [11]. Hence, they should then be amenable to

An Algebra of Hierarchical Graphs 15

the borrowed context technique for distilling relative pushouts [13]. Our proposal
thus fits in the standard graph-theoretic mold, while its slender syntax provide a
simple intermediate language between process calculi and their concrete graph-
ical models. Obviously, a possible integration is to use our syntax in order to
characterise certain classes of bigraphs (e.g. pure bigraphs). Such integration is
also suggested in [16], where the authors propose an algebraic syntax for denoting
bigraphs and present type systems to characterise those terms that correspond
to particular sub-classes of bigraphs.

On rewriting mechanisms. Concerning the operational behaviour of our specifica-
tions, we would like to find a term rewriting-like technique for the reconfiguration
of designs, and prove it compatible with a graph theoretical approach for rewriting
hierarchical graphs. In other words, the correspondence holding between designs
and hierarchical graphs should be lifted at the level of rewriting. The standard
notions of term rewriting can be applied to our algebra of designs, simply con-
sidering sets of (name and design) variables. The corresponding technique for
graph rewriting is more complex, since most of these techniques are eminently
local, thus making it difficult to simulate the replication of an unspecified design.
Nevertheless, since our category admits pushouts, a clear path is laid down by
the use of rule schemata in the DPO approach, as in [11].

Applications. We are applying our technique to various languages, focusing on
process calculi exhibiting nested features A preliminary proof of the flexibility of
our approach for this purpose is found in [3], offering an encoding of a session-
centered calculus. Another focus is on metamodels, we plan to develop a technique
to distill algebraic specifications out of MOF metamodels, along the lines of [2]
but capturing composition as nesting.

An implementation of our approach and its integration in our prototypical
implementation of ADR [5] in the rewrite engine Maude is under current work.
A preliminary version is available (at http://www.albertolluch.com/adr2graphs/)
as a visualiser that considers our design algebra and some encodings of process
calculi like the π-calculus and CaSPiS.

Acknowledgements. We are grateful to Andrea Corradini for his many suggestions

and to Artur Boronat for fruitful discussions.

References

1. M. Boreale, R. Bruni, R. De Nicola, and M. Loreti. Sessions and pipelines for
structured service programming. In G. Barthe and F. S. de Boer, editors, Proceedings
of the 10th IFIP International Conference on Formal Methods for Open Object-based
Distributed Systems (FMOODS’08), volume 5051 of Lecture Notes in Computer
Science, pages 19–38. Springer Verlag, 2008.

2. A. Boronat and J. Meseguer. An algebraic semantics for MOF. In Proceedings
of the International Conference on Fundamental Aspects of Software Engineering
(FASE’08), volume 4961 of Lecture Notes in Theoretical Computer Science, pages
377–391. Springer Verlag, 2008.

16 R. Bruni, F. Gadducci, A. Lluch Lafuente

3. R. Bruni, F. Gadducci, and A. Lluch Lafuente. A graph syntax for processes and
services. In S. Jianwen and C. Laneve, editors, Proceedings of the 6th International
Workshop on Web Services and Formal Methods (WS-FM’09), Lecture Notes in
Computer Science. Springer Verlag, 2009. To Appear.

4. R. Bruni and A. Lluch Lafuente. Ten virtues of structured graphs. In Proceedings
of the 8th International Workhshop on Graph Transformation and Visual Modeling
Technique (GT-VMT’09), volume 18 of Electronic Communications of the EASST.
ECEASST, 2009.

5. R. Bruni, A. Lluch Lafuente, and U. Montanari. Hierarchical design rewriting
with Maude. In G. Rosu, editor, Proceedings of the 7th International Workshop
on Rewriting Logic and its Applications (WRLA’08), volume 238 (3) of Electronic
Notes in Theoretical Computer Science, pages 45–62. Elsevier, 2009.

6. R. Bruni, A. Lluch Lafuente, U. Montanari, and E. Tuosto. Style Based Architectural
Reconfigurations. Bulletin of the European Association for Theoretical Computer
Science (EATCS), 94:161–180, February 2008.

7. M. Bundgaard and V. Sassone. Typed polyadic pi-calculus in bigraphs. In A. Bossi
and M. J. Maher, editors, Proceedings of the 8th International Symposium on
Principles and Practice of Declarative Programming (PPDP’06), pages 1–12. ACM,
2006.

8. G. Busatto, H.-J. Kreowski, and S. Kuske. Abstract hierarchical graph transforma-
tion. Mathematical Structures in Computer Science, 15(4):773–819, 2005.

9. A. Corradini, U. Montanari, and F. Rossi. An abstract machine for concurrent
modular systems: CHARM. Theoretical Computer Science, 122(1-2):165–200, 1994.

10. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic
Approaches to Graph Transformation - Part I: Basic Concepts and Double Pushout
Approach. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing
by Graph Transformation, pages 163–246. World Scientific, 1997.

11. F. Drewes, B. Hoffmann, and D. Plump. Hierarchical graph transformation. Journal
on Computer and System Sciences, 64(2):249–283, 2002.

12. F. Drewes, H.-J. Kreowski, and A. Habel. Hyperedge replacement, graph grammars.
In G. Rozenberg, editor, Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations, pages 95–162. World Scientific, 1997.

13. H. Ehrig and B. König. Deriving bisimulation congruences in the DPO approach
to graph rewriting with borrowed contexts. Mathematical Structures in Computer
Science, 16(6):1133–1163, 2006.

14. G. L. Ferrari, D. Hirsch, I. Lanese, U. Montanari, and E. Tuosto. Synchronised
hyperedge replacement as a model for service oriented computing. In F. S. de Boer,
M. M. Bonsangue, S. Graf, and W. P. de Roever, editors, Proceedings of the
4th International Symposium on Formal Methods for Components and Objects
(FMCO’05), volume 4111 of Lecture Notes in Computer Science, pages 22–43.
Springer Verlag, 2006.

15. F. Gadducci. Term graph rewriting for the pi-calculus. In A. Ohori, editor,
Proceedings of the 1st Asian Symposium on Programming Languages and Systems
(APLAS’03), volume 2895 of Lecture Notes in Computer Science, pages 37–54.
Springer Verlag, 2003.

16. D. Grohmann and M. Miculan. Graph algebras for bigraphs. In Proceedings of
the 10th International Workshop on Graph Transformation and Visual Modeling
Techniques (GT-VMT’10), Electronic Communications of the EASST. ECEASST,
to appear.

An Algebra of Hierarchical Graphs 17

17. J. J. Leifer and R. Milner. Deriving bisimulation congruences for reactive systems.
In C. Palamidessi, editor, Proceedings of the 11th International Conference on
Concurrency Theory (CONCUR’00), volume 1877 of Lecture Notes in Computer
Science, pages 243–258. Springer Verlag, 2000.

18. R. Milner. Pure bigraphs: Structure and dynamics. Information and Computation,
204(1):60–122, 2006.

19. W. Palacz. Algebraic hierarchical graph transformation. Journal of Computer and
System Sciences, 68:497–520, 2004.

Appendix: Flattening

We call a graph flat whenever there is no design in its body. Flattening a design
is done by a kind of hyper-edge replacement [12] in the form of axioms that are
sometimes useful to be included in the structural congruence.

Example 5. Suppose that we want to characterise the set of a-labelled, acyclic,
and connected sequences (see Example 1). We can define an algebra with an
element α in the sequence, and a binary sequential composition ; . Both are de-
rived operators defined by α def= A(u,v)[a(u, v)] and X;Y def= A(u,v)[(νw)(X〈u,w〉 |
Y 〈w, v〉)], where X and Y have type A. Clearly, the algebra as such constructs
hierarchical sequences, where e.g. (α; (α;α))〈x, y〉 and ((α;α);α)〈x, y〉 are not
equivalent graphs due to different nestings.

Definition 11 (flattening axiom). Given a design label L ∈ D, its flattening
axiom flatL is Lx[G]〈y〉 ≡ G{y/x}.

Example 6. By introducing flatA in the algebra of Example 5, the two former
terms (α; (α;α))〈x, y〉 and ((α;α);α)〈x, y〉 are identified, and correspond to the
plain graph (νw1, w2)(a(x,w1) | a(w1, w2) | a(w2, y)).

The above example illustrates the two roles of the nesting operator: as a means
to enclose a graph and as a sort of typed interface to enable disciplined graph
compositions. The presence of flattening axioms makes the first role implicit. The
example also illustrates how graphical encodings of existing (algebraic) languages
are defined and exploited: the main trick is to see the constructors of the original
language as derived operators of the graph algebra.

In the presence of flattening, our main result can be extended just by a minor
change in the graph interpretation of Definition 10, by letting:

JLx[G]〈y〉K = 〈NG, {e}, e 7→ y, e 7→ JGK⊕ JbycK, e 7→ x, e 7→ idN , N
′〉 if flatL 6∈≡D

JLx[G]〈y〉K = 〈NG{y/x}, EG{y/x}, tG{y/x}, iG{y/x}, xG, rG, N
′〉 if flatL ∈≡D

where e ∈ AD and N ′ abbreviates (FG \ bxc) ∪ byc.

