
Scientific Annals of Computer Science vol. 20, 2010

“Alexandru Ioan Cuza” University of Iaşi, Romania

An Algebra of Hierarchical Graphs
and its Application to Structural Encoding

Roberto BRUNI1, Fabio GADDUCCI1, Alberto LLUCH LAFUENTE2

Abstract

We define an algebraic theory of hierarchical graphs, whose axioms
characterise graph isomorphism: two terms are equated exactly when
they represent the same graph. Our algebra can be understood as
a high-level language for describing graphs with a node-sharing, em-
bedding structure, and it is then well suited for defining graphical
representations of software models where nesting and linking are key
aspects. In particular, we propose the use of our graph formalism as a
convenient way to describe configurations in process calculi equipped
with inherently hierarchical features such as sessions, locations, trans-
actions, membranes or ambients. The graph syntax can be seen as an
intermediate representation language, that facilitates the encodings of
algebraic specifications, since it provides primitives for nesting, name
restriction and parallel composition. In addition, proving soundness
and correctness of an encoding (i.e. proving that structurally equivalent
processes are mapped to isomorphic graphs) becomes easier as it can
be done by induction over the graph syntax.

1Department of Computer Science, University of Pisa, Largo Bruno Pontecorvo 3, 56127
Pisa, Italy, email: bruni,gadducci@di.unipi.it

2IMT Institute for Advanced Studies Lucca, Piazza San Ponziano 6, 55100 Lucca, Italy,
email: alberto.lluch@imtlucca.it

53

1 Introduction

As witnessed by a vast literature, graphs offer a convenient ground for the
specification and analysis of software systems. As an example, the use
of graphs as a suitable domain for the visualisation of a system specified
by algebraic means is pursued in various proposals, based on traditional
Graph Transformation [18], Bigraphical Reactive Systems [23], Synchronized
Hyperedge Replacement [17] and Membrane Systems [25, 26], just to cite a
few of the most prominent examples.

Despite their expressiveness and flexibility, the use of these formalisms to
build a graphical representation for an existing specification language involves
the major challenge of encoding system configurations (states), guaranteeing
that structural equivalence is preserved: any two equivalent configurations
P and Q are mapped into isomorphic graphs JP K and JQK. Preserving
structural equivalence has several advantages. It offers an intuitive normal
form representation for systems, and it allows to reuse results and techniques
from graph theory for solving specific problems: for example, checking
structural equivalence by the use of algorithms for testing graph isomorphism.
In particular, the soundness of the encoding is necessary to use graph
transformation approaches [13] to model dynamic aspects like operational
semantics, reconfigurations, refactorings or model transformations since
(sub)graph isomorphism is at the base of the rule matching mechanism.

When configurations P are specified by using an algebraic syntax (e.g. as
in process calculi), their encoding JP K can be driven by their (term) structure
by defining it inductively. In the absence of an algebraic presentation for the
language under consideration, an ad-hoc algebraic syntax must be developed
if one wants to benefit from compositionality and structural induction
in proofs, transformations or definitions. Still, most graph models are
defined set-theoretically: most often, they are not equipped with a natural
algebraic syntax and the existing ones require advanced skills to deal with
sophisticated models involving ad-hoc definitions of graphs with interfaces
(e.g. [18]) or complex type systems (e.g. [9]), or representing hierarchies
as trees (e.g. [19, 23]), hampering definitions and proofs. Moreover, one
encounters a severe drawback: namely, the syntax of those graph formalisms
are often very different from the source language and they are not provided
with suitable primitives to deal with features that commonly arise in algebraic
specifications, like names (e.g. references, channels), name restrictions (e.g.
hiding, nonce generation) or hierarchical aspects (e.g. ambients, scopes) in
the case of process calculi. Summarising all the above, the representation

54

distance from the syntax of configurations with respect to the syntax of
encoding graphs complicates i) the definition of the encoding; ii) its proof of
correctness; and iii) its reuse when slightly different algebras of configurations
or kinds of graphs are considered.

Our idea is to distill a sort of standard intermediate language between
those used for specifying system configurations and those available for graph
formalisms, where some essential first-class concepts are suitably represented
and built-in so that a) a standard encoding from the intermediate syntax
to the graph models and its correctness are established once and for all;
b) the representation distance from system configurations to the intermediate
syntax is considerably reduced; and c) the encoding of system configurations
is then factorised via the intermediate language. The main advantage is that
the definition of the encoding (and the proof of its correctness) are carried
out more conveniently at the algebraic level.

We have decided to base our intermediate language on two key structural
aspects that are arise repeatedly in system specifications, namely nesting
and linking. Consider for instance the structure of file systems, composite
diagrams, networks, membranes, sessions, transactions, locations, structured
state machines or XML files. Various graphical models of nesting and sharing
structures already exist but (as we claim in § 9) none of them offer a simple,
intuitive syntax. Identifying the right structure is fundamental to enjoy
scalability. In particular, nesting plays a fundamental role for abstracting
the complexity of a system by offering different views at different levels of
detail, based on the nesting depth.

This paper describes our proposal for addressing those challenges. The
work presented here is the full version of two conference papers [5, 4],
extended with the proofs of the main results and two original encodings.
Below we clarify the sources of content in better detail while explaining the
structure of the paper.

In [4], we have introduced a formalism made of an algebra (§ 2) for
a model of hierarchical graphs (§ 3) to fill the gap between the different
levels of abstraction at which algebraic specifications of software systems and
graphical structures reside. The algebra enjoys primitives for dealing with
names, restriction, parallel composition and, most importantly, nesting in
the same way as they are used in process calculi. In particular, the nesting
mechanism allows for easily defining graphical presentations of inherently
hierarchical aspects such as locations, membranes, ambients, transactions
or sessions, and it is equipped with a sound and complete set of axioms

55

equating two terms whenever they represent isomorphic graphs (§ 4). Besides
facilitating the visual specification of configurations, we argue that definitions,
transformations and proofs by induction are made easier by the algebraic
structure of configurations and graphs.

In [5] we have validated the above idea by using our graph algebra
to encode the configurations of two (process) calculi with service-inherent
features that have a certain hierarchical nature such as sessions, transactions
or locations: the first one is a simple workflow language, vaguely reminiscent
of BPEL; the second example concerns a sophisticated calculus for the
description of service-oriented applications, namely, CaSPiS [1] (see § 7),
whose features pose further challenges to visualisation, due to the interplay
of name handling, nested sessions and a pipeline operator. This paper
extends [5] with the proof of the correspondence result for CaSPiS (§ 7),
preceded by two novel encodings: § 5 shows the encoding of the best-known
nominal calculus, namely the π-calculus [22] and § 6 focuses on a calculus
for transactions called sagas [8]. Each example illustrates the treatment of
linking, nesting and their combination, respectively. We remark that the
technique we propose can be transferred to other calculi as well, as witnessed
by other available encodings mentioned in § 9.

2 An algebra of hierarchical graphs

We introduce here our algebra of (typed) hierarchical graphs that we call
designs. The algebraic presentation of designs has emerged during our
studies on Architectural Design Rewriting [7] (hence the name) and has been
inspired by the graph algebra of CHARM [12].

Definition 1 (design) A design is a term of sort D generated by

D ::= Lx[G]
G ::= 0 | x | l〈x〉 | G | G | (νx)G | D〈x〉

where l and L are drawn from alphabet E and D of edge and design labels,
respectively, x is taken from a set N of nodes and x ∈ N ∗ is a list of nodes.

The algebraic reading is as usual, where each syntactical category and
vocabulary is considered as a sort and productions are read as functions. This
allows us, for instance, to consider open terms (i.e. terms with typed vari-
ables): they are useful for defining encodings by means of derived operators,
as we shall see in § 5, § 6 and § 7.

56

As a matter of notation, we let bxc denote the set of elements of a list
x; we also overload | · | in order to let it denote either the length of a list or
the cardinality of a set.

Terms generated by G and D are meant to represent (possibly hier-
archical) graphs and “edge-encapsulated” hierarchical graphs, respectively.
The syntax has the following informal meaning: 0 represents the empty
graph, x is a discrete graph containing node x only, l〈x〉 is a graph formed
by an l-labeled (hyper)edge attached to nodes x (the i-th tentacle to the
i-th node in x, sometimes denoted by x[i]), G | H is the graph resulting
from the parallel composition of graphs G and H (their disjoint union up to
shared nodes), (νx)G is the graph G after making node x not visible from
the outside (borrowing nominal calculus jargon we say that the node x is
restricted), and D〈x〉 is a graph formed by attaching design D to nodes x
(the i-th node in the interface of D to the i-th node in x).

A term Lx[G] is a design labeled by L, with body graph G whose nodes
x are exposed in the interface. To clarify the exact role of the interface
of a design, we can use a programming metaphor: a design Lx[G] is like a
procedure declaration where x is the list of formal parameters. Then, term
Lx[G]〈y〉 represents the application of the procedure to the list of actual
parameters y; of course, in this case the length of x and y must be equal
(more precisely, the applicability of a design to a list of nodes must satisfy
other requirements to be detailed later in the definition of well-formedness).

Restriction (νx)G acts as a binder for x in G and similarly Lx[G] binds
bxc in G, leading to the usual (inductively defined) notion of free nodes fn(·)

Definition 2 (free nodes) The free nodes of a design or a graph are de-
noted by the function fn(·), defined as follows

fn(0) = ∅ fn(x) = x
fn(l〈x〉) = bxc fn(G | H) = fn(G) ∪ fn(H)

fn((νx)G) = fn(G) \ {x} fn(D〈x〉) = fn(D) ∪ bxc
fn(Lx[G]) = fn(G) \ bxc

The following example offers a first intuition of the algebra and the
model of hierarchical graphs. For this purpose we offer an informal, appealing
visual notation. The formal underlying graphs are introduced in § 3.

Example 1. For simplicity, in this example we consider hyperedges that
have two tentacles each, but this is not a restriction we shall enforce and in
fact we will consider more general cases in the rest of the paper. Let a, b ∈ E ,

57

Figure 1: Some terms of the graph algebra

A ∈ D, u, v, w, x, y ∈ N . We write and depict in Figure 1 some terms of our
algebra. Nodes are represented by circles, edges by small rounded boxes,
and designs by large shaded boxes with a top bar. The first tentacle of an
edge is represented by a plain arrow with no head, while the second one is
denoted by a normal arrow. If a node is exposed in the interface we put it
on the outermost layer and overlap the edges of the various layers denoting
this with black boxes on design borders. In the particular examples only
free nodes are annotated with their identities. Note that this representation
is informal to give a first intuition of our model of hierarchical graphs. Next
section offers the formal representation of the rightmost term.

In practice, it is very frequent that one is interested in disciplining the
use of edge and design labels so to be attached only to a specific number of
nodes (possibly of specific sorts) or to contain graphs of a specific topology.
To this aim it is typically the case that: 1) nodes are sorted, in which case
their labels take the form n : s for n the name and s the sort of the node; 2)
each label of E and D has a fixed arity and for each rank a fixed node sort; 3)
designs can be partitioned according to their top-level labels (i.e. the set of
design labels D can be seen as the set of sorts, with a membership predicate
D : L that holds whenever D = Lx[G] for some x and G). When this is the
case, we say that a design (or a graph) is well-typed if for each sub-term
Lx[G] we have that the (lists of) sorts of x and L coincide, and similarly
for sub-terms D〈x〉 and l〈x〉. From now on, we restrict our attention to
well-formed designs.

58

Definition 3 (well-formedness) A design or graph is well-formed if

1. it is well-typed;

2. for each occurrence of design Lx[G] we have bxc ⊆ fn(G);

3. for each occurrence of graph Lx[G]〈y〉, the substitution y/x induces a
bijection.

Intuitively, the restriction on the mapping y/x allows x to account for
matching and mismatching of nodes in the interface: distinct nodes in y
must correspond to distinct nodes in x, and if the list x contain repetitions,
then all the occurrences of the same node x in x must correspond to the
same node y in y, and vice versa.

In order to have a notion of syntactically equivalent designs (i.e. to
consider designs up to isomorphism), the algebra includes the structural
graph axioms of [12] such as associativity and commutativity for | (with
identity 0) and node restriction (respectively, axioms DA1–DA3 and DA4–
DA6). In addition, it includes axioms to α-rename bound nodes (DA7–DA8),
an axiom for making immaterial the addition of a node x to a graph where
x is already free (DA9) and another one that makes sure global names are
not localized inside designs (DA10).

Definition 4 (design axioms) The structural congruence for well-formed
designs and graphs ≡D is the least congruence satisfying

G | H ≡ H | G (DA1)
G | (H | I) ≡ (G | H) | I (DA2)

G | 0 ≡ G (DA3)
(νx)(νy)G ≡ (νy)(νx)G (DA4)

(νx)0 ≡ 0 (DA5)
G | (νx)H ≡ (νx)(G | H) if x 6∈ fn(G) (DA6)

Lx[G] ≡ Ly[G{y/x}] if byc ∩ fn(G) = ∅ (DA7)
(νx)G ≡ (νy)G{y/x} if y 6∈ fn(G) (DA8)
x | G ≡ G if x ∈ fn(G) (DA9)

Lx[z | G]〈y〉 ≡ z | Lx[G]〈y〉 if z 6∈ bxc (DA10)

where in axiom (DA7) the substitution is required to be a bijection (to avoid
node coalescing) and to respect the typing (to preserve well-formedness).

59

Note that ≡D respects free nodes: G ≡D H implies fn(G) = fn(H).
Being ≡D a congruence, we remark that Lx[G] ≡D Lx[H] whenever G ≡D H.

One important aspect of our algebra is that it allows the derivation of
standard representatives for the equivalence classes induced by ≡D.

Definition 5 (Normalized form) A term G is in normalized form if it
is 0 or it has the shape (for some n+m+ p+ q ≥ 1, nodes xj and zk, and
edges lh〈vh〉 and Liyi [Gi]〈wi〉)

(νx1) . . . (νxm)(z1 | . . . | zn | l1〈v1〉 | . . . | lp〈vp〉 | L1
y1

[G1]〈w1〉 | . . . | Lq
yq

[Gq]〈wq〉)

where all terms Gi are themselves in normalized form, all nodes xj are pair-
wise distinct, all nodes zk are pairwise distinct and letting X = {x1, . . . , xm}
and Z = {z1, . . . , zn} we have X ⊆ Z, fn(G) = Z \X and fn(Liyi [Gi]) = Z
for all i = 1...q.

Proposition 1 Any term G admits a ≡D-equivalent term norm(G) in nor-
malized form.

Proof: We proceed by structural induction. For the base cases we have
that 0 and x already in normalized form and the single-edged graph l〈x〉 can
be put in normalized form by exploiting DA9 to add in parallel composition
the nodes in bxc. For the inductive cases, assume norm(G) and norm(H)
are the normalized forms of G and H respectively. The normalized form of
the graph (νx)G is (νx)norm(G) if x ∈ fn(G), otherwise it is just norm(G),
because (νx)G ≡D (νx)(G | 0) ≡D G | (νx)0 ≡D G | 0 ≡D G (by axioms
DA3, DA6 and DA5). For the last two cases, we introduce the notation
normsat(G, Y), where Y is a set of nodes, to denote the term obtained by
saturating norm(G) by the parallel composition of the nodes in Y . This can
be straightforwardly defined by: 1) alpha-converting all the bound names
appearing in norm(G) so to be all different from the names in Y (this is
achieved by axioms DA7 and DA8); 2) put G in parallel with Y, where Y
is the parallel composition of all names in Y \ fn(G); 3) exploit axiom DA9
to create as many duplicates of Y as the top-level design edges appearing
in norm(G); 4) exploit axioms DA1, DA2 and DA6 to place one copy of
Y right after the top-level restrictions and the other copies of Y nearby
each top-level design edge; 5) exploit axiom DA10 to move the copies of Y
inside their adjacent design edges and then apply iteratively this procedure
(from step 2) to their content. Then, the normalized form of Lx[G]〈y〉 is
Z | Lx[normsat(G, Y)]〈y〉, where Y = byc \ fn(Lx[G]) and Z is the paral-
lel composition of nodes in byc ∪ fn(Lx[G]) (the equivalence is proved by

60

Figure 2: An algebra of graph sequences.

applying axioms DA9 and DA10 repeatedly). Finally, the normalized form
of G | H is obtained by: 1) taking normsat(G, Y) | normsat(H, Z), where
Y = fn(H) \ fn(G) and Z = fn(G) \ fn(H); 2) alpha-converting all the
top-level restricted names appearing in normsat(H, Z) so to be all different
from the bound names in normsat(G, Y) and then group all such top-level
restrictions to the left; 3) rearrange the term using axioms DA1 and DA2 to
group similar items (nodes, edges and design edges); 4) exploit axiom DA9
to remove duplicate top-level nodes. �

Roughly, in norm(G) the top-level restrictions are grouped to the left,
and all the global names zk are made explicit and propagated inside each
single component Liyi [Gi]〈wi〉. Up to α-renaming and to nodes and edges
permutation, the normalized form can be proved to be unique.

We call a graph flat whenever there is no design in its body. Sometimes,
we impose the flattening property on the graph algebra by an axiom schema,
implicitly removing (by performing some kind of hyper-edge replacement [15])
those edges satisfying a specific membership predicate.

Definition 6 (flattening axiom) A flattening axiom flatL for some design
label L is of the form Lx[G]〈y〉 ≡ G{y/x}.

In the next example we see how flattening is fundamental in order
to characterise classes of graphs by means of derived operators. Indeed,
flattening is used in all three encoding examples (see § 5, 6 and § 7) where
some design labels will be used just for the sake of composing various classes
of processes and not really to build scopes.

Example 2. Suppose that we want to characterise the set A of a-labelled,
acyclic, and connected sequences (see Example 1). We can define an algebra
with an element α :→ A in the sequence, and a binary sequential composition
; : A× A→ A. Both are derived operators defined by α def= Au,v[a(u, v)]

61

Figure 3: Sequence composition without (top) and with flattening (bottom).

and X;Y def= Au,v[(νw)(X〈u,w〉 | Y 〈w, v〉)], where X and Y have type A.
The graphical representation of both operators is visualised in Figure 2. We
put the operator declaration on the top bar of the outermost design and we
annotate the variables with their names and types. Note that, implicitly, the
type of the outermost box is the type returned by the operation. Clearly, the
algebra as such constructs hierarchical sequences, where e.g. (α; (α;α))〈x, y〉
and ((α;α);α)〈x, y〉 intuitively define different graphs due to the nestings
(see Figure 3). If we introduce the flattening axiom flatA in the algebra,
instead, the two former terms are identified, and intuitively correspond to
the normal form (νw1, w2)(a(x,w1) | a(w1, w2) | a(w2, y)) (see Figure 3).

The above example illustrates the two roles of the nesting operator: as
a way to enclose a graph and as a sort of typed interface to enable disciplined
graph compositions. The presence of flattening axioms makes the first role
immaterial. The example also illustrates how graphical encodings of existing
(algebraic) languages are defined and exploited: the main issue is to see the
constructors of the original language as derived operators of the graph algebra.
Note that this enables the use of term rewrite techniques at the level of the
original language. Consider for instance the term rewrite rule X;Y ⇒ Y ;X
for the above example, where X,Y : A. With just one rule we are capturing
all the possible ways to permute two arbitrary connected subsequences (the
rule is applicable in any larger term and under any substitution of X and Y
by terms of type A). Or else, consider proving by structural induction that
the obtained graphs are all connected sequences. Such simplicity cannot be
achieved easily with ordinary set-theoretic presentations of graphs.

62

Another kind of axioms that may be useful to include in the structural
congruence are extrusion axioms. It is worth to mention that the extrusion
axiom was not presented in [4] since it was not needed for the examples
there, while in [5] extrusion for all design labels was considered as part of
the structural congruence as it was used in all the examples. To the contrary
we see here examples where extrusion is needed for some labels only.

Definition 7 (extrusion axiom) An extrusion axiom extrL for some de-
sign label L is of the form L[(νy)G]〈x〉 ≡ (νy)L[G]〈x〉, where y 6∈ bxc.

Extrusion axioms are needed to handle those calculi in which name re-
striction is not localised inside a scope or it is allowed to cross the boundaries
of some scopes, as it happens for some process calculi. Indeed, we see in § 7
how these axioms are used to capture extrusion for some scope constructs.

Note that the addition of axiom flatL also implies the validity of axiom
extrL, hence in the following we assume that for each label L either exactly
one or none of the axioms flatL and extrL is present.

3 A model of hierarchical graphs

We first present the set of plain graphs and graph layers, upon which we
build our novel notion of hierarchical graphs. In the following, N and
A = AE] AD denote the universe of nodes and edges, respectively, for A
indexed over the alphabets E and D.

Definition 8 (graph layer) The set L of graph layers is the set of tuples
G = 〈NG, EG, tG, FG〉 where EG ⊆ A is a (finite) set of edges, NG ⊆ N a
(finite) set of nodes, tG : EG → N∗G a tentacle function, and FG ⊆ NG a set
of free nodes. The set P of plain graphs contains those graph layers G such
that EG ⊆ AE .

Thus, we just equipped the standard notion of hypergraph with a chosen
set of free nodes, intuitively denoting those nodes that are available to the
environment, mimicking free names of our algebra. Next, we build the set of
hierarchical graphs.

Definition 9 (hierarchical graph) The set H of hierarchical graphs is
the smallest set3 containing the tuples G = 〈NG, EG, tG, iG, xG, rG, FG〉 where

3Taking the least set we exclude that cyclic dependencies can arise from containment,
like a graph being embedded in one of its edges.

63

1. 〈NG, EG, tG, FG〉 is a graph layer;

2. iG : EG ∩ AD → H is an embedding function (we say that iG(e) is the
inner graph of e ∈ EG ∩ AD);

3. xG : EG ∩ AD → N ∗ is an exposure function (xG(e) tells which nodes
of iG(e) are exposed and in which order), such that for all e ∈ EG∩AD

(a) bxG(e)c ⊆ NiG(e) \ FiG(e), i.e. free nodes of inner graphs are not
exposed

(b) |xG(e)| = |tG(e)|, i.e. exposure and tentacle functions have the
same arity4

(c) ∀n,m ∈ N we have that xG(e)[n] = xG(e)[m] iff tG(e)[n] =
tG(e)[m], i.e. it is not possible to expose a node twice without
attaching it to the same external node (and vice versa);

4. rG : EG ∩ AD → (NG ↪→ N) is a renaming function (rG(e) tells
how nodes NG are named in iG(e)), such that for all e ∈ EG ∩ AD
rG(e)(NG) = FiG(e), i.e. the nodes of the graph are (after renaming)
the free nodes of inner layers.

Thus, a hierarchical graph G is either a plain graph, or it is equipped
with a function associating to each edge in EG ∩ AD another graph. The
tuple 〈NG, EG, tG, iG〉 recalls the layered model of hierarchical graphs of [14],
with iG being the function that embeds a graph (of a lower layer) inside
an edge. Node sharing is introduced by the graph component FG and the
renaming function rG, inspired by the graphs with (cospan-based) interfaces
of [18]. In practice, we shall often assume that rG(e) (when defined) is the
ordinary inclusion: the general case is useful to embedd and reuse graphs
without renaming their nodes.

Recalling the programming metaphor, intuitively each hierarchical edge
e can be seen as a procedure declaration: tG(e) are the actual arguments,
xG(e) the formal parameters, FiG(e) the global variables for which rG(e) acts
as aliasing, and NiG(e) \ (FiG(e) ∪ bxG(e)c) the local variables.

Example 3. Consider the last term of Example 1 and its informal graphical
representation on Figure 1 (right). Its actual interpretation as a hierarchical

4We shall not put any emphasis on the typing of the graph, but clearly if the set of
nodes is many sorted an additional requirement should force the exposure and tentacle
functions to agree on the node types.

64

Figure 4: A hierarchical graph (left) and its simplified representation (right)

graph appears in Figure 4 (left) decorated with the most relevant annotations
(the tentacle, exposition and renaming functions for the two hierarchical
edges). As witnessed by Figure 4 (right), we can introduce convenient
shorthands, such as dotted lines for mapping parameters, node-sharing
represented by unique nodes and tentacles crossing the hierarchy levels,
dropping the order of tentacles in favour of graphical decorations (missing
or different heads and tails) to get a simplified notation (reminiscent of
Figure 2 (right)) that still retains all the relevant information. Note that
such a simplified representation is very close to the informal notation of
terms of our graph algebra shown in Figure 1.

These examples give an intuition about how our model of hierarchical
graphs works and the comparison with the informal representation suggest
how they could be used to obtain an intuitive, clear visualisation. The
examples should also highlight that the algebra defined in § 2 is providing
a simple syntax that hides the complexities of hierarchical structures, as it
occurs in our model of hierarchical graphs. The syntax can then be used in
definitions, proofs and transformations in a much more friendly way than
would be the case when working directly with actual graphs.

In the rest of the section we explain how such graphs are obtained
out of terms, but first we have to fix some notation and concepts. In the
following, we shall just use graph in place of hierarchical graph. Note that

65

the embedding structure forms a directed acyclic graph, whose unfolding
we call embedding tree. The leaves of the embedding tree are actually plain
graphs. The height (resp. depth or layer) of a graph is the height (resp.
depth) of its embedding tree. In the following, H denotes both the set of all
such graphs or the category having such graphs as objects and the following
graph morphisms as arrows.

Definition 10 (graph morphism) Let G, H be graphs such that FG ⊆
FH . A graph morphism φ : G−→H is a tuple 〈φN , φE , φI〉 where φN : NG →
NH is a node morphism, φE : EG → EH an edge morphism, and φI = {φe |
e ∈ EG ∩AD} a family of graph morphisms φe : iG(e)−→iH(φE(e)) such that5

1. ∀e ∈ EG, φN (tG(e)) = tH(φE(e)), i.e. the tentacle function is re-
spected;

2. ∀e ∈ EG ∩ AD, φeN (xG(e)) = xH(φE(e)), i.e. the exposure function is
respected;

3. ∀e ∈ EG ∩ AD, ∀n ∈ NG, φeN (rG(e)(n)) = rH(φE(e))(φN (n)), i.e. the
renaming function is respected;

4. ∀n ∈ FG, φN (n) = n, i.e. the free nodes are preserved.

In the above definition we abuse the notation by lifting morphisms to
sets and vectors. It is worth to observe that our morphisms are not the most
general one can define. In particular, using the terminology of [24] they
are root-level in the sense that they represent a layer-by-layer embedding.
More general notions are the deep morphisms of [24] which embed a graph
G into some lower graph of the embedding tree of a graph H. However,
for the purpose of this paper our morphisms are enough: we can easily
define isomorphisms and the category obtained has all pushouts for spans of
injective morphisms, which we use to define a composition operator and which
prepare the ground for some basic pushout-based graph transformations.

Proposition 2 (pushouts [13]) Let φ : G → H, ψ : G → I be injective
graph morphisms. Then, the pushout of φ and ψ always exists.

Here, injectiveness simply means that the underlying functions on the
nodes and edges of the graph layers are also injective. The proof is then
easy, since no item coalescing is forced by the span of arrows, and all the
auxiliary functions (exposure, etc.) are defined in the expected way.

5Again, many-sorted alphabets would require the morphisms to be type consistent.

66

4 Encoding into graphs.

We describe here the algebraic characterisation of graphs. We start presenting
a few auxiliary definitions. In the following we denote the empty function
with ⊥, distinguishing it from the empty set ∅.

Definition 11 Let N ∈ N be a subset of the nodes of graph G. Then,
N̂ is the hierarchical graph given by the tuple 〈N, ∅,⊥,⊥,⊥,⊥, N〉, and
inN : N̂ → G is the obviously defined, injective graph morphism.

Graph composition is always defined, thanks to Proposition 2.

Definition 12 (graph composition) Let G, H be graphs. Then, the com-
position of G and H, denoted G⊕H, is the (codomain of the) pushout of

the span ̂FG ∩ FH → G and ̂FG ∩ FH → H.

We are now ready to see how terms of our algebra can be interpreted
as graphs. We assume that subscripts refer to the corresponding encoded
graph. For instance, JGK = 〈NG, EG, tG, iG, xG, rG, FG〉.

Definition 13 (graph interpretation) The encoding J·K, mapping well-
formed terms into graphs, is the function inductively defined as

JxK = {̂x} Jl〈x〉K = 〈bxc, {e′}, e′ 7→ x,⊥,⊥,⊥, bxc〉
JG | HK = JGK⊕ JHK J0K = 〈∅, ∅,⊥,⊥,⊥,⊥, ∅〉
J(νx)GK = 〈NG, EG, tG, iG, xG, rG, FG \ {x}〉

JLx[G]〈y〉K = 〈NG, {e}, e 7→ y, e 7→ JGK⊕ b̂yc, e 7→ x, e 7→ idN , (FG \ bxc) ∪ byc〉

where e′ ∈ AE and e ∈ AD.

The encoding into (plain) graphs of the empty design, isolated nodes
and single edges is trivial. Node restriction consists of removing the restricted
node from the set of free nodes. The encoding of the parallel composition is
as expected: a disjoint union of the corresponding hierarchical graphs up to
common free nodes, plus a possible saturation of the sub-graphs with the
nodes now appearing in the top graph layer. A hierarchical edge (last row) is
basically a graph with a single edge (which is mapped to the corresponding
body graph) and a copy of the free nodes of the body graph (properly
mapped to the corresponding copies in the body), while adding the names
byc among the free ones.

We say that two graphs G,H are isomorphic (denoted G ' H) whenever
there is an isomorphism between them.

67

We can now show that our encoding is sound and complete, meaning
that equivalent terms are mapped to isomorphic graphs and vice versa.

Theorem 1 Let G1, G2 be well-formed terms generated by the design algebra.
Then, G1 ≡D G2 if and only if JG1K ' JG2K.

Proof: The soundness is rather straightforward: it proceeds by showing
that each axiom is preserved by the encoding. The result follows from
standard properties of pushouts for axioms DA1–DA3 and axiom DA9 and
of set difference for axioms DA4–DA6. Alpha-renaming axioms DA7–DA8
are dealt with by graph isomorphism, thanks to the side conditions in
Definition 4 that guarantee type preservation and avoid node coalescing.
The most interesting axiom is therefore DA10, for which we detail the proof.
Below we let JGK = 〈NG, EG, tG, iG, xG, FG〉, N ′ = (FG \ bxc) ∪ byc and
N ′′ = N ′ ∪ {z}.

Jz | Lx[G]〈y〉K
= JzK⊕ JLx[G]〈y〉K
= JzK⊕ 〈N ′, {e}, e 7→ y, e 7→ JGK⊕ JbycK, e 7→ x, e 7→ idN′ , N ′〉
' 〈N ′′, {e}, e 7→ y, e 7→ JzK⊕ JGK⊕ JbycK, e 7→ x, e 7→ idN′′ , N ′′〉
= 〈N ′′, {e}, e 7→ y, e 7→ Jz | GK⊕ JbycK, e 7→ x, e 7→ idN′′ , N ′′〉
= JLx[z | G]〈y〉K

The crucial step is the one where graph isomorphism ' is exploited:
the passage is valid, because z is a free name and therefore it is certainly
preserved by the morphisms induced from the pushout at the top-level.

The completeness proof is more involved. The proof sketch we present
here is modelled after the one for [11, Lemma 22], and it proceeds by exploit-
ing the normal form for well-formed terms of our algebra (see Definition 5).

Now, let G1 and G2 be two terms such that G1 6≡D G2 but they are
mapped to isomorphic graphs. Without loss of generality, we assume that
the terms are in normal form and that the sum of their depths is the
minimal value for which two such terms can be found. The isomorphism
φ : JG1K→ JG2K ensures that at the top level the graphs JG1K and JG2K have
the same number of nodes and exactly the same free nodes. Moreover it
establishes a bijective correspondence between the edges in JG1K and those
in JG2K, so that e and φ(e) must carry the same label and their tentacle
functions must commute w.r.t. φ. Thus, G1 and G2 must have the shape

G1 = (νx1) . . . (νxm)
(
z1 | . . . | zn | Πjlj〈yj〉 | ΠiL

i
xi [G

′
i]〈wi〉

)
68

and

G2 = (νx′1) . . . (νx′m)
(
z′1 | . . . | z′n | Πjlj〈y′j〉 | ΠiL

i
x′i

[G′′i]〈w′i〉
)

for suitable G′i and G′′i in normal forms such that G′i ' G′′i . Since G1 6≡D G2,
there must be some index k such that G′k 6≡D G′′k, but this contradicts the
existence of G1 and G2, because the sum of the depths of G′k and G′′k is
clearly strictly less than that of G1 and G2. �

Moreover, our encoding is surjective, i.e. every graph can be denoted
by a term of the algebra.

Proposition 3 Let G be a graph. Then, there exists a well-formed term G
generated by the design algebra such that G is isomorphic to JGK.

Proof: The proof proceeds by induction on the height of the embedding
tree of a graph.

If the height is 0, i.e. if the graph is flat, the proof is quite straight-
forward. Indeed, let us consider a graph 〈N,E,⊥,⊥,⊥, F 〉. Now, the
underlying graph without interfaces can be considered as the union of (pos-
sibly connected) edges {l1〈x1〉 . . . lk〈xk〉} and isolated nodes {y1, . . . , ym},
additionally verifying F ⊆ N =

⋃
i=1...kbxic ∪ {y1, . . . , ym}. Thus, the as-

sociated term of the algebra is given by (νz1) . . . (νzn)(N | Πi=1...kli〈xi〉)
for {z1 . . . zl} = N \ F . Performing the parallel composition by means of
pushouts implements the sharing of nodes among the edges of the graph.

The induction step is similar. Let us assume that the correspondence
holds for each graph in the lower layers. Moreover, note that each one of
those graphs contains as free nodes all those nodes occurring at the top-most
layer. And since also the top-most layer of the graph can be modeled as the
union of (possibly connected) edges and isolated nodes, the required term is
obtained by inserting all the terms corresponding to the graphs in the lower
layers in the right position of the design at the top level. �

If either flattening or extrusion axioms are present, then the encoding
must be changed to “dissolve” certain embeddings and edges. To this aim,
we need to distinguish three different cases in the encoding of designs: the
first rule works exactly as before, when neither flattening nor extrusion
axioms are actually present, while the other two are shown below

JLx[G]〈y〉K = 〈N, {e}, e 7→ y, e 7→ JGK⊕ b̂yc, e 7→ x, e 7→ idN , N
′〉 if extrL ∈≡D

JLx[G]〈y〉K = JG{y/x}K if flatL ∈≡D

69

where e : AD and N , N ′ stand for (NG \ bxc) ∪ byc and (FG \ bxc) ∪ byc,
respectively.

If a flattening axiom occurs, there is no associated edge: the encoding
of Lx[G]〈y〉 is the same as the one of G, after suitably renaming the nodes.
In other words, the axiom is interpreted directionally, and the associated
enclosing edge has no occurrence of the flattened design. Likewise, if an
extrusion axiom occurs, the structural congruence is interpreted directionally,
and the restriction operators float to the top. Indeed, now all the names of
G appears in Lx[G]〈y〉, except those in bxc (exposed as those in byc).

Soundness and completeness still hold. However, in the presence of
extruding axioms the encoding is not surjective, unless we impose some
well-formedness criteria over embedding edges to require that all the nodes
of a lower layer that are not exposed do occur in the higher one when the
embedding exploits an arc with label L for which the extruding axiom holds.

5 A calculus with flat structure and communica-
tion: the π-calculus

This section offers a first instance of our approach by presenting an encoding
of the finitary fragment of the π-calculus [22]. We have chosen this example
due to its popularity and simplicity. Moreover, as a graphical encoding
already exists [18], we can compare the two proposals and evaluate the
convenience of exploiting our graph algebra in the definition of the encoding
and, most importantly, on its proof of correctness. Familiarity with the
calculus would be helpful but our presentation should suffice for our aims.

5.1 The π-calculus

Definition 14 (π-calculus syntax) Let U be a set of names. The set P
of (finite) processes is the set of terms of sort P generated by the grammar

P ::= 0 | M | (νa)P | P | P
M ::= M +M | π.P

where π ∈ {τ} ∪ {a(b), ab | a, b ∈ U} and a ∈ U .

In the definition above, terms generated by P and M are called process
and sequential processes (or summations), respectively. We recall that τ ,
a(b) and ab are called, respectively, the silent prefix, the input prefix and the

70

output prefix; moreover, the input prefix a(b).P and the restriction operator
(νb)P act as binders for b with scope P . We denote by n(π) the names
appearing in π, i.e. n(τ) = ∅ and n(a(b)) = n(ab) = {a, b}. The standard
definition for the set of free names of a process P , denoted by fn(P), is
assumed. Similarly for α-convertibility, with respect to the binders: the
name b is bound in both a(b).P and (νb)P , and it can be freely α-converted.

Example 4. Consider the following process agent def= (νsecret) private secret
which represents an agent ready to send a fresh name secret over the free
channel private. Now, consider gossiper def= (νmsg) private(confidential).
(confidential msg + public confidential), which represents an agent ready
to read a name confidential from the free channel private, after which a new
message msg over the confidential channel or the confidential name over
the free channel public can be sent. Note that fn(agent) = {private}, while
fn(gossiper) = {private, public}. The process sys def= (νprivate)(agent |
gossiper) represents a system in which the former two agents are put
in parallel and communicate through the local channel private (in fact
fn(sys) = {public}).

A congruence relation captures structural equivalences like the commu-
tativity and associativity of parallel composition or the α-renaming of bound
names. The structural congruence for the π-calculus is defined as follows.

Definition 15 (π-calculus structural congruence) The structural con-
gruence for processes ≡π is the least congruence satisfying

P | Q ≡ Q | P (πA1)
P | (Q | R) ≡ (P | Q) | R (πA2)

P | 0 ≡ P (πA3)
M +N ≡ N +M (πA4)

M + (N +O) ≡ (M +N) +O (πA5)
(νa)0 ≡ 0 (πA6)

(νa)(νb)P ≡ (νb)(νa)P (πA7)
P | (νa)Q ≡ (νa)(P | Q) if a 6∈ fn(P) (πA8)

π.(νa)P +M ≡ (νa)(π.P +M) if a 6∈ fn(M) ∪ n(π) (πA9)
(νa)P ≡ (νb)P{b/a} if b 6∈ fn(P) (πA10)
c(a).P ≡ c(b).P{b/a} if b 6∈ fn(P) (πA11)

Axiom πA9 is not standard but is sometimes included in the structural
congruence in order to consider restriction as some sort of declaration
(conversely, the absence of the axiom means that restriction is some sort
of run-time fresh name generation). In our case we preferred to consider it

71

Figure 5: Type graph for the π-calculus.

since it yields a more clear graphical representation. However, dealing with
the absence of the axiom is also standard as explained in [18].

5.2 Encoding the π-calculus

We start presenting (cf. Figure 5) the graph items that we shall use. Basically,
we have design sorts (labels of D) corresponding to those present in the
π-calculus, i.e. the syntactical categories for processes (P) and summations
(M) and the sort of names (U) to which we add some auxiliary ones. More
precisely, the node sorts we consider are •, � and ◦ that intuitively correspond
to control points of parallel and sequential processes, and channel names,
respectively. Design labels P and M model designs representing parallel
and sequential processes and they are used to ensure the well-formedness of
graphs. To achieve this we introduce the flattening axioms flatP and flatM,
which in the visualisation is represented by using dotted boxes. Both design
types P and M have a unique tentacle denoted with a plain line, which is
to be attached to a control point of the corresponding type.

Edge labels of (E) are τ , in, out and c that respectively correspond
to silent actions, inputs, outputs and explicit casting from sequential to
parallel processes (to be explained later). Such labels are needed because
we consider action prefixes as being material in the encoding, i.e. we use
graph items to represent them. On the other hand, parallel composition
and non-deterministic choice are considered as being immaterial, i.e. they
are interpreted as graph operations that do not introduce any graph item.
Intuitively, this reflects the axioms associated to the operations. We use a
plain line and an arrow for the entry and exit control points of actions and the

72

Figure 6: Graphical interpretation for the π-calculus (processes).

Figure 7: Graphical interpretation for the π-calculus (summations).

explicit cast. Channel and message arguments of communication operations
are denoted by arrows ended by empty and filled diamonds, respectively.

We are ready to define the graphical encoding of the π-calculus. We
define it in terms of derived operators, instead of using a denotational
encoding, to stress the similarities and common sorting between the calculus
and our graph algebra. We find convenient to introduce a cast operator from
M to P (as in [18]) which allows to distinguish between the two sorts of
control points where different forms of branching apply (parallel and choice).

Definition 16 (π-calculus encoding) The interpretation of the operators

73

of the π-calculus over the design algebra is given by

0 def= Pp[p]

(νx)R def= Pp[(νx)R〈p〉]
Q | R def= Pp[Q〈p〉|R〈p〉]
(P)N def= Pp[(νd)(c〈p, d〉|N〈d〉)]
N +O def= Md[N〈d〉|O〈d〉]

τ.Q def= Md[(νp)(τ〈d, p〉|Q〈p〉)]
xy.Q def= Md[(νp)(out〈d, x, y, p〉|Q〈p〉)]

x(y).Q def= Md[(νp, y)(in〈d, x, y, p〉|Q〈p〉)]

together with axioms flatP and flatM.

The graphical representation of the above definition can be found in
Figures 6 and 7. We remark only the most relevant aspects. Casting from
sequential processes into parallel ones must be done explicitly to distinguish
summations from processes (as in [18]). This is done by connecting via
prefixing the graph of a sequential process with a c-labelled edge. The
parallel composition of two processes Q and R amounts to embed the
respective graphs of Q and R in P -typed edges attached to the same •-typed
node. Note that our informal visualisation fuses the tentacles of the designs
corresponding to the two processes that are put in parallel and the resulting
one (their composition). This results in a visually appealing representation.
The presence of the flattening axiom flatP will dissolve the embedding and
as a result the corresponding graphs will be at the same level. Processes in
parallel thus become graphs departing from the same control point. Another
relevant part of the encoding regards the input prefix, since it involves a
free and a bound name, and a process. We see that the encoding of x(y).Q
consists of an arc representing the input operation which is attached to the
main �-typed control point and its •-typed continuation where the graph
corresponding to Q is plugged. The edge representing the input action
is connected to a free and a bound node representing the communication
channel x and the argument channel y, respectively. In our visualisation,
variable graph items are denoted by labelling them with variable names
(such as x and y in the encoding of action prefixes).

Example 5. Recall the process of Example 4. Its graphical encoding is
depicted on Figure 8. The figure clearly represents the two different forms
of branching: the parallel composition of both the agent and the gossiper
processes and the choice of the gossiper after reading the secret channel.

74

Figure 8: Graphical encoding of a process.

Note how the sort of edges disambiguates the form of branching and how
explicit casting is used to change the control point sort. The sharing of
names (like channel private) where processes synchronise is also evident. It
is also worth noting how the graphical representation distinguishes global
and restricted names: the former are depicted as lying outside the P -labeled
frame and the latter inside it.

The proposed encoding is sound and complete, i.e. two processes are
structurally congruent if and only if they are mapped to isomorphic graphs.
As a matter of fact, the graphs obtained are roughly the same as those
proposed in the encoding of [18] for the finite fragment of the calculus. In
addition, our encoding precisely characterises in a compact and elegant way
the set of all graphs that correspond to π-calculus processes, namely those
generated by the derived algebra (which is implicitly given by the encoding).

Proposition 4 (correctness of π-calculus encoding) For any P,Q ∈
P, P ≡π Q iff P ≡D Q.

Proof: The graph algebra provides a handy, elegant notation to carry
out the proof of soundness in a purely algebraic form. For the purpose
of the proof it turns out to be convenient to use a functional notation for
the encoding. So we let JP K denote the interpretation of P according to

75

Definition 16. Now, all we have to show is that the structural axioms of the
π-calculus identify equivalent designs. More precisely, we have to show that
for each axiom P ≡ Q in ≡π we have JP K ≡D JQK. This is enough since the
proof of P ≡ Q just applies the axioms of ≡π, plus additionally the closure
with respect to the operators of the calculus, and the latter component is
satisfied by definition.

Consider axiom πA1, i.e. Q | R ≡ R | Q. We have

JQ | RK
≡ Pp[Q(p)|R(p)] (Definition 16)
≡ Pp[R(p)|Q(p)] (Axiom DA1)
≡ JR | QK (Definition 16)

The proof for the remaining axioms is similar. For instance, the proof for
axioms πA2−πA6 regarding commutativity, associativity and neutral element
for parallel and non-deterministic composition of processes is straightforward
(as the above one of πA1) as we have similar axioms for parallel composition
of graphs in ≡D. The same reasoning can be applied for α-conversion and
for axioms πA7− πA9 regarding the restriction operator.

As the encoding maps processes to essentially flat graphs, the proof of
completeness could be carried out just exploiting the result in [18]. However,
we provide here a direct proof that exploits algebraic reasoning: we shall use
the normal form of π-calculus processes to show that P 6≡π Q ⇒ JP K 6≡D

JQK. The standard normal form of processes is (νx)S1 | · · · | Sn, where
x ⊆ fn(S1 | · · · | Sn) and each Si is of the form

∑ni
j=1Ai,j .Qi,j with each Qi,j

again in normal form, but with no occurrence of the restriction operator:
intuitively, all restrictions appear as early as possible in the term and what
follows is the parallel composition of non-deterministic choices of processes
Qi,j in normal form, all prefixed with an action Ai,j .

Now suppose that we are given two processes Q and R that are not
structurally equivalent, i.e. we have Q 6≡π R. We analyse all possibilities
for this to occur and show that in all cases it follows JQK 6≡D JRK. Roughly,
either the two processes have the same outermost shape or they do not.
If they have the same outermost shape, then they must differ for some
subterms and then we can exploit inductive hypothesis to assume that
such subterms correspond to non isomorphic graphs and then conclude that
JQK 6≡D JRK (the base case for induction is vacuous, as both processes would
be 0). Therefore we are left to show that if Q and R have different outermost
shapes their encodings can be distinguished.

76

We start with the simple case where the topmost restriction differ.
Without loss of generality suppose that Q def= (νx)Q′ and R def= (νx)(νx)R′,
with x in fn(R′) but not in x. We have JQK = Pp[(νx)JQ′K〈p〉] and JRK =
Pp[(νx)(νx)JR′K〈p〉]: they cannot be identified by ≡D since x is clearly part
of fn(JR′K) and we know that ≡D respects free names.

Consider now that both top-restrictions are equivalent but the number of
sequential processes in the topmost parallel differs. Without loss of generality
suppose that Q def= (νx)(S1 | · · · | Sn) and R def= (νx)(T1 | · · · | Tn | Tn+1).
We have JQK = Pp[(νx)(JS1K〈p〉 | · · · | JSnK〈p〉)] and JRK = Pp[(νx)(JT1K〈p〉 |
· · · | JTnK〈p〉 | JTn+1K〈p〉)]: they cannot be equivalent terms since each JSiK
(being of the form

∑ni
j=1Ai,j .Qi,j) contributes with at least one distinguished

tentacle outgoing from node p, and similarly for each JTiK.
The rest of the cases follow a similar reasoning. �

6 A calculus with nested structure and no com-
munication: Sagas

We consider in this section the nested sagas with programmable compensations
of [8], a calculus for long running transactions.

6.1 Sagas

The calculus (which we shall call just sagas) aims at providing a core language
for composing activities into sagas (atomic transactions) or processes (non-
atomic compensable activities). Formally, the syntax of sagas is as follows.

Definition 17 (sagas syntax) Let A be a set of atomic activities. The
sets S of sagas and P of compensable processes are the sets of terms of sorts
S and P , respectively, generated by the grammar below

S ::= a | {P} (sagas)
P ::= S%S | P ;P | P | P (processes)

where a ∈ A.

For the sake of simplicity, with respect to the original presentation we
neglect the introduction of nil processes and non-compensable activities. A
saga is an atomic activity or an arbitrarily complex transaction built out

77

from a compensable process. A basic process A%B is built by declaring
a saga A as an ordinary flow and equipping it with another saga B as its
compensation flow. The calculus provides also primitives for composing
processes in sequence and parallel (split&join).

Example 6. Consider the following example, inspired from [8] of the saga
{acceptOrder%refuseOrder ; (updateCredit%refundOrder | prepareOrder%
updateStock) | {addPoints%skip}%{substractPoints%skip})}. The saga is
used for modelling a scenario for dealing with purchase orders. The initial
activity (acceptOrder) handles requests from clients. Next three processes
are executed in parallel. The first one (updateCredit) charges the amount
of the order to the balance of the client. The second one (prepareOrder)
handles the packaging of the order and updates the stock. The third one
deals with point reward activities: it is formed by a nested saga to update
the reward balance of a user (part of a program for accumulating points
with purchases). All the activities have a corresponding compensation to
undo the actions performed by the successful completion of the activities.
Note that activity addPoints has a vacuous compensation (skip), to avoid
aborting the purchase when the point accumulation activity aborts due to
absence of a reward account (idem for activity substractPoints).

The structural congruence for sagas captures the associativity of se-
quential and parallel composition and the commutativity of the latter.

Definition 18 (sagas structural congruence) The structural congruence
for sagas ≡S is the least congruence satisfying

P ; (Q;R) ≡ (P ;Q);R (sA1)
P | Q ≡ Q | P (sA2)

P | (Q | R) ≡ (P | Q) | R (sA3)

where P,Q,R ∈ P

6.2 Encoding sagas

As in the encoding of the π-calculus the first idea is to interpret syntactical
categories of the calculus as design sorts (i.e. labels in D) and constructors as
derived operators over our graph algebra. In this case we decide to introduce
design labels N for Nested sagas, S for Sagas, P for compensable Pairs and
T (Transactions) for compensable processes. Note that N is a subsort of S,
while P is a subsort for T . Figure 9 illustrates our type graph. We have

78

Figure 9: Type graph for sagas

Figure 10: Graphical interpretation for sagas.

chosen an arity of four tentacles for pairs and transactions to denote the
following control points: entry of the ordinary flow (incoming filled arrow),
exit of the ordinary flow (outgoing filled arrow), entry of the compensation
flow (incoming empty arrow) and exit of the compensation flow (outgoing
empty arrow). Activities and sagas are represented by edges with only two
tentacles (for the ordinary flow). Note that we have actually a family of
activity edges, one for each activity in A, i.e. A is our designed set of edge
labels E . Because S and T are just used for composition we introduce the
flattening axioms flatS and flatT .

The encoding is formally defined as follows (c.f. Figure 10).

Definition 19 (sagas encoding) The interpretation of the sagas opera-

79

Figure 11: Graphical encoding of a saga

tors over the design algebra is given by

a def= Sp,q[a〈p, q〉]
{Q} def= Np,q[(νt)Q〈p, q, t, q〉]

A % B def= Pp,q,r,s[A〈p, q〉 | B〈r, s〉]
Q ; R def= Tp,q,r,s[(νu, v)(Q〈p, u, v, s〉 | R〈u, q, r, v〉)]
Q | R def= Tp,q,r,s[Q〈p, q, r, s〉 | R〈p, q, r, s〉]

together with axiom flatS and flatT.

Note again that some primitives of the calculus are considered as
material in the encoding, i.e. represented by graph items like edges. This
is the case of activities (as it was the case for actions in the π-calculus) as
shown in Figure 9 and also of compensable pairs and nested sagas. Instead,
sequencing and parallel composition (see Figure 10) are immaterial and their
associated axioms are captured by the flattening axioms.

Example 7. Figure 11 depicts the graphical representation of the saga
introduced in Example 6. It is worth to note the nesting of sagas which

80

decouples the entry of the compensation flow and redirects the exit flow
into the ordinary flow. Also note the two uses of nesting: immaterial for
parallel and sequential composition and material for basic processes and
nested transactions.

The proposed encoding is sound and complete, i.e. equivalent processes
and sagas are mapped into isomorphic graphs.

Proposition 5 (correctness of sagas encoding) For any Q,R ∈ P we
have Q ≡S R iff Q ≡D R.

Proof: As in the proof of the encoding of the π-calculus we show
each direction of the equivalence separately, starting with soundness, i.e.
Q ≡S R ⇒ Q ≡D R. Again, J·K denotes the interpretation according to
Definition 19 and we just need to show that the structural axioms of the
sagas do only identify equivalent designs.

Consider axiom sA1, i.e. P ; (Q;R) ≡ (P ;Q);R. We have

P ; (Q;R)
≡ Tp,q,r,s[(νu, v)(P 〈p, u, v, s〉 | (Q;R)〈u, q, r, v〉)]

(Definition 19)
≡ Tp,q,r,s[(νu, v)(P 〈p, u, v, s〉 | T〈u,q,r,v〉[(νu

′, v′)(Q〈u, u′, v′, v〉 | R〈u′, q, r, v′〉)])]
(Definition 19)

≡ Tp,q,r,s[(νu, v)(P 〈p, u, v, s〉 | (νu′, v′)(Q〈u, u′, v′, v〉 | R〈u′, q, r, v′〉))]
(flatT)

≡ Tp,q,r,s[(νu′, v′)(νu, v)((P 〈p, u, v, s〉 | Q〈u, u′, v′, v〉) | R〈u′, q, r, v′〉)]
(DA4,DA6,DA2)

≡ Tp,q,r,s[(νu′, v′)T〈p,u′,v′,s〉[(νu, v)(P 〈p, u, v, s〉 | Q〈u, u′, v′, v〉)] | R〈u′, q, r, v′〉]
(flatT)

≡ Tp,q,r,s[(νu′, v′)((Q;R)〈p, u′, v′, s〉 | R〈u′, q, r, v′〉)]
(Definition 19)

≡ (P ;Q);R
(Definition 19)

The proofs for axioms sA2 and sA3 are also straightforward and similar
to the above proof and those for the parallel axiom of the π-calculus.

Now we prove completeness, i.e. Q ≡S R ⇐ Q ≡D R. The proof
technique is analogous to the one seen for π-calculus, but with a slightly
more complicated case to consider, which requires an original bit of reasoning
and where the graph algebra can be exploited conveniently. We shall use
the normal form of processes to show that Q 6≡S R⇒ Q 6≡D R. The normal
form of a saga S is either a or {P} with P in normal form and the normal
form of a compensable processes Q is either A%B or Q1; . . . ;Qn (with n > 1
and each Qi again in normal form, of course excluding the occurrence of

81

sequence operators on top) or Q1 | · · · | Qn (with n > 1 and each Qi again
in normal form, excluding the occurrence of parallel compositions on top).

Now suppose that we are given two processes Q and R that are not
structurally equivalent, i.e. we have Q 6≡S R. We analyse all possibilities for
this to occur and show that in all the cases it follows JQK 6≡D JRK. If they
have the same shape, then the proof can be easily carried out by inductive
arguments. If they have different shapes, then we must analyse the possible
combinations separately.

We start with the simplest case for Q, i.e. Q ≡ A%B. We have several
cases in which R is not structurally equivalent to A%B. First, R can be of
the form C%D with at least one of C and D being respectively different
from A and B. Trivially A%B 6≡D C%D. Another possibility for R is to
be of the form R1; . . . ;Rn. This case is trivial since the interpretation of
; introduces new nodes that cannot be removed by ≡D. Finally, R can be

of the form R1 | · · · | Rn but note that each subprocess Ri must have one
of the forms we previously attempted for R (excluding the occurrence of
parallel compositions on top). Hence, again they cannot be equivalent to
A%B. We conclude that Q 6≡D R.

The difficult case is when one of the processes (say Q) has the shape
of a sequential composition Q1; . . . ;Qn (with n > 1) and the other pro-
cess that of a parallel composition R1 | · · · | Rm (with m > 1). In this
case we can look more closely at the encoded terms. By structural in-
duction it is easy to prove that both can be reduced to normal forms
Tp,q,r,s[(νU, V)ΠiPpi [Gi]〈ui〉] and Tp,q,r,s[(νU

′, V ′)ΠiPp′i [G
′
i]〈u′i〉]. If they in-

volve a different number of P -edges or a different number of restrictions
then we are done. If not, let us observe that the parallel and sequential
flows underlying the graphical representation of such processes induce a
partial order over the nodes and edges (e.g. along the direction of the ordi-
nary flow). Obviously such order must be preserved by graph isomorphism.
Then we can prove that Q1; . . . ;Qn cannot be isomorphic to R1 | · · · | Rm
just by considering the fresh node u introduced by JQ1; (Q2; . . . ;Qn)K =
Tp,q,r,s[(νu, v)(JQ1K〈p, u, v, s〉 | JQ2; . . . ;QnK〈u, q, r, v〉)]: clearly the node u
must follow any (topmost) P -labeled edge introduced by Q1, i.e. any (top-
most) P -labeled edge with a tentacle attached to the node p. Now take
JR1 | (R2 | · · · | Rm)K = Tp,q,r,s[JR1K〈p, q, r, s〉 | JR2 | · · · | RmK〈p, q, r, s〉].
For JQ1; (Q2; . . . ;Qn)K and JR1 | (R2 | · · · | Rm)K to be isomorphic, the
(image of) node u should be introduced in JR1 | (R2 | · · · | Rm)K either by
JR1K or by JR2 | · · · | RmK, but it is then evident that in any case there

82

would be P -labeled edges (at least one) provided by the other term which
are attached directly to node p but are independent w.r.t. u (at the al-
gebraic level, this is made clear by the scoping rules for restricted names). �

7 A calculus with nested structures and commu-
nication: CaSPiS

This section presents the graphical representation of CaSPiS [1], a session-
centered calculus. We have chosen this calculus since it represents a non-
trivial example of the interplay between nesting and linking introduced by
nested sessions, pipelines and communication.

7.1 CaSPiS

We briefly overview CaSPiS and we refer the interested readers to [1] for
an exhaustive description. We remark that we focus here on the close-
free fragment of the calculus and we present a slightly different syntax.
Both decisions are for the sake of a convenient and clean presentation and
constitute no limitation.

Definition 20 (CaSPiS syntax) Let Z be a set of session names, S a set
of service names and V a set of value names. The set P of processes is the
set of terms of sort P generated by the grammar

P ::= 0 | r . P | P > Q | (νw)P | P | P | A.P
A ::= s | s | (?x) | 〈u〉 | 〈u〉↑

where s ∈ S, r ∈ Z, u ∈ V, w ∈ V ∪ Z and x is a value variable.

Service definitions and invocations are written like input and output
prefixes in CCS. Thus s.P defines a service s that can be invoked by s.Q.
Synchronisation of s.P and s.Q leads to the creation of a new session,
identified by a fresh name r that can be viewed as a private, synchronous
channel binding caller and callee. Since client and service may be far apart,
a session naturally comes with two sides, written r . P , and r . Q, with r
bound somewhere above them by (νr). Rules governing creation and scoping
of sessions are based on those of the restriction operator in the π-calculus.
Note that nested invocations to services yield separate sessions and thus
hierarchies of nested sessions.

83

When two partner sides r . P and r . Q are deployed, intra-session
communication is done via input and output actions 〈u〉 and (?x): values
produced by P can be consumed by Q, and vice-versa.

Values can be returned outside a session to the enclosing environment
using the return operator 〈 · 〉↑. Return values can be consumed by other
sessions sides, or used locally to invoke other services, to start new activities.
Local consumption is achieved using the pipeline operator P > Q . Here, a
new instance of process Q is activated each time P emits a value that Q can
consume. Notably, the new instance of Q runs within the same session as
P > Q, not in a fresh one.

Summarising all the above, each CaSPiS process can be thought of as
running inside an environment providing it different means of communication:
one channel for “standard” input, one channel for “standard” output and
one channel for returning values one level up.

Example 8. Consider the process: (νa)(νb)(a . (P1|b .P2)|a .P3|b .P4). This
situation is typical: two sessions a and b have been created (as the result
of two service invocations). Agent a . (P1|b . P2) participates to sessions
a and b (assume P1 is the protocol for a and P2 the one for b), with the b
side nested in a. The counter-party protocols for a and b are P3 and P4,
respectively, and they run separately. Notably, values returned one level up
by P2 can be consumed by P3.

Example 9. As another illustrative, typical example consider processes
P1 > (P2 > P3), where each time P1 emits a value an instance of (P2 > P3)
is generated (with P3 being inactive). In any such instance, again, each
value emitted by P2 yields a new instance of P3.

Next, we present the structural congruence for CaSPiS processes.

Definition 21 (CaSPiS structural congruence) The structural congru-

84

Figure 12: Type graph for CaSPiS.

ence for CaSPiS processes ≡C⊆ P × P is the least congruence satisfying

P | (Q | R) ≡ (P | Q) | R) (CA1)
P | Q ≡ Q | P (CA2)
P | 0 ≡ P (CA3)

(νn)(νm)P ≡ (νm)(νn)P (CA4)
(νn)0 ≡ 0 (CA5)

P | (νn)Q ≡ (νn)(P | Q) if n 6∈ fn(P) (CA6)
((νn)Q) > P ≡ (νn)(Q > P) if n 6∈ fn(P) (CA7)

A.(νn)P ≡ (νn)A.P if n 6∈ A (CA8)
r . (νn)P ≡ (νn)r . P if n 6= r (CA9)

(νn)P ≡ (νm)P{m/n} if m 6∈ fn(P) (CA10)
(?x).P ≡ (?y).P{y/x} if y 6∈ fn(P) (CA11)

7.2 Encoding CaSPiS

We first define the alphabets of edge labels and nodes. The set D of design
labels is composed by P , S, D, I, F and T which respectively stand for
Parallel processes, Sessions, service Definitions, service Invocations and pipes
(From and To). The set E of edge labels contains def (service definition),
inv (service invocation), in (input), out (output) and ret (return). The node
sorts considered are ◦ (channels), • (control points), ∗ (service names, i.e.
S) and � (values, i.e. V). We assume that for each session name r there is
a corresponding channel node.

The graphical representation of each design and edge label and their
respective types can be found in Figure 12. For instance, designs of type
P are all of the form Pp,t,o,i[G] where p is the control point representing
the process start of execution, t is the returning channel, o is the output

85

channel and i is the input channel. Vice versa, designs of type D and I only
expose the starting point of execution: they are not strictly necessary for
the encoding, but can be very useful for visualisation purposes (they enclose
the interaction protocols between service callers and callees).

Definition 22 (CaSPiS encoding) The interpretation of CaSPiS opera-
tors over the design algebra is given by

s.Q def= Pp,t,o,i[t|o|i|D〈p〉[(νq, t′, o′, i′)(def〈p, s, q〉|Q〈q, t′, o′, i′〉)]]

s.Q def= Pp,t,o,i[t|o|i| I〈p〉[(νq, t′, o′, i′)(inv〈p, s, q〉|Q〈q, t′, o′, i′〉)]]

r . Q def= Pp,t,o,i[t|i|S〈p,o〉[Q〈p, o, r, r〉]]

Q > R def= Pp,t,o,i[o | (νm)(F〈p,t,m,i〉[Q〈p, t,m, i〉]
|T〈m〉[(νq, t′, o′)R〈q, t′, o′,m〉])]

Q|R def= Pp,t,o,i[Q〈p, t, o, i〉|R〈p, t, o, i〉]
(νw)Q def= Pp,t,o,i[(νw)Q〈p, t, o, i〉]

0 def= Pp,t,o,i[p|t|o|i]

〈u〉.Q def= Pp,t,o,i[(νq)(out〈p, q, u, o〉|Q〈q, t, o, i〉)]

〈u〉↑.P def= Pp,t,o,i[(νq)(ret〈p, q, u, t〉|Q〈q, t, o, i〉)]

(?x).P def= Pp,t,o,i[(νq, x)(in〈p, q, x, i〉|Q〈q, t, o, i〉)]

together with axioms flatP, extrS, extrD, extrI and extrF.

Part of the above definition is graphically represented in Figure 13.
As in our previous examples we use different arrow types to denote the
different (ordered, typed) tentacles of each edge. For example, for a design
representing a process, an outgoing empty arrow represents its returning
channel, an outgoing filled arrow its output channel, an incoming arrow its
input channel and a plain arrow its control point. Again, arguments of an
operation are denoted by annotating the corresponding graph item with a
variable name.

We introduce the only flattening axiom flatP into ≡D, and extrusion
axioms extrS, extrD, extrI, extrF. Hence, edges of type P are immaterial
(they can be considered as type annotations) and edges of type T define
the only rigid hierarchy w.r.t. containment and name scoping. Other
explicit hierarchies for edge containment are given by session nesting (S),
service definition (D), service invocation (I) and pipelining (F). The explicit
embedding of sessions is not strictly necessary but it provides an intuitive
visual representation. As usual, flattening processes allows for getting rid
of the axioms for parallel composition (see [18]). The presence of extrusion

86

Figure 13: Graphical interpretation for CaSPiS.

axioms is motivated by the structural congruence axioms of CaSPiS, namely
CA7 motivates extrF, CA8 motivates both extrD and extrI, and CA9 motivates
extrS. Note that we use dashed border for designs for which the extrusion
axiom hold, while designs to be flattened are depicted with dashed borders.

We explain just a few representative operations in detail. The session
operations are interpreted as graph operations that wrap a process into a
hierarchical S-typed graph which exposes the control point and a return
channel. The first is associated to the control point of the resulting P -typed
design, while the second is connected to its output channel. Note how session
embedding hides the input and output channels of the embedded process:
they are connected directly to the dedicated inter-communication node of
the session. Another interesting operation is the pipeline. Here, the source
and target processes of the pipeline are embedded in F - and T -typed designs.
It is worth noting how the input and output channels of each process are
connected in a complementary way. The target process hides its control point
and communication channels to denote that it is a non-active process. When
the source of the pipe is ready to send a value, a copy of the target process
is created and the control and channel nodes are connected as expected. A
main difference w.r.t. the encoding we provided in [5], where the extrusion

87

axiom was considered to hold implicitly for all the edges, is that it is no
longer necessary to retain the target-pipe operator parametric w.r.t. the
free names of the enclosed process: this was necessary in [5] to keep distinct
the (non-congruent) CaSPiS processes (νw)(Q > R) and Q > (νw)R when
w ∈ fn(R), but now their corresponding graphs are clearly distinct because
in the former case (νw) appears above the T -typed edge, while in the latter
case (νw) appears below the T -typed edge.

Note that the encoding we adopted for the pipe operators actually
suggests how to overcome the restriction to their finite fragment for those
calculi we presented. Indeed, dealing with replication operators is by no
means difficult, by exploiting the hierarchical structure. Of course, the
axiom !P ≡!P | P would not hold, since the two terms would have different
graphical encoding. However, it would suffice to introduce an unfolding
operation, exactly as it happens for the encoding of pipe operators in CaSPiS.

Example 10. Recall the typical session nesting situation presented in Exam-
ple 8. Figure 14 depicts the graphical representation of our example, where
the graph has been simplified (e.g. fusing nodes, removing isolated nodes
and irrelevant tentacles) to focus on the main issues and make immediate the
correspondence with the process term. The figure evidences the hierarchy
introduced by session nesting and how it is crossed by intra-session commu-
nication. It is also worth to note that the graph highlights the fact that the
return channel of a nested session is pipelined into the output channel of
the enclosing session. More precisely, the return channel of the immediate
session where P2 lives (i.e. b) is connected to the output channel of the
session containing it, i.e. the session channel a.

Example 11. Recall the typical pipeline situation presented in Example 9.
Its graphical representation is presented in Figure 15 and highlights various
aspects of interest: the flow of the information via the input and output
channels, the fact that P2 and P3 are inactive protocols, and the pipe
nesting. Since > is not associative P1 > (P2 > P3) and (P1 > P2) > P3 are
not structurally equivalent and this is faithfully reflected in the graphs.

Once more, structural congruence amounts to design equivalence, i.e.
equivalent processes are mapped into isomorphic graphs.

Proposition 6 (correctness of CaSPiS encoding) For any Q,R ∈ P
we have P ≡C Q iff P ≡D Q.

88

Figure 14: Example of session nesting.

Proof: Soundness of our encoding is reduced to show that for each axiom
of ≡D (see Definition 21) we have that the left- and right-hand sides are
interpreted as equivalent designs terms (according to ≡D). The proof for
AC1 axioms for parallel and non-deterministic composition of processes in
≡C is straightforward as we have similar axioms for parallel composition of
graphs in ≡D. A similar reasoning can be applied for the axioms regarding
the order of name restrictions and the restriction of an empty process as we
have equivalent axioms for node restriction in our design algebra. Let us
now consider name extrusion for pipelines, services and actions. For axiom
((νn)Q) > P ≡ (νn)(Q > P) we observe that both sides are interpreted as
P(p,t,i,o)[(νu)P (p, t, i, o) | Q(p, t, i, o)] (after flattening). The proof for name
extrusion in sessions is similar but based on flattening and node extrusion
for designs. Moving name restriction over action prefixes is similarly shown.

The proof of completeness is along the line of the one provided for
π-calculus: taken P 6≡C P ′ we want to show that P 6≡D P ′. The normal form
of CaSPiS processes is (νW)(ΠiRi > Qi | Πjrj . Sj | ΠkAk.Mk), where each
name in W is used at least once and each Ri, Qi, Sj ,Mk is also in normal
form. If P and P ′ have the same outermost shape then a simple induc-
tive argument allows us to conclude that P 6≡D P ′. If they have different
shapes, then we compare all the possibilities for this to happen to conclude
that P 6≡D P ′. The comparison can be carried out similarly to the case of
π-calculus: it is rather long because several cases must be considered, but
not particularly difficult, because the encoding of each construct (besides

89

Figure 15: Example of pipelining.

ordinary parallel composition and restriction) introduces an edge or a design
that will not be flattened. �

8 Related Work

On the algebra of graphs. Our most direct source of inspiration is an
approach for the reconfiguration of software architectures called Architectural
Design Rewriting (ADR) [7], where architectures are encoded as terms of
a particular graph algebra and reconfigurations are defined using standard
term rewriting techniques. Our model of hierarchical graphs extends ADR
graphs with node sharing and our algebra equips ADR with a suitable syntax.
In particular, original ADR specifications can be seen as rewrite theories
over a signature formed by derived operations defined by terms closed with
respect to nodes. Our algebra, hence, inherits the characteristics of ADR, like
the ability to nicely model style-preserving architectural reconfigurations [7].

Our syntax is inspired by the graph algebra proposed in [12]. The main
idea there was to have constructors such as the empty graph, single edges,
and parallel composition, and axioms like associativity and commutativity of
such composition, in order to consider graphs up to isomorphism. Our richer
design algebra includes hierarchical features and it is intended to enable a

90

more suitable representation for nominal calculi and their behaviour.
Concerning set-theoretical formalisms, a direct reference is the frame-

work for hierarchical graph transformation introduced in [14], of which our
proposal can be considered an extension, dealing with free names, along the
lines of so-called graphs with interfaces discussed in e.g. [18]. Indeed, as far
as the mapping of processes is concerned, our solution follows closely [18]:
the operators verifying the AC1 axioms basically disappear, while name
restriction is dealt with by handling the interfaces. The encoding in [18]
actually deals with flat graphs, which suffices for the finite fragment of the
calculus. It is however noteworthy that, for the finite fragment, the two
proposal coincide (process are mapped into isomorphic graphs by the two
encodings). Other set-theoretical models of hierarchical graphs exist in the
line of [14] (e.g. [10, 24]), but most of them lack an algebraic syntax and an
associated set of axioms.

On structured graphical models. Our approach is closely related to
other formalisms that adopt a graphical representation of concurrent systems.
Among those, we mention Synchronized Hyperedge Replacement (SHR) [17]
and Bigraphical Reactive Systems (BRSs) [23].

The syntax of SHR is basically the one of [12], and it is subsumed by
our algebra. Instead, the SHR approach focuses on the description of the
operational behaviour of a system by a set of suitably labelled inference rules,
which may involve complex synchronisations. We discuss later some of the
rewriting features we intend to add to our approach. However, we can safely
say that so far the concerns of the two proposals have been orthogonal.

A bigraph is given by the superposition of two independent graphs, rep-
resenting the locality and the connectivity structure of a system, respectively.
In our terms, the first specifies the hierarchical structure of the system, while
the second the naming topology. We believe that the two approaches have
the same expressiveness, but argue for the better usability of our syntax and
the small, intuitive set of axioms. Most importantly, BRSs have been mostly
studied in connection with the relative pushout (RPO) technique [21], in
order to distill a bisimilarity congruence from a set of rewrite rules. Our
hierarchical graphs form a category with pushouts (indeed, possibly an
adhesive one), and the DPO approach could be then lifted, as in [14]. Hence,
they should be amenable to the borrowed context technique for distilling
RPOs [16]. Our proposal thus fits in the standard graph-theoretic mold,
while its slender syntax provide a simple intermediate language between

91

process calculi and their graphical models. Obviously, a possible integration
is to use our syntax in order to characterise certain classes of bigraphs (e.g.
pure bigraphs). Such an integration is suggested in [20], where the authors
propose an algebraic syntax for denoting bigraphs and present type systems
to characterise those terms that correspond to particular sub-classes.

On rewriting mechanisms. Concerning the operational behaviour of
our specifications, we would like to find a term rewriting-like technique
for the reconfiguration of designs, and prove it compatible with a graph
theoretical approach for rewriting hierarchical graphs. In other words, the
correspondence holding between designs and hierarchical graphs should be
lifted at the level of rewriting. The standard notions of term rewriting can
be applied to our algebra of designs, simply considering sets of (name and
design) variables. The corresponding technique for graph rewriting is more
complex, since most of these techniques are eminently local, thus making it
difficult to simulate the replication of an unspecified design. Nevertheless,
since our category admits pushouts, a clear path is laid down by the use of
rule schemata in the DPO approach, as in [14].

9 Conclusions

We introduced a novel specification formalism based on a convenient algebra
of hierarchical graphs: its features make it well-suited for the specification
of systems with inherently hierarchical aspects and in particular, process
calculi with notions of scopes and containments (like ambients, membranes,
sessions and transactions). Some advantages of our approach are due to
the graph algebra, whose syntax resembles standard algebraic specifications
and, in particular, it is close to the syntax found in nominal calculi. The
key point is to exploit the algebraic structure of both designs and graphs
when proving properties of an encoding, facilitating proofs by structural
induction. Indeed, the main result of the paper already guarantees that
equivalent terms correspond to isomorphic graphs.

Summing up, we believe that our approach can serve as an inspiration
to equip well-known graphical models of communication with syntactical
notations that facilitate the definition of intuitive and correct encodings of
structured specifications, such as those obtained by using process calculi.

92

Applications. We are applying our technique to various languages, fo-
cusing on process calculi exhibiting nested features. A preliminary proof
of the flexibility of our approach for this purpose is found in [5]. Another
focus is on metamodels: we plan to develop a technique to distill algebraic
specifications out of MOF metamodels, along the lines of [3] but capturing
composition as nesting. Some preliminary results in this direction are in [2].

An implementation of our approach and its integration in our prototyp-
ical implementation of ADR [6] in the rewrite engine Maude is under current
work. A preliminary version is available (at http://www.albertolluch.

com/adr2graphs/) as a visualiser that considers our design algebra and
encodings of process calculi like the π-calculus and CaSPiS, among others.

Acknowledgements

Research supported by the EU FET integrated project Sensoria, IST-2005-
016004.

References

[1] M. Boreale, R. Bruni, R. De Nicola, and M. Loreti. Sessions and
pipelines for structured service programming. In G. Barthe and F. S.
de Boer, editors, Proceedings of the 10th IFIP International Confer-
ence on Formal Methods for Open Object-based Distributed Systems
(FMOODS’08), volume 5051 of Lecture Notes in Computer Science,
pages 19–38. Springer Verlag, 2008.

[2] A. Boronat, R. Bruni, A. Lluch Lafuente, U. Montanari, and G. Paolillo.
Exploiting the hierarchical structure of rule-based specifications for
decision planning. In J. Hatcliff and E. Zucca, editors, Proceedings of
the IFIP International Conference on Formal Techniques for Distributed
Systems (FMOODS/FORTE’10), volume 6117 of Lecture Notes in
Computer Science, pages 2–16. Springer Verlag, 2010.

[3] A. Boronat and J. Meseguer. An algebraic semantics for MOF. In J. Fi-
adeiro and P. Inverardi, editors, Proceedings of the 11th International
Conference on Fundamental Aspects of Software Engineering (FASE’08),
volume 4961 of Lecture Notes in Theoretical Computer Science, pages
377–391. Springer Verlag, 2008.

93

[4] R. Bruni, F. Gadducci, and A. Lluch Lafuente. An algebra of hierarchical
graphs. In M. Hofmann and M. Wirsing, editors, Proceedings of the 5th
International Symposium on Trustworthy Global Computing (TGC’10),
Lecture Notes in Computer Science. Springer Verlag, 2010. To appear.

[5] R. Bruni, F. Gadducci, and A. Lluch Lafuente. A graph syntax for
processes and services. In J. Su and C. Laneve, editors, Proceedings of
the 6th International Workshop on Web Services and Formal Methods
(WS-FM’09), volume 6194 of Lecture Notes in Computer Science, pages
46–60. Springer Verlag, 2010.

[6] R. Bruni, A. Lluch Lafuente, and U. Montanari. Hierarchical design
rewriting with Maude. In G. Rosu, editor, Proceedings of the 7th Inter-
national Workshop on Rewriting Logic and its Applications (WRLA’08),
volume 238 (3) of Electronic Notes in Theoretical Computer Science,
pages 45–62. Elsevier, 2009.

[7] R. Bruni, A. Lluch Lafuente, U. Montanari, and E. Tuosto. Style Based
Architectural Reconfigurations. Bulletin of the European Association
for Theoretical Computer Science (EATCS), 94:161–180, February 2008.

[8] R. Bruni, H. C. Melgratti, and U. Montanari. Theoretical foundations
for compensations in flow composition languages. In J. Palsberg and
M. Abadi, editors, Proceedings of the 32nd International Symposium
on Principles of Programming Languages (POPL’05), pages 209–220.
ACM, 2005.

[9] M. Bundgaard and V. Sassone. Typed polyadic pi-calculus in bigraphs.
In A. Bossi and M. J. Maher, editors, Proceedings of the 8th International
Symposium on Principles and Practice of Declarative Programming
(PPDP’06), pages 1–12. ACM, 2006.

[10] G. Busatto, H.-J. Kreowski, and S. Kuske. Abstract hierarchical
graph transformation. Mathematical Structures in Computer Science,
15(4):773–819, 2005.

[11] A. Corradini and F. Gadducci. An algebraic presentation of term graphs,
via gs-monoidal categories. Applied Categorical Structures, 7(4):299–311,
1999.

94

[12] A. Corradini, U. Montanari, and F. Rossi. An abstract machine for
concurrent modular systems: CHARM. Theoretical Computer Science,
122(1-2):165–200, 1994.

[13] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe.
Algebraic Approaches to Graph Transformation - Part I: Basic Concepts
and Double Pushout Approach. In G. Rozenberg, editor, Handbook of
Graph Grammars and Computing by Graph Transformations, Volume
1: Foundations, pages 163–246. World Scientific, 1997.

[14] F. Drewes, B. Hoffmann, and D. Plump. Hierarchical graph transfor-
mation. Journal on Computer and System Sciences, 64(2):249–283,
2002.

[15] F. Drewes, H.-J. Kreowski, and A. Habel. Hyperedge replacement graph
grammars. In G. Rozenberg, editor, Handbook of Graph Grammars and
Computing by Graph Transformations, Volume 1: Foundations, pages
95–162. World Scientific, 1997.

[16] H. Ehrig and B. König. Deriving bisimulation congruences in the DPO
approach to graph rewriting with borrowed contexts. Mathematical
Structures in Computer Science, 16(6):1133–1163, 2006.

[17] G. L. Ferrari, D. Hirsch, I. Lanese, U. Montanari, and E. Tuosto.
Synchronised hyperedge replacement as a model for service oriented
computing. In F. S. de Boer, M. M. Bonsangue, S. Graf, and W. P.
de Roever, editors, Proceedings of the 4th International Symposium on
Formal Methods for Components and Objects (FMCO’05), volume 4111
of Lecture Notes in Computer Science, pages 22–43. Springer Verlag,
2006.

[18] F. Gadducci. Term graph rewriting for the pi-calculus. In A. Ohori,
editor, Proceedings of the 1st Asian Symposium on Programming Lan-
guages and Systems (APLAS’03), volume 2895 of Lecture Notes in
Computer Science, pages 37–54. Springer Verlag, 2003.

[19] F. Gadducci and G. V. Monreale. A decentralized implementation of
mobile ambients. In H. Ehrig, R. Heckel, G. Rozenberg, and G. Taentzer,
editors, Proceedings of the 4th International Conference on Graph Trans-
formation (ICGT’08), volume 5214 of Lecture Notes in Computer Sci-
ence, pages 115–130. Springer, 2008.

95

[20] D. Grohmann and M. Miculan. Graph algebras for bigraphs. In
J. Küster and E. Tuosto, editors, Proceedings of the 10th International
Workshop on Graph Transformation and Visual Modeling Techniques
(GT-VMT’10), Electronic Communications of the EASST, 2010. To
appear.

[21] J. J. Leifer and R. Milner. Deriving bisimulation congruences for reactive
systems. In C. Palamidessi, editor, Proceedings of the 11th International
Conference on Concurrency Theory (CONCUR’00), volume 1877 of
Lecture Notes in Computer Science, pages 243–258. Springer Verlag,
2000.

[22] R. Milner. Communicating and Mobile Systems: The π-calculus. Cam-
bridge University Press, 1992.

[23] R. Milner. Pure bigraphs: Structure and dynamics. Information and
Computation, 204(1):60–122, 2006.

[24] W. Palacz. Algebraic hierarchical graph transformation. Journal of
Computer and System Sciences, 68(3):497–520, 2004.

[25] G. Paun. Membrane Computing. An Introduction. Springer, 2002.

[26] G. Paun and G. Rozenberg. A guide to membrane computing. Theoret-
ical Computer Science, 287(1):73–100, 2002.

96

