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Abstract

OpenTox provides an interoperable, standards-based Framework for the support of predictive toxicology data man-
agement, algorithms, modelling, validation and reporting. It is relevant to satisfying the chemical safety assessment
requirements of the REACH legislation as it supports access to experimental data, (Quantitative) Structure-Activity
Relationship models, and toxicological information through an integrating platform that adheres to regulatory
requirements and OECD validation principles. Initial research defined the essential components of the Framework
including the approach to data access, schema and management, use of controlled vocabularies and ontologies,
architecture, web service and communications protocols, and selection and integration of algorithms for predictive
modelling. OpenTox provides end-user oriented tools to non-computational specialists, risk assessors, and toxicolo-
gical experts in addition to Application Programming Interfaces (APIs) for developers of new applications. OpenTox
actively supports public standards for data representation, interfaces, vocabularies and ontologies, Open Source
approaches to core platform components, and community-based collaboration approaches, so as to progress
system interoperability goals.
The OpenTox Framework includes APIs and services for compounds, datasets, features, algorithms, models, ontolo-
gies, tasks, validation, and reporting which may be combined into multiple applications satisfying a variety of differ-
ent user needs. OpenTox applications are based on a set of distributed, interoperable OpenTox API-compliant REST
web services. The OpenTox approach to ontology allows for efficient mapping of complementary data coming
from different datasets into a unifying structure having a shared terminology and representation.
Two initial OpenTox applications are presented as an illustration of the potential impact of OpenTox for high-qual-
ity and consistent structure-activity relationship modelling of REACH-relevant endpoints: ToxPredict which predicts
and reports on toxicities for endpoints for an input chemical structure, and ToxCreate which builds and validates a
predictive toxicity model based on an input toxicology dataset. Because of the extensible nature of the standar-
dised Framework design, barriers of interoperability between applications and content are removed, as the user
may combine data, models and validation from multiple sources in a dependable and time-effective way.

1. Background
1.1 Introduction
In a study by the European Chemical Bureau (ECB), it
was estimated that the new EU chemical legislation
REACH would require 3.9 million additional test

animals, if no alternative methods were accepted [1].
The same study showed that it was possible to reduce
the number of test animals significantly by utilizing
existing experimental data in conjunction with (Quanti-
tative) Structure Activity Relationship ((Q)SAR) models.
Chronic and reproductive toxicity, in vivo mutagenicity
and carcinogenicity are the endpoints that will require* Correspondence: barry.hardy@douglasconnect.com
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the largest number of test animals within REACH,
because no alternative in vitro assays are available yet.
Recent developments allow a more accurate prediction

of complex toxicological endpoints than a few years ago.
This progress has been supported by (i) the develop-
ment of improved (Q)SAR algorithms, (ii) the availabil-
ity of larger and better curated public databases, (iii)
progress in computational chemistry and biology, and
(iv) the development of an array of in vitro assays prob-
ing targets, pathways and endpoints.
The routine application of these new generation mod-

els is however still rare, because
• Toxicity data has been collected in a variety of dif-

ferent databases;
• These databases use different formats, that are fre-

quently not generally compatible with in silico
programs;
• Many toxicity databases lack important information

for modelling (e.g. curated chemical structures; inability
to select and combine data from multiple sources);
• It is hard to integrate confidential in-house data with

public data for model building and validation;
• Models have been published in a variety of different

formats (ranging from simple regression based equations
to full-fledged computer applications);
• There is no straightforward integration of predic-

tions from various applications;
• There is no commonly accepted framework for the

validation of in silico predictions and many in silico
tools provide limited support for reliable validation
procedures;
• The application, interpretation, and development of

(Q)SAR models is still difficult for most toxicological
experts. It requires a considerable amount of statistical,
cheminformatics and computer science expertise and
the procedures are labour-intensive and prone to
human errors.
The EC-funded FP7 project “OpenTox” [2] aims to

address these issues. The overall objective of OpenTox
is to develop a framework that provides a unified access
to in vitro and in vivo toxicity data, in silico models,
procedures supporting validation and additional infor-
mation that helps with the interpretation of predictions.
OpenTox is accessible at three levels:
• A simplified user interface for toxicological experts

that provides unified access to predictions, toxicological
data, models and supporting information;
• A modelling expert interface for the streamlined

development and validation of new models;
• Public OpenTox Application Programming Inter-

faces (APIs) for the development, integration and valida-
tion of new algorithms and models.
The core components of the OpenTox Framework are

being developed or integrated with an open source

licensing approach to optimize the dissemination and
impact of the platform, to allow the inspection and
review of algorithms, and to be open to potential contri-
butions of value from the scientific community.

1.2 OpenTox Objectives
The overall long-term goal of OpenTox is the develop-
ment of an interoperable, extensible predictive toxicol-
ogy framework containing a collection of state-of-the art
(Q)SAR, cheminformatics, bioinformatics, statistical and
data mining tools, computational chemistry and biology
algorithms and models, integratable in vitro and in vivo
data resources, ontologies and user-friendly Graphical
User Interfaces (GUIs). OpenTox supports toxicological
experts without specialist in silico expertise as well as
model and algorithm developers. It moves beyond exist-
ing attempts to create individual research resources and
tools, by providing a flexible and extensible framework
that integrates existing solutions and new developments.

1.3 OpenTox Design Principles
The design principles of interoperability, flexibility,
transparency and extensibility are key ingredients of the
OpenTox Framework design, which additionally guide
its architecture and implementation.
1.3.1 Interoperability
Interoperability with respect to the OpenTox Frame-
work refers to the principle that different OpenTox
components or services may correctly exchange infor-
mation with each other and subsequently make use of
that information. Both syntactic interoperability for cor-
rect data exchange and semantic interoperability sup-
porting the accurate communication of meaning and
interpretation of data are supported principles for Open-
Tox resources. The principles are reflected design-wise
in the use of open, standardised interfaces and ontolo-
gies. The principles are relevant in application develop-
ment and deployment when a combination of
distributed multiple services can provide value to a user
in completing a use case satisfactorily.
1.3.2 Flexibility
As a significant variety of user scenarios, requirements
and use cases in predictive toxicology exist, flexibility is
a key principle incorporated into OpenTox. Through
the use of a component-based approach and the incor-
poration of the interoperability principles, many differ-
ent and customised applications can be assembled that
are based on the underlying platform.
1.3.3 Transparency
To achieve the scientific objective of knowledge-based
enquiry based on principles of reasoning, reproducibility,
and reliability, OpenTox supports the principle of trans-
parency in its design. Computational models should be
available for scrutiny by other scientists in as complete a
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manner and detail as possible. Evaluators and regulators
should be able to both understand the details and accu-
rately reproduce the results of predictive toxicity mod-
els, and be able to reliably form judgements on their
validity as evidence. The principle also supports achieve-
ment of the OECD validation principles such as an
unambiguous algorithm and a mechanistic interpreta-
tion, if possible. Use of Open Source, Open Interfaces
and Standards within OpenTox support implementation
of the transparency principle applied to in silico-based
predictive toxicology applications and their reported
results.
1.3.4 Extensibility
The field of predictive toxicology is rapidly developing
and broadening in many areas including the use of bio-
markers, systems biology, epigenetics, toxicokinetics, in
vitro assays, stem cell technology, and computational
chemistry and biology. Hence, OpenTox needs to be
extensible to a broad range of future predictive toxicol-
ogy applications. In such applications, contributing and
diverse experimental data and models need to be com-
bined as evidence supporting integrated testing, safety
and risk assessment and regulatory reporting as stipu-
lated under REACH. In the initial design of the Open-
Tox Framework we have first attempted to create a
general solution for (Q)SAR model development and
application. We also will address and strengthen its
extensibility in subsequent extensions of the OpenTox
APIs, and guided by suitable use cases, to additional
areas of scientific enquiry in the predictive toxicology
field as part of its evolutionary development.

1.4 Toxicity Data
Toxicity data has been traditionally dispersed over a vari-
ety of databases where only a small fraction was immedi-
ately suitable for in silico modelling and structure-based
searches because they contained chemical structures and
defined toxicological endpoints. Recent efforts (e.g. from
Istituto Superiore di Sanità (ISS), Fraunhofer Institute for
Toxicology & Experimental Medicine (FhG ITEM), US
Environmental Protection Agency (US EPA), US Food &
Drug Administration (US FDA)) have improved the
situation, because they provide curated data that has
been compiled from various sources (public testing pro-
grams, general literature, non-confidential in-house
data). Public repositories of bioassay data like PubChem
[3] provide additional information that can be used for
toxicological risk assessment.
The aggregation of data from different sources is how-

ever still far from trivial and poses some interesting tox-
icological, computer science, technological and legal
questions, e.g.:
• Reliable identification of database entries that point

to identical primary experiments;

• Reliable mapping from various non-unique chemical
identifiers (e.g. names, CAS numbers) to chemical
structures;
• Development of ontologies that describe the rela-

tionships between the various toxicological effects and
mechanisms and related chemical and biological entities;
• Utilization of high content and high throughput

screening data for toxicity predictions;
• Integration of databases with different access policies

(and legal status);
• Structure anonymisation to share toxicity data from

sensitive in-house datasets (if possible [4]);
• Systematic data quality assessment.
As the size of toxicity databases prohibits a manual

inspection of all data, it is necessary to apply advanced
data- and text-mining techniques to solve most of these
tasks automatically and to identify instances that need
human inspection.
Some of the data integration issues have already been

addressed by other computational toxicology and chem-
istry initiatives e.g. ECB QSAR Model Reporting Format
[5], DSSTox [6], ToxML [7], CDK [8], InChI [9]. How-
ever although these approaches solve some technical
aspects of data integration, none of them provides an
architecture for the seamless merging and use of toxicity
data from various sources. An OpenTox goal is to pro-
vide unified access to existing tools for data integration,
develop new tools for this purpose, provide sound vali-
dation techniques and aid driving efforts to develop
standards in this area.

1.5 Ontologies
The definition of ontology and controlled vocabulary in
OpenTox is required so as to standardize and organize
high-level concepts, chemical information and toxicolo-
gical data. Distributed OpenTox services exchanging
communications need to have unambiguous interpreta-
tions of the meaning of any terminology and data that
they exchange between each other.
Prioritisation of OpenTox toxicological endpoints

focuses on those endpoints recognized internationally as
critical for the testing of chemicals. Primary sources of
information include the OECD guidelines for testing of
chemicals [10,11] and the toxicological endpoints rele-
vant to the assessment of chemicals in the EU [12].

A further more detailed definition of Ontology in this
context is provided in Additional File 1.

1.6 Approach to Predictive Toxicology (Q)SARs
Initial OpenTox work has focused on creating a Frame-
work for the support of (Q)SAR-based data driven
approaches.
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1.6.1 Toxicity (Q)SARs
Because of its relevance for the reduction of animal test-
ing, we are focusing initially on the reproductive toxi-
city, chronic toxicity, mutagenicity and carcinogenicity
endpoints. The OpenTox Framework however works
independently of the underlying data, which makes it
useful also for any other toxicology-relevant endpoints.
The main problem for toxicological modellers is that

they have to deal with endpoints with very complex and
frequently unknown biological mechanisms and with
datasets with very diverse structures. This currently pro-
hibits in many cases a systems biology approach as well
as the application of simple regression-based techniques.
For this reason advanced data mining and cheminfor-
matics techniques are gaining increasing acceptance
within the toxicological community. Modern techniques
like lazar [13], fminer [14] and iSAR [15] allow the auto-
mated determination of relevant chemical descriptors
and the generation of prediction models that are under-
standable and interpretable by non-computer scientists.
Many (Q)SAR models for the prediction of mutagenic

and carcinogenic properties have been developed in
recent years. The prediction of bacterial mutagenicity is
relatively successful (typical accuracies 80%), but the
success with carcinogenicity predictions has been much
more limited and very few models are available for in
vivo mutagenicity. With recent developments like lazar,
it is however possible to predict rodent carcinogenicity
with accuracies similar to bacterial mutagenicity and to
achieve a reliable estimation of prediction confidences.
It is likely that further improvements can be obtained
with better algorithms for chemical and biological fea-
ture generation, feature selection and model generation,
and the novel combination of existing techniques.
1.6.2 Aggregation of Predictions from various Models
It is known from machine learning, that the aggregation
of different prediction models leads to increased accura-
cies [16]. The aggregation of predictions from different
in silico programs is however still a cumbersome task
that requires a lot of human intervention and ad hoc
solutions. A new plugin-architecture is therefore needed
that allows an easy integration of models and programs
from different origins, independently of their program-
ming language and legal status. Similar plugin facilities
are needed for algorithms that perform a dedicated task
during model generation (e.g. feature generation, feature
selection, classification, regression). With such a modu-
larized approach it will be easier to experiment with
new algorithms and new combinations of algorithms
and to compare the results with benchmarked methods.
1.6.3 Validation of Models
An objective validation framework is crucial for the
acceptance and the development of in silico models.
The risk assessor needs reliable validation results to

assess the quality of predictions; model developers need
this information to (i) avoid the overfitting of models,
(ii) to compare new models with benchmarked techni-
ques and (iii) to get ideas for the improvement of algo-
rithms (e.g. from the inspection of misclassified
instances). Validation results can also be useful for data
providers as misclassifications point frequently to flawed
database entries. OpenTox is actively supporting the
OECD Principles for (Q)SAR Validation so as to provide
easy-to-use validation tools for algorithm and model
developers.
Care must be taken, that no information from test sets

leaks into the training set, either performing certain
steps (frequently supervised feature generation or selec-
tion) for the complete dataset or by “optimizing” para-
meters until the resulting model fits a particular test set
by chance. For this reason OpenTox provides standar-
dized validation routines within the framework that can
be applied to all prediction algorithms that are plugged
into the system. These kinds of techniques are standard
in the field of machine learning and data-mining, but
are however not yet consistently employed within the
field of (Q)SAR modelling.
1.6.4 Determination of Applicability Domains
For practical purposes it is important to know the pro-
portion of compounds that fall within the Applicability
Domain (AD) of a certain model. For this purpose
OpenTox will provide automated facilities to identify
the proportion of reliable predictions for the “chemical
universe” e.g. structures of the database [17], particular
subsets (e.g. certain classes of pharmaceuticals, food
additives, REACH submission compounds) and for in-
house databases. This feature will also help with a more
reliable estimation of the potential to reduce animal
experiments.
1.6.5 Retrieval of supporting Information
Linking (Q)SAR predictions to external data sources has
found little attention in the (Q)SAR community. It is
however essential for the critical evaluation of predic-
tions and for the understanding of toxicological
mechanisms. Again the problem is less trivial as it
seems at a first glance and requires similar techniques
as those for database aggregation. The development of
new text mining techniques is crucial for the retrieval of
factual information from publications.
1.6.6 Interfaces
Model developers will benefit from a set of APIs that
allow an easy integration, testing and validation of new
algorithms. New techniques can be easily tested with
relevant real-world toxicity data and compared to the
performance of benchmark algorithms.
1.6.7 Toxicity databases
OpenTox database work aims to integrate and provide
high-quality toxicity data for predictive toxicology
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model development and validation. OpenTox supports
the creation of dictionaries and ontologies that describe
the relations between chemical and toxicological data
and experiments and for the retrieval and quality assur-
ance of toxicological information. This includes tools for
chemical syntax checking, structure consolidation, and
the identification of inconsistent data that requires man-
ual inspection.
1.6.8 (Q)SAR algorithms
OpenTox provides access to (Q)SAR algorithms that
derive data-based predictions and models. Predictions are
visualized by an application GUI or serve as input for
validation routines. The open architecture is designed to
allow an easy integration of external programs (open
source and closed source) into any specific application.
OpenTox is starting with the integration of chemin-

formatics, statistical and data mining tools including
functionality from other open source projects (e.g. R,
WEKA [18], Taverna [19], CDK, OpenBabel [20]). A
flexible plug-in architecture for applying, testing and
validating algorithms interactively and systematically is
used. OpenTox algorithms offer support for common
tasks, such as feature generation and selection, aggrega-
tion, and visualization. The open source plug-in archi-
tecture should encourage researchers from other areas
(e.g., data mining or machine learning) to integrate their
methods in a safe testing environment with relevant
datasets. OpenTox currently implements:
1. Algorithms for the generation and selection of fea-

tures for the representation of chemicals (structure-
based features, chemical and biological properties);
2. Classification and regression algorithms for the

creation of (Q)SAR models;
3. Services for the combination of predictions from

multiple algorithms and endpoints; and
4. General purpose algorithms (e.g. for the determina-

tion of chemical similarities, estimation of applicability
domains, categorization, read across and sub-structure
based database queries).

2. Results
2.1 User Requirements
User requirements indicate that we will need to provide
a great flexibility with the OpenTox Framework to meet
individual needs in specific applications.

A summary of user requirements for several different
kinds of OpenTox user are described in Additional
File 2.

2.1.1 Use Cases
OpenTox pursues a use case driven development and
testing approach. Use case development involves input
from both users and developers, an internal and external
peer review process, and testing approach based on user

evaluation of the applications developed for the use
case. Once use cases are reviewed and accepted, they
are published publically on the OpenTox website.
OpenTox use cases are classified hierarchically into

three classes:
Class 1: Collaboration/Project Level (e.g., 3 month

development project);
Class 2: Application Level, e.g., carry out a REACH-

compliant risk assessment for a group of chemicals;
Class 3: Task Level, e.g., given an endpoint (and a data

set for a chemical structure category for that endpoint)
develop and store a predictive model resource for a che-
mical space.
OpenTox Use Cases are documented by a standar-

dised OpenTox Use Case Template describing the task,
inputs, outputs, exceptions, triggers, and process
resources required for the overall process and each
activity step in the process. Table 1 provides an example
overall process template for predicting an endpoint for a
chemical structure, which the ToxPredict application
described later on is based on. The user is typically a
non-computational expert but knows the structure of a
compound or has a chemical id or electronic structure
(e.g. MOL) file. The user enters a structure via their
web browser via one of three optional methods: file,
paste, or sketch structure, selects the specific endpoints
of interest, and starts the calculation. When the calcula-
tion is finished a report is returned.
The workflow is described in Figure 1 as the following

series of steps:
1) OpenTox data infrastructure is searched for chemi-

cal id or structure;
2) The structure is checked for chemical correctness,

and number of molecules;
3) Clean-up: if 2D, the structure is converted to 3D,

valences saturated with hydrogen atoms, and partially
optimized with molecular mechanics;
4) A check on the chemical correctness is made (bond

distances, charges, valences, etc.);
5) An image of the molecule is displayed, with the

results of structure check and clean-up. If serious pro-
blems with the structure are found, the user is asked if
they want to continue, or if appropriate, the process is
terminated automatically with an error message;
6) If experimental results for the molecule are found

in the database, then the following is printed “Experi-
mental data for this structure is available in the Open-
Tox database and is summarized here:";
7) All necessary descriptors are calculated, results of

regression obtained, and chemical similarity to calibra-
tion molecules evaluated;
8) The prediction report is provided including the

details of the basis for model prediction and including
statistical reporting on the reliability of the prediction.
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2.2 The OpenTox Framework Design
OpenTox is a platform-independent collection of compo-
nents that interact via well-defined interfaces. The preferred
form of communication between components is through
web services. A set of minimum required functionalities for
OpenTox components of various categories (prediction,
descriptor calculation, data access, validation, report genera-
tion) are available on the OpenTox website [21].
OpenTox tries to follow the best practices of open

source project management for core framework compo-
nents. This means that source code, technical discus-
sions and documents are open to the general public and

interested parties can participate in development if they
have registered for access to the developers’ area of the
website [22].
OpenTox is committed to the support and further

development of Open Standards and Ontologies. Appen-
dix 1 summarises some of the most important standards
of relevance to the Framework.
2.2.1 Architecture
OpenTox is a framework for the integration of algo-
rithms for predicting chemical toxicity and provides:
• components for specialized tasks (e.g. database look-

ups, descriptor calculation, classification, regression,

Table 1 Overall Use Case process template for predicting an endpoint for a chemical structure

Activity Name: Overall Use Case - Given a chemical structure, predict endpoints.

Trigger Event: User needs toxicity prediction for one compound and initiates service request.

Knowledge Needed (Source): Assume user has at least basic toxicity and chemistry knowledge but is not an expert QSAR user.

Input Information needed (Source): 2D Chemical Structure, toxicity endpoint(s).

Resources needed (including services): Computer interface for user entry of structure, selection of endpoints and return of results. OpenTox
Data Resources, Prediction Model Building and Report Generation.

Exception Events: Incorrect chemical structure. Endpoint unavailable. Unable to predict endpoint.

Knowledge Delivered (destination): In case of exception events direct user to further consulting and advice services.

Output Information delivered
(destination):

Report on endpoint predictions.

Subsequent events triggered: (relation
with next activity)

Suggestion of further Use Cases when applicable.

Services Involved (role) OpenTox API, Data Resources, Prediction Model Building, Validation and Report Generation.

Figure 1 Workflow for Use Case for predicting an endpoint for a chemical structure.
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report generation) that communicate through well-
defined language independent interfaces;
• applications that implement the capabilities of

OpenTox components for specific Use Cases.
The OpenTox Framework supports building multiple

applications, as well as providing components for third
party applications. The Framework guarantees the port-
ability of components by enforcing language-indepen-
dent interfaces. Implementation of an integration
component in a specific language/platform automatically
ports the entire OpenTox Framework to that language/
platform.
The OpenTox Framework is composed of:
• Components - every component encapsulates a set

of functionalities and exposes them via well defined lan-
guage-independent interfaces (protocols);
• Data Infrastructure adhering to interoperable princi-

ples and standards;
• Ontologies and associated services;
• Documentation and guidance for application devel-

opment and use.
An OpenTox-based application implements a specific

Use Case, with the appropriate user interfaces, and
adhering to guidance on APIs and standards.
2.2.2 Components
OpenTox components are described by templates pro-
viding documentation including minimum requirements
and dependency tracking on the OpenTox website [22].
The current (Q)SAR-related component categories
include Prediction, Descriptor Calculation, Data Access,
Report Generation, Validation and Integration. Initial
components include Rumble, Toxmatch, Toxtree, iSar,
lazar, AMBIT, FreeTreeMiner, LibFminer, gSpan’,
MakeMNA, MakeQNA, and MakeSCR.
The interactions between components are determined

by their intended use and can differ across different Use
Cases, which consist of a series of steps, each applying
component functionalities on input data. The interac-
tion between components is implemented as a compo-
nent. Interaction components such as workflows (e.g.,
Taverna) combine multiple services to offer the follow-
ing functionalities:
• load the series of steps, corresponding to the specific

Use Case (from a configuration file on a file system or
on a network);
• take care of loading necessary components;
• execute the steps.

2.2.3 OpenTox Application Programming Interfaces
To assure reliable interoperability between the various
OpenTox web services, a well-defined API is required.
The OpenTox APIs specify how each OpenTox web ser-
vice can be used, and how the returned resources look
like. It further specifies the HTML status codes returned
in case of succeeded operations as well as errors codes.

OpenTox interfaces have the minimum required func-
tionalities shown in Appendix 2. The initial specifica-
tions for the OpenTox APIs have been defined and are
available on the OpenTox website [23]. The initial
objects already specified are Endpoint, Structure, Struc-
ture Identifiers, Feature Definition, Feature, Feature Ser-
vice, Reference, Algorithm, Algorithm Type, Model,
Dataset, Validation Result, Applicability Domain, Feature
Selection, and Reporting.
All current OpenTox web services adhere to the

REpresentational State Transfer (REST) web service
architecture [24] for sharing data and functionality
among loosely-coupled, distributed heterogeneous sys-
tems.

Further information on interfaces and the REST
approach is included in Additional File 3.

The choice of employing web services allows the com-
plete framework to operate in different locations, inde-
pendent of operating systems and underlying
implementation details.
Figure 2 shows the OpenTox resources modelled in

the OpenTox Ontology. These resources are provided
by the various OpenTox web services. The links
between the components reflects interaction between
the respective web services.
The model web service provides access to (prediction)

models. Models are created via the algorithm web ser-
vice, which supports different types of algorithms (e.g.
supervised learning, feature selection, descriptor calcula-
tion, and data cleanup). Building a model will normally
require various parameters, one or several datasets, as
well as a set of features.
Datasets are stored in the dataset web service. A data-

set contains data entries, which are chemical com-
pounds, as well as their feature values. Features are
defined as objects representing a property of a com-
pound, including descriptors and calculated features,
endpoints, and predictions. Different representations for
chemical compounds can be accessed from the com-
pound web service. The feature web service provides the
available features (e.g. structural features, chemical
descriptors, endpoints).
The validation web service evaluates and compares the

performance of prediction models. Simple training-test-
set-validation is supported as well as cross-validation.
The validation result contains quality statistical figures
and reports (available in html or pdf formats) that visua-
lize the validation results. The task web service supports
long-running, asynchronous processes. The ontology
web service provides meta information from relevant
ontologies (which can be accessed using SPARQL
queries [25]), as well as lists of available services.
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Approaches to Authentication and Authorization will be
specified in the next version 1.2 of the API.
All OpenTox resources have representations providing

information about the type of resource, and what the ser-
vice accepts as input such as tuning parameters. Most
algorithms and model resources in OpenTox are available
in multiple representations. The Resource Description Fra-
mework (RDF) representation [26], and in particular its
XML formatted variant, was chosen as the master data
exchange format, due to the following reasons:

• RDF is a W3C recommendation: RDF-related
representations such as rdf/xml and rdf/turtle are
W3C recommendations so they constitute a stan-
dard model for data exchange;
• RDF is part of Semantic Web Policy: RDF as a
representation for a self-contained description of
web resources contributes to the evolution of the
Semantic Web; a web where all machines can
“understand” each other;
• RDF is designed to be machine-readable.

Some services support additional representations like
JavaScript Object Notation JSON [27], YAML [28] or
Application/X-Turtle [29]. Some prediction model

services provide Predictive Model Markup Language
(PMML) representations [30] to improve their portabil-
ity, since many machine learning applications like Weka
provide support for PMML. The second version of the
API, OpenTox API version 1.1, was completed and pub-
lished on the OpenTox website in November 2009. Ver-
sion 1.2 is scheduled for completion for September 2010
and is open to community-based input and comments
on the OpenTox API pages containing more detailed
information on the interfaces [23].

2.3 Ontologies and Controlled Vocabulary
The definition of ontology and controlled vocabulary is
extremely important to the construction of the OpenTox
data infrastructure. It contributes to the necessary standar-
dization and rational organization of data, thus facilitating
both vertical (e.g., within one toxicological endpoint) and
horizontal (e.g., through different endpoints) retrievals. The
definition consists of two main steps: first, the selection of
the toxicological endpoints to be included; second, the defi-
nition of the type and extent of information for each end-
point, and their internal relationships and hierarchies.
2.3.1 Schema
Two publicly available schemas for describing toxicology
data are the OECD harmonised templates (OECD-HTs)

Figure 2 Relationships between OpenTox Resources modelled in the OpenTox Ontology.
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[31] and the ToxML (Toxicology XML standard)
schema [7]. It appears that the OECD-HTs have the
advantage of being closer to the schemas established by
the regulators for the industry to submit their data.
However, this schema is quite generic, and does not
lend easily itself to the needs of the OpenTox project in
terms of scientific databases and scientific computing.
On the other hand, the ToxML schema has many fea-
tures necessary for accommodating large amounts of
data at different levels of complexity, and for creating
hierarchies within ontology constructs.
2.3.2 REACH endpoints and OECD Guidelines
The OpenTox data infrastructure prioritises support of
toxicological end points for which data are required
under the REACH regulation. In current toxicological
testing, these endpoints are addressed by both in vitro
and animal experiments carried out according to OECD
guidelines.
The toxicological endpoints considered by REACH are

the following [32]: Skin irritation, Skin corrosion; Eye
irritation; Dermal sensitisation; Mutagenicity; Acute oral
toxicity; Acute inhalative toxicity; Acute dermal toxicity;
Repeated dose toxicity (28 days); Repeated dose toxicity
(90 days); Reproductive toxicity screening; Developmen-
tal toxicity; Two-generation reproductive toxicity study;
Toxicokinetics; and Carcinogenicity study.
The OECD guidelines for testing of chemicals [11] are

published on the Internet. Whereas there is no official
list of OECD endpoints (test guidelines are developed
according to the needs of member countries), and no
official OECD approach to toxicity testing, interesting
background information on criteria for toxicity testing
has been developed as SIDS (Screening Information
Data Set) [12,33,34].
2.3.3 Data sources for the OpenTox data infrastructure
The main source of data for the public OpenTox data
infrastructure is in the public domain, which is spread
in many and varied sources and databases. They can be
categorized into:
- Textual databases (e.g., IARC [35], NTP [36]);
- Machine readable files (e.g., .sdf) that include both

structures and data, and that can be immediately used
by modellers for (Q)SAR analyses in the OpenTox plat-
form (e.g., DSSTox [6], ISSCAN [37], AMBIT [38],
RepDose [39]);
- Large and quite complex databases on the Internet

(e.g., PubChem [3], ACToR [40]).
The above differences in the types of data sources are

entwined with differences in the quality of data (some
databases may contain contradictory results, with no cri-
tical selection), and with changes with time (updates).
Because of the varying data quality level of the various
data sources, higher priority is given to databases subject
to curation and quality evaluation. Databases being

integrated in the first phase of OpenTox development
include ISSCAN, DSSTox, CPDBAS, DBPCAN,
EPAFHM, KIERBL, IRISTR, FDAMDD, ECETOC skin
irritation, LLNA skin sensitisation and the Bioconcentra-
tion factor (BCF) Gold Standard Database [41,38].
Enabling access arrangements to clinical data such as
that from the FDA, data from the US EPA’s ToxCast
[42] program, and commercial sources are also current
OpenTox activities.
2.3.4 OpenTox Controlled Vocabulary and Hierarchy
The OpenTox data infrastructure on toxicological data
is used to support the development of (Q)SAR models
within the OpenTox platform. Thus, its design takes
into account the requirements of (Q)SAR modelling. A
wide spectrum of (Q)SAR approaches, as applied to
toxicity, exists today, ranging from coarse-grained to
fine-tuned ones. Broad classes are [43]:
- structural alerts, which are substructures and reac-

tive groups linked to the induction of chemical toxicity
(e.g., carcinogenicity). They are used for preliminary
hazard characterization, are quite popular with regula-
tors and industry, and most often are based on, and pro-
vide to the users mechanistic information;
- QSARs for noncongeneric sets of chemicals (e.g.,

lazar, PASS [44]), which generate probabilities of being
active/inactive (and to what extent) for compounds with
very different structures;
- QSARs for congeneric sets of chemicals (e.g.,

Hansch approach), which use mechanistically-based
descriptors, and describe how relatively small changes in
structure can provoke variations in activity. Series of
very similar (highly congeneric) chemicals are usually
developed by industry.
Despite their differences, all the various (Q)SAR mod-

elling approaches share the need of a highly structured
information as a starting point. This includes the selec-
tion of ontologies, with controlled vocabulary and
hierarchies.
We believe that such ontology work should be part of

a public global community resource, subject to review
and curation. We have created OpenToxipedia as a col-
laborative resource for the entry and editing of toxicol-
ogy terms, supported by a Semantic Media Wiki [45].
An OpenTox Ontology Working Group is dedicated to
the development and incorporation of ontologies which
are relevant to OpenTox Use Cases; collaborative work
on projects is supported by a Collaborative Protégé Edi-
tor. The approach is also to work with other groups
with existing ontology developments so as to maximise
reuse and interoperability between public ontologies.

The OECD-HT and ToxML schema and data
resource mapping experiments for the OpenTox con-
text are described in Additional File 4.
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Based on our evaluation, we decided to adopt ToxML
as the schema for data management and integration
within OpenTox, and to support conversion and export
to the OECD-HTs for reporting purposes.

2.4 Algorithms
The first tasks related to algorithms in OpenTox were
to document, evaluate and discuss available and possibly
interesting or useful algorithms. To make this selection
more objective, we had to agree on a set of selection cri-
teria for inclusion of algorithms in the initial OpenTox
Framework development. Ongoing scientific efforts in
various complementing fields have led to a high number
of algorithms that are available and potentially useful for
(Q)SAR and related tasks. To meet the specific user
requirements and long term goals of OpenTox, it was
crucial to establish a set of selection criteria.
2.4.1 Algorithm Templates
To make a reasonable comparison of the available (Q)
SAR algorithms possible, they were grouped into three
categories: (i) descriptor calculation algorithms, (ii) clas-
sification and regression algorithms and (iii) feature
selection algorithms (Two additional categories for clus-
tering and consensus modelling are currently being
added.). For each algorithm a short text description and
a uniform (for each of the three categories) table was
generated to facilitate a comparison with respect to the
selection criteria. The text description of the algorithm
gives a brief overview of the algorithm’s background, its
capabilities, dependencies and technical features. The
uniform tables have three logical parts. The first one
enables a black-box point of view of the algorithm and
has the same fields for every algorithm category. It con-
tains a field for the name, the input and output (seman-
tically), the input and output format, user-specific
parameters and reporting information. The second logi-
cal part is variable for the three algorithm categories
and describes some intrinsic properties of the algo-
rithms. It comprises fields for the algorithm’s back-
ground and its performance. The descriptor calculation
algorithms have a special field for the type of descriptor
that is generated. The classification and regression algo-
rithms have additional fields for the applicability domain
and the confidence in the prediction, the bias, the type
of learning (lazy or eager learning) and the interpretabil-
ity of the generated model. The feature selection algo-
rithms have special fields for type of feature selection
(class-blind or class-sensitive), for the distinction of
optimal, greedy or randomized methods and for the dis-
tinction of filter and wrapper approaches. The third part
of the description table is again identical for the differ-
ent algorithm categories. It gives information about the
algorithm’s availability within OpenTox, the license and
dependencies, the convenience of integration, the

priority of integration, the author of the algorithm and
the author of the description. Additionally there are
fields for a contact address (email) and for comments.
Algorithm descriptions according to the template format
are located on the OpenTox website [46].

The fields of the OpenTox description table for the
Algorithm Template are described in Additional File
5.
The initial implemented OpenTox algorithms are
described in Additional File 6.

2.4.2 Algorithm Ontology
A graphical overview of the current OpenTox Algorithm
ontology is shown in Figure 3.
A formal OWL [47] representation of the algorithm

ontology is available on the OpenTox website [48]. The
plan is to extend this ontology in the future to a full
description of every algorithm, including references,
parameters and default values. This will be achieved by
adopting the Blue Obelisk ontology [49] and is currently
work-in-progress. The RDF representation of an Algo-
rithm contains metadata described by the Dublin Core
Specifications [50] for modelling metadata (DC Name-
space) and the OpenTox namespace. The establishment
of an ontological base for the services facilitates the
extension of the services and the introduction of new
algorithms and new algorithm classes.

2.5 Validation
OpenTox provides unified and objective validation rou-
tines for model and algorithm developers and for exter-
nal (Q)SAR programs. It implements state-of-the art
procedures for validation with artificial test sets (e.g. n-
fold cross-validation, leave-one-out, simple training/test
set splits) and external test sets. These validation techni-
ques are available for all (Q)SAR models (OpenTox and
external programs) that are plugged into the Frame-
work. This will help to compare algorithms and (Q)SAR
models objectively and to speed up the development
cycle.
2.5.1 OECD Guidelines for (Q)SAR Validation
The OECD Guidelines for (Q)SAR Validation [10]
addressed are as follows:
PRINCIPLE 1: “DEFINED ENDPOINT” OpenTox
addresses this principle by providing a unified source of
well-defined and documented toxicity data. (Q)SAR
model quality crucially depends on the clarity of end-
points and experimental protocols used and the ability
to communicate this information in an unambiguous
way, both in model development and model application.
The current practice usually includes a textual descrip-
tion of the materials and methods used for acquiring
experimental data as well as literature references, while
the model description is a separate entity. The challenge
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to the distributed web services framework, was to pro-
vide an automatic and unique way of describing and
linking the endpoint information in a formal way, able
to be processed automatically by the software, with
minimal human interaction. This is currently solved by
making use of a simple ontology of endpoints. We have
defined an ontology based on the OWL (Web Ontology
Language) [47] for toxicological endpoints which is in
line with current ECHA REACH guidance [51]. Using
this ontology, each attribute in a toxicological dataset
can be associated with an entry to the ontology, there-
fore allowing a unique mapping between endpoints in
various and heterogeneous datasets. This ontology pos-
sesses 5 subclasses: ecotoxic effects, environmental fate
parameters, human health effects, physico-chemical
effects, and toxicokinetics. Each of these subclasses has
one or two further layers of subclasses.
PRINCIPLE 2: “AN UNAMBIGUOUS ALGORITHM”
OpenTox provides unified access to documented models
and algorithms as well as to the source code of their
implementation. Currently OpenTox is deploying Algo-
rithm Template descriptions and an algorithm type
ontology which allows a clear definition of what type of
algorithm(s) is used to construct a model.
PRINCIPLE 3: “DEFINED APPLICABILITY
DOMAIN” OpenTox integrates tools for the determina-
tion of applicability domains (ADs) and the considera-
tion of ADs during the validation of (Q)SAR models.
Evaluation of ADs are supported by an OpenTox algo-
rithm API supporting situations where the AD is calcu-
lated both for situations where it is included as part of
the model building application and those where it is

carried out separately [52]. A specific AD algorithm is
applied to a dataset, and the result is then an AD
model. This model can then be applied to reason about
the applicability of a model when applied to a new com-
pound query.
PRINCIPLE 4: “APPROPRIATE MEASURES OF
GOODNESS-OF-FIT, ROBUSTENESS AND PREDIC-
TIVITY” OpenTox provides scientifically sound valida-
tion routines for the determination of these measures.
Within the validation part of the prototype framework,
we have concentrated so far on including validation and
cross-validation objects. These include a set of measures
for evaluating the quality of models generated by algo-
rithms on the datasets as summarised in Table 2.
PRINCIPLE 5: “A MECHANISTIC INTERPRETA-
TION, IF POSSIBLE” As mechanistic interpretation
often relies on human knowledge, this usually cannot
be done automatically. However, in the current API it
is foreseen to generate skeletons for reporting using
the validation results created by extensive testing dur-
ing model construction, allowing subsequent user-
entered explanations about mechanisms. Other poten-
tial future extensions of OpenTox services could
include resources providing insight on mechanisms, e.
g. from pathways and systems biology models, selection
and inclusion of in vitro assays relevant to the mechan-
ism in the model, or from data mining of human
adverse events data. QMRF reporting is being facili-
tated by the current integration of the existing QMRF
editor [53] into OpenTox, this allowing end-users to
annotate models with the information required by the
QMRF format.

Figure 3 OpenTox Algorithm Type Ontology.
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2.5.2 OpenTox Approach to Validation
To guarantee a fair comparison to other algorithms, the
following principles are followed:
• Separation of validation as an independent service to

algorithm and model building services;
• Ability to reproduce the computational experiment

(even in non-deterministic models e.g., by storing initial
random values/random seeds);
• Retrieval of the exact same training and test data

that was used, so that all algorithms have to work with
the same data (store random seed for cross-validation);
• Use of an external validation comparison and test set

that performs the same operations for all algorithms
(and prevents unintended cheating).
Validation testing results are stored for subsequent

retrieval because this allows obtaining information about
the performance of various algorithms/models (on parti-
cular datasets) without repeating (time-consuming)
experiments. This is especially useful when developing
new algorithms or new versions of algorithms to allow a
quick comparison to other methods.

Three example Validation Use Cases are described in
Additional File 7.

2.5.3 Validation Interfaces and Services
A Validation API is included in the OpenTox APIs
ensuring the seamless interaction between all OpenTox
components with regards to validation needs. Each vali-
dation resource for example, contains information about
the dataset and the model, so the underlying procedures
can be invoked.

The REST service implementation for validation is
described in Additional File 8.

Further detailed information about the validation API
including the approach for cross-validation can be
found at http://www.opentox.org/dev/apis/api-1.1/
Validation.
2.5.4 Validation Application Example: Building and
Validating a Model
The application example of building and validating a
model is executed using the Validation web service pro-
totype [54] (developed at the Albert Ludwigs Freiburg
University (ALU-FR)) along with the lazar and fminer
algorithms [13,14] (provided by In Silico Toxicology
(IST)). The application is compliant with the OpenTox
API, and based on interoperability between two Open-
Tox web services, located at two different locations:
ALU-FR’s services [55] and the web services of IST [56].
The goal of this Use Case is to evaluate a prediction

algorithm: the algorithm trains a model on a training data-
set, and then predicts the compounds of a test dataset
towards a certain toxicology endpoint. The validation
result reflects how well the model performed. The work-
flow for the training test set validation is illustrated in Fig-
ure 4. Web services are displayed as rectangles; the three
key POST REST operations are symbolized as dashed
lines, while solid lines visualize data flow operations.

A description of the step by step execution of the
Model Validation Use Case by the OpenTox web ser-
vices is provided in Additional File 9.

Table 2 Measures for evaluating the Quality of OpenTox Models

Measures for Classification Tasks

Name Explanation

Confusion Matrix A confusion matrix is a matrix, where each row of the matrix represents the instances in a predicted
class, while each column represents the instances in an actual class. One benefit of a confusion matrix
is that it is easy to see if the system is confusing two or more classes.

Absolute number and percentage of
unpredicted compounds

Some compounds might fall outside the applicability domain of the algorithm or model. These
numbers provide an overview on the applicability domain fit for the compound set requiring
prediction.

Precision, recall, and F2-measure These three measures give an overview on how pure and how sensitive the model is. The F2-measure
combines the other two measures.

ROC curve plot and AUC A receiver operating characteristic (ROC) curve is a graphical plot of the true-positive rate against the
false-positive rate as its discrimination threshold is varied. This gives a good understanding of how well
a model is performing. As a summarisation performance scalar metric, the area under curve (AUC) is
calculated from the ROC curve. A perfect model would have area 1.0, while a random one would have
area 0.5.

Measures for Regression Tasks

Name Explanation

MSE and RMSE The mean square error (MSE) and root mean squared error (RMSE) of a regression model are popular
ways to quantify the difference between the predictor and the true value.

R2 The explained variance (R²) provides a measure of how well future outcomes are likely to be predicted
by the model. It compares the explained variance (variance of the model’s predictions) with the total
variance (of the data).
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2.6 Reporting
The OpenTox report generating component generates
reports to present the results (of predictions/model vali-
dation) to the user in a structured reporting format.
Reporting formats are guided by standards and tem-

plates such as QMRF and REACH CSR and OECD vali-
dation principles [10], which specify that to facilitate the
consideration of a (Q)SAR model for regulatory pur-
poses, it needs to be associated with the OECD Guide-
lines for (Q)SAR Validation.

A description of information to be included in Open-
Tox reports is provided in Additional File 10.

The different type of OpenTox reports are summar-
ized in Table 3.

Reporting types supported by OpenTox and the corre-
sponding API are described in Additional File 11.

2.7 OpenTox Data Infrastructure
A major pre-requisite for the successful implementation
of the main principles of the Three Rs Declaration of
Bologna [57] is the universal access to high quality
experimental data on various chemical properties. In
particular, the range of replacement alternatives

methods includes the following OpenTox-relevant
approaches:

• The improved storage, exchange and use of infor-
mation from animal experiments already carried out,
so that unnecessary repetition can be avoided;
• The use of physical and chemical techniques, and
of predictions based on the physical and chemical
properties of molecules;
• The use of mathematical and computer modelling,
including modelling of structure-activity relation-
ships, molecular modelling and the use of computer
graphics, and modelling of biochemical, pharmacolo-
gical, physiological, toxicological and behavioural
processes.

Since it is likely that, in many circumstances, an ani-
mal test cannot be currently replaced by a single repla-
cement alternative method, the development, evaluation
and optimisation of stepwise testing strategies and inte-
grated testing schemes should be encouraged. The
OpenTox data facilities, made publically accessible
through a web services framework, provide a solid basis
for addressing the above mentioned replacement alter-
native goals in a more efficient, technically sound and
integrated way compared to current uncoordinated
practices and fragmented resources. Unfortunately, even

Figure 4 Workflow diagram illustrating the training test set validation of a prediction algorithm.
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today, more than half a century after Russell and
Burchs’s original publication [58] and more than 10
years after the adoption of the Three Rs Declaration of
Bologna, the “state-of-the-art” is characterised by highly
fragmented and unconnected life sciences data (both
from a physical and ontological perspective), which is
furthermore frequently inaccurate and/or difficult or
even impossible to find or access. The OpenTox
approach to data resource management and integration
has the following major features, which address the
replacement alternatives challenge and associated user,
industry and regulatory needs including REACH:

• Universal database structure design, allowing for
storage of multi-faceted life sciences data;
• An ontology allowing for efficient mapping of simi-
lar and/or complementary data coming from differ-
ent datasets into a unifying structure having a
shared terminology and meaning;
• Integration of multiple datasets with proven high-
quality physico-chemical and/or experimental toxi-
city data;
• Built-in heuristics for automatic discovery of 2D
chemical structure inconsistencies;
• Extensive support for structure-, substructure- and
similarity-based searching of chemical structures;
• An OpenTox standards-compliant dataset interface
that allows query submission and results retrieval
from any OpenTox standards-compliant web service;
• Transparent access to and use of life sciences data,
hosted at various physical locations and incorporat-
ing a variety of distributed software resources,
through the OpenTox Framework.

The OpenTox initial data infrastructure includes
ECHA’s list of pre-registered substances [59] along with
high-quality data from consortium members (e.g. ISS

ISSCAN [37], IDEA AMBIT [38]), JRC PRS [60], EPA
DSSTox [6], ECETOC skin irritation [61], LLNA skin
sensitization [62], and the Bioconcentration Factor (BCF)
Gold Standard Database [41]). Additional data for chemi-
cal structures has been collected from various public
sources (e.g. Chemical Identifier Resolver [63], ChemID-
plus [64], PubChem [3]) and further checked manually
by experts. The database provides means to identify the
origin of the data, i.e., the specific inventory a compound
originated from. The data is currently publicly available
and accessible via an initial implementation of the Open-
Tox REST data services [65], as defined in the OpenTox
Framework design and its implementations.

The Additional File 12 on OpenTox Data Infrastruc-
ture describes in more detail the current OpenTox
data facilities and resources.

2.8 OpenTox Applications
We describe here the implementation of two Use Cases
as applications based on the OpenTox Framework. The
first case, ToxPredict, is aimed at the user having no or
little experience in QSAR predictions. This Use Case
should offer an easy-to-use user interface, allowing the
user to enter a chemical structure and to obtain in
return a toxicity prediction for one or more endpoints.
The second case, ToxCreate, is aimed at the experienced
user, allowing them to construct and to validate models
using a number of datasets and algorithms.
Both Use Cases also demonstrate inter-connectivity

between multiple OpenTox services. Within ToxPredict,
web services from three different service providers
(TUM, IDEA, and NTUA) are operating together. In
ToxCreate the model construction is performed using
IST web services, while the validation and reporting is
executed using ALU-FR services.

Table 3 Summary of Different Types of OpenTox Reports

Standard reports

Report type Specific information included in the report

Prediction of a single (unseen) component Activity, applicability domain, confidence

Prediction of multiple (unseen)
components

Ranking according to activity/confidence

Validation of a model Different performance criteria (on various datasets), based on cross-validation/external test set
validation

Making predictions on a particular dataset Prediction results of various algorithms

Comparison of different models/algorithms Ranking according to different performance criteria

Extended reports

Report type Specific information included in the report

Evaluation of a feature generation
algorithm

Performance of various algorithms using the generated features compared to other features

Evaluation of a feature selection algorithm Performance of various algorithms using the selected features compared to no feature selection
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2.8.1 ToxPredict Application
As the ToxPredict Use Case should offer easy access to
estimate the toxicological hazard of a chemical structure
for non-QSAR specialists, one main aim was to design a
simple yet easy-to-use user interface. For this, one of
the goals was also to reduce the number of possible
parameters the user has to enter when querying the ser-
vice. The Use Case can be divided into the following
five steps:

1. Enter/select a chemical compound
2. Display selected/found structures
3. Select models
4. Perform the estimation
5. Display the results

The ToxPredict graphical user interface is shown in
Figure 5; the interaction and sequence of OpenTox ser-
vices interoperating during the different steps of the
ToxPredict application execution are detailed in Figures
6, 7, 8, 9, 10, 11 and 12.

A detailed step-by-step graphical interface description
of the ToxPredict workflow steps are provided in
Additional File 13.

The following sequence of descriptions explains the
workflow and operations of the example ToxPredict user
session.

ToxPredict Step 1 - Enter/select a chemical com-
pound The first step in the ToxPredict workflow pro-
vides the means to specify the chemical structure(s) for
further estimation of toxicological properties. Free text
searching allows the user to find chemical compounds
by chemical names and identifiers, SMILES [66] and
InChI strings, and any keywords available in the Open-
Tox data infrastructure. The data infrastructure contains
information from multiple sources, including the ECHA
pre-registration list.
ToxPredict Step 2 - Display selected/found structures
The second step displays the chemical compounds,
selected by the previous step. The user interface sup-
ports the selection/de-selection of structures, and editing
of the structures and associated relevant information.
The OpenTox REST Dataset services are used in this
step of the application in order to retrieve the requested
information.
ToxPredict Step 3 - Select models In the third step, a
list of available models is displayed. Links to training
datasets, algorithms and descriptor calculation REST
services are provided. The models provide information
about the independent variables used, the target vari-
ables (experimental toxicity data) and predicted values.
All these variables are accessible via the OpenTox Fea-
ture web service, where each feature can be associated
with a specific entry from the existing endpoint ontol-
ogy. The association is usually done during the upload
of the training data into the database. The endpoint,

Figure 5 Display of results from Step 5 of ToxPredict Application.

Hardy et al. Journal of Cheminformatics 2010, 2:7
http://www.jcheminf.com/content/2/1/7

Page 15 of 29



associated with the model variables is automatically
retrieved and displayed in the first column of the list.
This provides an automatic and consistent way of com-
plying with the first OECD validation principle of using
a “Defined endpoint”.
This step involves an interplay between multiple

OpenTox web services. Algorithm, Model, and Feature
services are registered into the Ontology service, which
provides RDF triple storage with SPARQL, allowing
various queries. The ToxPredict application queries the
Ontology service for all available models, along with
the associated information about algorithms used in
the model, descriptors, and endpoints. The list of mod-
els may include models, provided by different partners
and running on several remote sites (TUM and IDEA
models are shown in this example). The Ontology ser-
vice serves like a hub for gathering a list of available
models and algorithms from remote sites. There could
be multiple instances of the ToxPredict application,
configured to use different Ontology services, and
therefore, allowing for a different subset of models to
be exposed to end users.

ToxPredict Step 4 - Perform the estimation Models,
selected in Step 3 are launched in Step 4, where the
user can monitor the status of the processing. The pro-
cessing status is retrieved via OpenTox Task services.
Different Model, Algorithm, Dataset, and Ontology ser-
vices, running on different remote locations can be
involved at this stage. If a model relies on a set of
descriptors, an automatic calculation procedure is per-
formed, which involves launching a descriptor calcula-
tion by remote Algorithm services. The procedure is as
follows:
The Ontology service is queried to retrieve informa-

tion about the independent variables, used in the model.
If no such variables are involved (e.g., in case of Tox-
Tree models, which rely on chemical structure only),
the workflow proceeds towards model estimation. In
case of a model, based on descriptors (e.g., a regression
model), the procedure is slightly more complex, as
explained below.
Each independent variable is represented as a Feature

and managed via the Feature service. Each feature has
associated a web address (OWL property opentox:

Figure 6 ToxPredict Step 1 - Enter Compound, Interaction of OpenTox Services.

Figure 7 ToxPredict Step 2 - Structure Selection, Interaction of OpenTox Services.
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hasSource from OpenTox OWL ontology), which speci-
fies its origin. The tag could point to an OpenTox Algo-
rithm or Model service, in case it holds a calculated
value, or point to a Dataset service, in case it contains
information, uploaded as a dataset (for example experi-
mental endpoint data). If the feature origin is a descrip-
tor calculation algorithm, the web address points to the
Algorithm service, used to calculate descriptor values,
and the same web address can be used again via the
OpenTox Algorithm API in order to calculate descrip-
tors for user-specified structures. The Algorithm ser-
vices perform the calculation and store results into a
Dataset service, possibly at a remote location. Then
finally, a dataset with all calculated descriptor values is
submitted to the Model service. Upon estimation,
Model results are submitted to a Dataset service, which
could be at a remote location, which could be the same
or different to that for the model services.
The interplay of multiple services, running on remote

sites, provide a flexible means for the integration of
models and descriptors, developed by different organisa-
tions and running in different environments. Identifica-
tion of algorithms and models via web URIs ensure the

compliance with the OECD validation principle 2 of
“An unambiguous algorithm”, as well as repeatability of
the results of the model building. Extensive meta infor-
mation about the algorithm and models themselves is
accessible via web URIs and the OpenTox API.
ToxPredict Step 5 - Display the results The final step
displays estimation results (see Figure 5), as well as
compound identification and other related data. Initial
demonstration reports in several formats can be
accessed via icons on the right hand side of the browser
display.
ToxPredict is a demonstration web application, pro-

viding a user-friendly interface for estimating toxicologi-
cal hazards. It provides a front end to multiple
OpenTox services, currently integrating IDEA ontology,
dataset, feature and model services with TUM descriptor
calculation and model services and NTUA algorithm
services. Future work will include integration of other
third party model services, as well as Validation and
Reporting services. While current functionality may
appear to an end-user not much different from a stand-
alone prediction application like ToxTree, the back-end
technology provides a very flexible means for integrating

Figure 8 ToxPredict Step 3 - Model Selection, Interaction of OpenTox Services: User-System Interaction.

Figure 9 ToxPredict Step 3 - Behind the scenes: previously, algorithm, model and feature services had registered a list of algorithms,
models and features into the Ontology service, by POSTing the URIs of these objects.
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datasets, models and algorithms, developed by different
software technologies and organisations and running at
remote locations.
2.8.2 ToxCreate application
The ToxCreate Use Case, in contrast to ToxPredict, is
aimed at researchers working in the life sciences and
toxicology, QSAR experts, and industry and government
groups supporting risk assessment, who are interested in
building predictive toxicology models. It allows the crea-
tion of a number of models using one or more algo-
rithms. Therefore it is not as easy to use as the
ToxPredict application, as not only the algorithm has to
be selected, but also the right parameter setting needs
to be explored; these parameters are algorithm-depen-
dent. For this decision-making, the expert has to have
sound knowledge of the algorithm they are using.
The following sequence of steps explains the execu-

tion of a sample session of the ToxCreate application:

A graphical interface description of the ToxCreate
workflow steps are provided in Additional File 14.

ToxCreate Step 1 - Upload Dataset The first step of
the ToxCreate workflow enables the user to specify a
model training dataset in CSV format, consisting of che-
mical structures (SMILES) with binary class labels (e.g.
active/inactive). The file is uploaded to the server and
labelled with a user-defined name. In contrast to Tox-
Predict, users can specify their own training data/end-
point. This is done in batch mode, i.e. without
interactive screens to select chemicals based on different
criteria, which is convenient for expert users. By hitting
“Create model”, a QSAR model is derived. The current
prototype demonstrates lazar models only. No model
parameters can be set at this time, but future versions
will enable arbitrary OpenTox API-compliant models.
ToxCreate Step 2- Create and Display Model This
next step in ToxCreate displays information about the

Figure 10 ToxPredict Step 4 - Model Estimation, Interaction of OpenTox Services: User-System Interaction.
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model learned from the data submitted in the previous
step. It features status information, date and number of
compounds present in the dataset. A link leads to the
complete specification of the model in OWL-DL.
Through integration with the OpenTox Validation ser-
vice, it is possible to validate the model and select the
most appropriate models for further evaluation. At this

point, the model is permanently stored on the server
and can be used for predictions at any time in the
future.
ToxCreate Step 3 - Select and Use Model(s) for Pre-
diction In this step, a chemical (specified via SMILES
code) can be entered in order to predict its chemical
behaviour by arbitrary models existing on the server

Figure 11 ToxPredict Step 4 - Model Estimation, Interaction of OpenTox Services: Behind the scenes.
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(note that in this way, arbitrary combinations of model
algorithms and datasets/endpoints are available to test
the structure).
ToxCreate Step 4 - Display Prediction Results Step 4
displays the predictions made by the selected models
from the previous step along with an image of the pre-
dicted structure. Based on the selections made in the
previous step, the expert user may predict the same
structure by a variety of algorithms for the same data-
set/endpoint and compare the predictions. Together
with model validation, users are able to use ToxCreate
to select appropriate models with adjusted parameters
beforehand. By predicting a variety of related endpoints,
instead of just one, combined with arbitrary models at
the same time, ToxCreate enables free predictive toxi-
cology modelling exploration along different dimensions.

3. Discussion
The OpenTox Framework supports the development of
in silico predictive toxicology applications based on
OpenTox components for data management, algorithms
and validation. Initial applications are being provided
openly to users and developers through the OpenTox
website and linked services including partner resources.
Such applications support users in the development and
training of QSAR models against their own toxicological
datasets, e.g., they may upload a dataset for a given end-
point to an OpenTox service, define a variety of para-
meters and build and download a model. Subsequent
releases in 2010 and 2011 will extend the Framework to
the support of a broader range of computational chem-
istry and biology modelling approaches, and integration
of data from new in vitro assays, and refine the API
designs based on development experiences on the effec-
tiveness of applications in supporting integrated testing
strategies as required by REACH.

OpenTox provides a platform technology with:

1. a unified interface to access toxicity data and in
silico models;
2. a framework for the development and validation
of new (Q)SAR models;
3. a framework for the development, validation and
implementation of new in silico algorithms; and
4. well defined standards for the exchange of data,
knowledge, models and algorithms.

OpenTox currently provides high-quality data and
robust (Q)SAR models to explore the chronic, reproduc-
tive, carcinogenic and genotoxic toxicity of chemicals. The
integration of further toxicological endpoints should be
straightforward with OpenTox tools and standards.
OpenTox is tailored especially to meet the require-

ments of the REACH legislation and to contribute to
the reduction of animal experiments for toxicity testing.
It adheres and supports the OECD Guidelines for (Q)
SAR Validation and incorporates the QSAR Model
Reporting Format (QMRF) from the EC Joint Research
Council (EC JRC). Relevant international authorities (e.
g., EC JRC, ECVAM, EPA, FDA) and industry organisa-
tions participate actively in the advisory board of the
OpenTox project and provide input for the continuing
development of requirement definitions and standards
for data, knowledge and model exchange.
OpenTox will actively support the further develop-

ment and validation of in silico models and algorithms
by improving the interoperability between individual
systems (common standards for data and model
exchange), increasing the reproducibility of in silico
models (by providing a common source of structures,
toxicity data and algorithms) and by providing scientifi-
cally-sound and easy-to-use validation routines. For this

Figure 12 ToxPredict Step 5 - Display Results, Interaction of OpenTox Services.
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reason it is likely that the predictive toxicology applica-
tion development cycle will speed up which will lead to
improved and more reliable results. As OpenTox offers
all of these features openly to developers and research-
ers, we expect an international impact that goes beyond
a single research project. For organisations, that cannot
afford a dedicated computational toxicology department,
the OpenTox community provides an alternative afford-
able source of solutions and expertise.
Biotech and pharmaceutical industry SMEs will benefit

from the OpenTox project, because it will provide access to
toxicological information and in silico models from a single,
easy-to-use interface that is publicly available. OpenTox
should reduce the costs for product candidate development
by providing new resources for toxicity screening at a very
early stage of product development, thus eliminating toxic
liabilities early and reducing the number of expensive (and
sometimes animal consuming) efficacy and toxicity experi-
ments. With the OpenTox Framework it will also be possi-
ble to identify substructures that are responsible for toxicity
(or detoxification), and information that can be used for the
design of safer and more efficient products.
The ECB estimated that 3.9 million additional animals

could potentially be used for the initial implementation of
the REACH program (A more recent evaluation based on
REACH chemical pre-registrations at ECHA indicate an
even larger testing requirement [67]). Chronic effects such
as reproductive and developmental toxicity, in vivo muta-
genicity and carcinogenicity will require ~72% of the test
animals (~2.8 million animals). In the same study a 1/3 -
1/2 reduction potential was estimated for (Q)SAR techni-
ques available at that time (2003). As OpenTox focuses
initially on the development of improved (Q)SAR techni-
ques for reproductive, developmental and repeated dose
toxicity, and for in vivo mutagenicity and carcinogenicity
endpoints, it could contribute substantially to an estimated
reduction potential of 1.4 million animals alone for
REACH. A more detailed analysis of replacement possibili-
ties under consideration of applicability domains is being
currently pursued.
The OpenTox Framework works independently of the

toxicity endpoint. As it will be easy to plug in databases
for other endpoints, it is likely that significant savings will
occur also for other endpoints (e.g. ecotoxicity endpoints
from the FP7 Environment Theme ENV.2007.3.3.1.1). An
exciting opportunity in this respect is the inclusion of
human data from epidemiological and clinical studies and
the utilization of data from adverse effect reporting sys-
tems, because in this case no data from animal experi-
ments will be needed.

4. Conclusions
This work provides a perspective on the growing signifi-
cance of collaborative approaches in predictive

toxicology to create the OpenTox Framework as a pub-
lic standards-based interoperable platform. Key chal-
lenges to be overcome are both technical and cultural
and involve progressing issues related to cross-organisa-
tional, enterprise and application interoperability, knowl-
edge management and developing a culture and
framework supporting a community-based platform and
collaborative projects emerging from the community
foundation [68-70]. The OpenTox Framework offers a
standardized interface to state-of-the art predictive toxi-
cology algorithms, models, datasets, validation and
reporting facilities on the basis of RESTful web services
and guided by the OECD Principles, REACH legislation
and user requirements.
Initial OpenTox research has provided tools for the

integration of data, for the generation and validation of
(Q)SAR models for toxic effects, libraries for the devel-
opment and integration of (Q)SAR algorithms, and
scientifically-sound validation routines. OpenTox sup-
ports the development of applications for non-computa-
tional specialists in addition to interfaces for risk
assessors, toxicological experts and model and algorithm
developers.
The OpenTox prototype established a distributed

state-of-the-art data warehousing for predictive toxicol-
ogy. It enables improved storage, exchange, aggregation,
quality labelling, curation and integrated use of high
quality life sciences information, and allows for consis-
tent and scientifically sound mathematical and computer
modelling, including modelling of structure-activity rela-
tionships for REACH-relevant endpoints.
A key decision towards algorithm implementation was

the adoption of the REST architectural style, because it
is suitable for achieving three important goals: indepen-
dent deployment of components, ease of standardised
communication between components and generality of
interfaces. These advantages will enable the develop-
ment and integration of additional algorithms in the
future, which may be offered by a variety of third-party
developers in the community. Ongoing maintenance
and addition of novel predictive algorithms relevant to
predictive toxicology will contribute to the long-term
sustainability of OpenTox in generating valuable
resources for the user scientific community.
Many descriptor calculation algorithms and QSAR

modelling methods have already been implemented and
incorporated within OpenTox. These include methods
provided by OpenTox partners and algorithms con-
tained in other state-of-the-art projects such as WEKA
and CDK. Descriptor calculation algorithms are able to
generate both physico-chemical and sub-structural
descriptors. QSAR modelling methods cover a wide
range of approaches and address many user model
building requirements, since they include regression and
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classification algorithms, eager and lazy approaches, and
algorithms producing more easily interpretable and
understandable models. The initial prototype also
includes implementations of clustering algorithms and
feature selection tools. Within OpenTox we have also
implemented basic validation routines, simple validation
(with supplied test set or training/test split), cross-vali-
dation routines (including leave-one-out), as well as
making initial reporting routines available.
The OpenTox Framework supports rapid application

development and extensibility by using well-defined ontolo-
gies, allowing simplified communication between individual
components. Two user-centered prototype applications,
ToxCreate and ToxPredict, show the potential impact of
the framework regarding high-quality and consistent struc-
ture-activity relationship modelling of REACH relevant
endpoints. The applications have been made available publi-
cally on the Web [71] providing immediate access to the
applications as they have been developed. Considerable
additional materials and references [72-128] have been pro-
vided with this paper to support as complete a description
of OpenTox as possible for users and developers.
ToxPredict satisfies a common and important situa-

tion for a user wishing to evaluate the toxicity of a
chemical structure. The user does not have to cope
with many current challenges such as the difficulty of
finding or using existing data or the complications of
creating and using complicated computer models.
Because of the extensible nature of the standardised
design of the OpenTox Framework, many new datasets
and models from other researchers may be easily
incorporated in the future, both strengthening the
value offered to the user and ensuring that research
results are not left languishing unused in some isolated
resource not accessible to the user. The approach
offers the potential to be extended to the complete
and easy-to-use generation of reporting information on
all REACH-relevant endpoints based on existing avail-
able scientific research results, and indications when
additional experimental work is required, thus satisfy-
ing currently unmet industry and regulatory needs.
ToxCreate provides a resource to modellers to build

soundly-based predictive toxicology models, basely solely
on a user-provided input toxicology dataset that can be
uploaded through a web browser. The models can be
built and validated in an automated and scientifically
sound manner, so as to ensure that the predictive cap-
abilities and limitations of the models can be examined
and understood clearly. Models can subsequently be
easily made available to other researchers and combined
seamlessly into other applications through the OpenTox
Framework.
Continuing effort will be carried out by OpenTox

developers to meet current academic and industry

challenges regarding interoperability of software compo-
nents and integration of algorithm and model services
within the context of tested Use Cases. The approach to
interoperability and standards lays a solid foundation to
extend application development within the broader
developer community to establish computing capabilities
that are sorely missing in the field of predictive toxicol-
ogy today, and which are holding back advances in both
R&D and the application of R&D project outcomes to
meet industry and regulatory needs.

6. List of Abbreviations
AD: Applicability Domain; ALU-FR: Albert Ludwigs
University Freiburg; API: Application Programming
Interface; BCF: Bioconcentration Factor; CDK: Chemis-
try Development Kit; CPDB: Carcinogenic Potency
Database; EC: European Commission; ECB: European
Chemicals Bureau; ECETOC: European Centre for Eco-
toxicology and Toxicology of Chemicals; ECha: Eur-
opean Chemicals Agency; ECVAM: European Centre for
the Validation of Alternative Methods; EPA: Environ-
mental Protection Agency; ER: Endocrine Receptor; EU:
European Union; FDA: Food and Drug Administration;
FHG ITEM: Fraunhofer Institute for Toxicology &
Experimental Medicine; FP7: Seventh Framework; GUI:
Graphical User Interface; IDEA: Ideaconsult Ltd;
IUCLID5: International Uniform Chemical Information
Database 5; INCHI: IUPAC International Chemical
Identifier; ISS: Istituto Superiore di Sanità; ISSCAN: ISS
Carcinogenicity Database; JRC: Joint Research Council;
JRC: PRS JRC Pre-registered Substances; LLNA: Local
Lymph Node Assay; MOA: Mechanism of Action; NTP:
National Toxicology Program; NTUA: National Techni-
cal University of Athens; OECD: Organisation for Eco-
nomic Co-operation and Development; OECD-HT:
OECD Harmonized Templates; OWL: Web Ontology
Language; PLS: Partial Least Squares; QMRF: (Q)SAR
Model Reporting Format; QPRF: (Q)SAR Prediction
Reporting Format; (Q)SAR: (Quantitative) Structure-
Activity Relationship; RDF: Resource Description Frame-
work; REACH: Registration, Evaluation, Authorisation
and Restriction of Chemicals; REPDOSE: Repeated Dose
Toxicity Database; REST: REpresentational State Trans-
fer; SMILES: Simplified Molecular Input Line Entry Spe-
cification; SVM: Support Vector Machine; URI:
Universal Resource Index; XSD: XML Schema Defini-
tion; XML: Extensible Markup Language; TOXML: Tox-
icology Markup Language.

7. Competing interests
The authors declare that they have received research
funding for this work from the European Commission
under its Seventh Framework Program. Otherwise the
authors declare that they have no competing interests.

Hardy et al. Journal of Cheminformatics 2010, 2:7
http://www.jcheminf.com/content/2/1/7

Page 22 of 29



8. Authors’ contributions
BH fulfilled the principal investigator role coordinating the
activities of requirements analysis, research and develop-
ment, and drafted the manuscript. ND provided created
design components for OpenTox templates and interfaces.
CH led the OpenTox Framework and API design activities
and the development of the OpenTox ToxCreate applica-
tion. MR carried out technical implementation of Open-
Tox web resources. NJ played a leadership role in
OpenTox Framework and API design activities, imple-
mentation of the OpenTox data services and the develop-
ment of the OpenTox ToxPredict application. VJ
performed chemical data collection, analysis and curation,
led OpenTox testing activities and helped to draft the
manuscript. IN helped in the design of RDF representa-
tions of OpenTox API objects and provided guidance for
ontology development related issues. RB participated in
high quality toxicity database preparation and in the dis-
cussion of the results. OT participated in the development
of ontology for toxicological endpoints. OT and RB parti-
cipated in validation of available schemas for describing
toxicology data. OT mapped a number of databases to the
ToxML and OECD-HT schemas. SK played a leadership
role in OpenTox Framework and API design activities and
led the work activities on OpenTox algorithms. TG, FB
and JW worked on the OpenTox API and algorithm
implementation. AK worked on the OpenTox API and
validation and reporting service design. MG worked on
the OpenTox API and validation and reporting service
implementation. AM worked on the OpenTox API and
fminer descriptor calculation service implementation. HS
worked on the OpenTox API and the algorithms proto-
type implementation. GM worked on use case develop-
ment and documentation. AA worked on the application
of QSAR algorithms to publicly available datasets. PS
worked on the OpenTox API, the algorithms prototype
implementation and use case development. PS worked on
the OpenTox API and the algorithms prototype imple-
mentation. DG led the activities on graphical user inter-
face design and specifications. VP participated in the
development of controlled vocabulary and in the discus-
sion of the results. DF worked on the OpenTox API and
the algorithms prototype implementation for MakeMNA,
MakeQNA, and MakeSCR. AZ worked on the MakeMNA
and MakeQNA descriptor calculation service implementa-
tion. AL participated in the development of ontology for
toxicological endpoints and OpenToxipedia. TG partici-
pated in the development of OpenToxipedia. SN partici-
pated in the development of the controlled vocabulary and
in high quality toxicity database preparation. NS partici-
pated in the development of the controlled vocabulary.
DD worked on the OpenTox API, and MakeMNA and
MakeQNA descriptor calculation service implementation.

SC provided customer inputs for use case development
from pharma and R&D Labs. IG provided the initial con-
cept for the MaxTox algorithm and prediction logic. SR
developed the application and its API compliance for the
model generation of MaxTox. HP developed the MaxTox
Random Forest models in R. SE developed ontologies and
use cases for repeated dose toxicity. All authors read and
approved the final manuscript.

9. Authors’ information
Barry Hardy (BH) manages the eCheminfo and Innova-
tionWell community of practice and research activities
of Douglas Connect, Switzerland. He obtained his Ph.D.
in 1990 from Syracuse University working in the area of
computational chemistry, biophysics and computer-
aided molecular modelling and drug design. Over the
past 20 years BH has led numerous international pro-
jects in the area of the chemical, life and medical
sciences. He has developed technology solutions for
internet-based conferencing, tutor-supported e-learning,
laboratory automation systems and computational
chemistry and informatics. BH was a National Research
Fellow at the FDA Center for Biologics and Evaluation,
a Hitchings-Elion Fellow at Oxford University and CEO
of Virtual Environments International. He is currently
coordinating the OpenTox FP7 project.
The owner of in silico toxicology Christoph Helma (CH)

has received his Ph.D. in chemistry and a Masters in toxi-
cology. His main research interest is the application of
data mining techniques to solve real-world toxicological
problems. He has more than 10 years experience in pre-
dictive toxicology research and has published more than
40 peer reviewed research papers. He was editor for the
“Predictive Toxicology” textbook and editor for special
sections in “Bioinformatics” and “Combinatorial Chemistry
and High Throughput Screening”, invited speaker for
major (Q)SAR conferences and main organizer of the
“Predictive Toxicology Challenge”. CH has developed and
implemented the lazar program, that was awarded with
the Research Prize for Alternative Methods to Animal
Experiments (German Federal Ministry on Consumer Pro-
tection, Food and Agriculture, 2005) and the Research
Prize for Cancer Research without Animal Experiments
(Doctors Against Animal Experiments, 2006). He is cur-
rently developing an Inductive Database for the FP6 Sens-
it-iv project.
Nina Jeliazkova (NJ): M.Sc. in Computer Science,

Institute for Fine Mechanics and Options, St. Peters-
burg, Russia - 1991, Ph.D. in Computer Science, Sofia,
Bulgaria (Thesis “Novel computer methods for molecu-
lar modelling”) - 2001. Research fields - data mining,
cheminformatics, QSAR, networking. Professional
Experience - software developer at the oil refinery

Hardy et al. Journal of Cheminformatics 2010, 2:7
http://www.jcheminf.com/content/2/1/7

Page 23 of 29



Neftochim, Bourgas, Bulgaria - 1991-1995, researcher
at the Central Laboratory for Parallel Processing, Bul-
garian Academy of Sciences, Sofia, Bulgaria - 1996-
2001, collaborator and software developer with the
Laboratory of Mathematical Chemistry, Bourgas, Bul-
garia - 1996-2001, PostDoc at Central Product Safety
department, Procter & Gamble, Brussels, Belgium -
2002-2003, associate professor at the Institute for Par-
allel Processing, Bulgarian Academy of Science, Sofia,
Bulgaria 2004 - now, technical manager and co-owner
of Ideaconsult Ltd. - 2005 - now. Teaching - Computer
Graphics, Computer architectures, Operating Systems,
Internetworking at Technical University - Sofia, New
Bulgarian University - Sofia, American College - Sofia,
Bulgaria. Author and co-author of about 40 scientific
papers in Bulgarian and international journals and
textbooks. A list of selected publications is available at
http://ambit.acad.bg/nina. Research interests: QSAR,
applicability domain, data mining methods, network
protocols. Experience in software development, QSAR,
cheminformatics.
Vedrin Jeliazkov (VJ): M.Sc. in Computer Science

from Université Paris 7 Diderot, Paris, France. Profes-
sional experience: software developer, responsible for
the design of quality assurance tests - R&D department
of Electricité de France (EDF), Clamart, France - 1996-
1998; research associate and assistant professor at the
Central Laboratory for Parallel Processing - Bulgarian
Academy of Sciences (now Institute for Parallel Proces-
sing) - 1998-2001, 2003-2007; network engineer at the
core node of the Bulgarian National Research and Edu-
cation Network - 1998-2001, 2003-2007; scientific offi-
cer at the European Commission, DG Information
Society, Directorate E, Essential Information Society
Technologies and Infrastructures - 2001-2002; Chief
Technical Officer of the Bulgarian National Research
and Education Network - 2004-2007; Chief Technical
Director of the Bulgarian National Supercomputing
Centre - 2008, researcher at and co-owner of Ideacon-
sult Ltd - 2004 - present. Research interests: network
monitoring and security, parallel and quantum informa-
tion processing. Participated in numerous R&D projects
in France, Belgium and Bulgaria, authored nine research
papers, co-authored one book and gave several talks in
scientific conferences.
Ivelina Nikolova (IN): M.Sc. in E-learning from Uni-

versity of Sofia, Bulgaria, M.Sc. in Economics from Uni-
versity of Sofia, Bulgaria, B.Sc. in Computer Science
from University of Sofia, Bulgaria. Professional experi-
ence: software developer at Linguistic Modelling Depart-
ment, Institute for Parallel Processing, Bulgarian
Academy of Sciences, Sofia - 2001 - present. Research
interests: Natural Language Processing (Computational
Linguistics), e-Learning, Software Engineering, Quality

and Reliability. Participated in numerous R&D projects,
authored three research papers and participated in sev-
eral scientific conferences.
Romualdo Benigni (RB) is the leading expert of the

ISS for (Q)SAR. He has participated in several EU
funded projects aimed at evaluating experimental muta-
genicity systems from a toxicological point of view, and
to projects on the evaluation of (Q)SAR models for the
prediction of mutagenicity and carcinogenicity. He is
the Italian representative in the EU ad hoc Group on
(Q)SAR, and in the OECD ad hoc Group and Steering
committee on (Q)SAR. His research activities include:
Molecular biology; Environmental chemical mutagenesis;
Statistics and mathematical modelling; Structure-Activity
Relationships; Chemical Relational Databases. He orga-
nized and co-organized workshops/seminars/schools on
(Q)SAR and modelling, including:

• “Quantitative modelling approaches for under-
standing and predicting mutagenicity and carcino-
genicity” Rome, 3-5 September 1997.
• “Complexity in the Living: a problem-oriented
approach” Rome, 28-30 September 2004.
• “(Q)SAR models for mutagens and carcinogens”
Rome, 22-23 June 2006.

RB is author or co-author of about 150 papers in
international journals and books. He is on the Editorial
Board of the “Journal of environmental science and
health, part C, Environmental Carcinogenesis and Eco-
toxicology Reviews”, and “Current Computer Aided
Drug Design”.
Dr. Olga Tcheremenskaia (OT) is a chemist, Masters

Degree (1997) in biotechnology and organic synthesis
from Moscow M.V. Lomonosov State Academy of Fine
Chemical Technology, Ph.D. in bioorganic chemistry
(2000) from the Chemical Physics Institute, Russian
Academy of Sciences, Moscow. Since 2001 she is work-
ing at Istituto Superiore di Sanità (ISS), Rome, Italy. She
participated in different Italian and international
research projects with the following research activities:
bioinformatics, proteomics, molecular characterization
of viral strains, cheminformatics, toxicological and
genetic database development. In 2008 OT joined the
Computational Carcinogenicity Unit of the Environment
and Health Department of ISS. Her research activities
include: development of algorithms for mutagenicity and
carcinogenicity prediction, organization of chemical
databases, validation of different schemas for toxicity
data integration, mapping between different toxicologi-
cal databases, and the development of ontology for toxi-
cological endpoints.
Stefan Kramer (SK) is professor of bioinformatics at the

computer science department of Technische Universität

Hardy et al. Journal of Cheminformatics 2010, 2:7
http://www.jcheminf.com/content/2/1/7

Page 24 of 29

http://ambit.acad.bg/nina


München. After receiving his doctoral degree from the
Vienna University of Technology, he spent a few years as
an assistant professor in the Machine Learning lab of the
University of Freiburg. He was the co-organizer of the
Predictive Toxicology Challenge 2000-2001, an interna-
tional competition in toxicity prediction. He has orga-
nized several conferences and workshops, edited special
issues of journals, given invited talks and tutorials, and
serves on the program committees of major data mining
and machine learning conferences and on the editorial
board of the Machine Learning journal. His current
research interests include data mining, machine learning,
and applications in chemistry, biology and medicine.
Andreas Karwath (AK) has recently become interested

in the field of cheminformatics after receiving his PhD in
the fields of computational biology and data-mining in
2002 from the University of Wales, Aberystwyth. His
main research topics are the application of data-mining
and machine learning for structured data. He has been
involved in a number of applications in bio- and chem-
informatics, including remote homology detection, func-
tional class prediction of unknown genes, and the align-
ment of relational sequences with the REAL system. AK
is the main developer of the SMIREP prediction system
that is available on the Internet http://www.karwath.org/
systems/smirep. The SMIREP system allows the reliable
prediction of various (Q)SAR endpoints, mainly employ-
ing the SMILES code of the compounds under considera-
tion. AK is also on the editorial board of the The Open
Applied Informatics Journal, served as member of the
program committee for a number of well-known interna-
tional conferences as well as being a reviewer for journals
like JMLR, Bioinformatics, Machine Learning, and JAIR.
Haralambos Sarimveis (HS) received his Diploma in

Chemical Engineering from the National Technical Uni-
versity of Athens (NTUA) in 1990 and the M.Sc. and
Ph.D. degrees in Chemical Engineering from Texas
A&M University, in 1992 and 1995 respectively. Cur-
rently, he is the director of the “Unit of Process Control
and Informatics” in the School of Chemical Engineering
at NTUA. His main research directions are in process
control and computational intelligence (neural networks,
fuzzy logic methodologies, evolutionary algorithms). His
research work has resulted in more than 100 publica-
tions in QSAR, modelling algorithms, process control,
artificial intelligence and related fields.
Georgia Melagraki (GM) received her Diploma and

Ph.D. degrees in Chemical Engineering from NTUA.
She has also received the M.Sc. degree in Computational
Mechanics and pursued management studies towards an
MBA in the same institution. She has a strong scientific
background in the field of cheminformatics, QSAR and
related fields. Her scientific work has been published in

more than 20 original research articles in international
peer-reviewed journals.
Andreas Afantitis (AA) received his Diploma and Ph.

D. degrees in Chemical Engineering from NTUA. He
has also received the M.Sc. degree in Computational
Mechanics and pursued management studies towards an
MBA in the same institution. Currently he is the direc-
tor of NovaMechanics Ltd, being responsible for the
overall management, strategic direction, growth and
financial control. His main research directions are in
cheminformatics, bioinformatics and medicinal chemis-
try. He is a co-author in more than 20 papers in inter-
national peer-reviewed journals,
Pantelis Sopasakis (PS) received his Diploma in Che-

mical Engineering from NTUA and currently he is a Ph.
D. student. His research interests are in dynamic model-
ling, optimal control and stochastic optimization with
emphasis on physiological and biological systems.
David Gallagher (DG) has 18 years of human graphical

user interface design (GUI) as part of product marketing
for computational chemistry SW programs and QSAR
tools, with emphasis on the non-expert user. Products
include “CAChe WorkSystem” and “ProjectLeader”, cur-
rently marketed by Fujitsu Ltd. He has published peer-
reviewed research papers on QSAR, given oral research
presentations on QSAR at ACS and other scientific
meetings, led numerous training workshops on QSAR,
and created and published tutorials for QSAR training.
Vladimir Poroikov (VP), Prof. Dr., Head of Depart-

ment for Bioinformatics and Laboratory for Structure-
Function Based Drug Design. Member of Editorial
Board of several International scientific journals, Chair-
man of Russian Section of The QSAR and Modelling
Society, Member of American Chemical Society and
International Society on Computational Biology. Co-
author of more than 120 published works and 12 non-
open published reports in R&D of new pharmaceuticals,
member of the organizing committees and/or invited
speaker of many international conferences. VP is a co-
investigator of several international projects supported
by FP6, FP7, ISTC, INTAS, IFTI, and RFBR.
The Principal Investigator of the MaxTox project, Dr.

Indira Ghosh (IG) - Dean and Professor in School of
Information Technology, JNU (New Delhi), and Scienti-
fic Advisor of SL - has more than a decade of experi-
ence working in the pharmaceutical industry
(AstraZeneca R&D, Bangalore, India). Before joining
AstraZeneca, she obtained her Ph.D. from the presti-
gious Indian Institute of Science, Bangalore in the field
of molecular biophysics. After completing her Ph.D., she
accepted a post-doctoral appointment at the University
of Houston, Texas with Prof. J. A. McCammon (cur-
rently at University of California San Diego, USA).

Hardy et al. Journal of Cheminformatics 2010, 2:7
http://www.jcheminf.com/content/2/1/7

Page 25 of 29

http://www.karwath.org/systems/smirep
http://www.karwath.org/systems/smirep


Sunil Chawla (SC), is the founding director of SL and
developed the market for computational chemistry
tools in India and California He served as a Market
Development Manager for Apple in the USA and was
responsible for development of the market for Apple
Macs in Scientific/Engineering Markets in the USA,
and new products for collaborative learning and new
media devices He obtained an M.S. in Biomedical
Engineering from McGill University, Montreal, an
MBA from UC Berkeley and a B.Tech (EE) from IIT
Kharagpur.
Sylvia Escher (SE) is group leader in QSAR and data-

bases in the department of Chemical Risk Assessment at
the Fraunhofer Institute of Toxicology and Experimental
Medicine (FhG ITEM). The focus of her current work is
the development of the RepDose database. Within the
OpenTox project she is developing ontologies and Use
Cases for repeated dose toxicity.

11. Appendices
Appendix 1: Standards of relevance for OpenTox
Minimum Information Standards for Biological
Experiments
http://en.wikipedia.org/wiki/

Minimum_Information_Standards
Example standards and formats:

• Minimum Information for Biological and Biomedi-
cal Investigations (MIBBI) http://mibbi.sourceforge.
net/
• Functional Genomics Experiment (FuGE) http://
fuge.sourceforge.net/
• MAGE http://www.mged.org/index.html
• MIAPE http://www.psidev.info/index.php?q=node/
91
• Predictive Model Markup Language (PMML)
http://www.dmg.org/pmml-v3-0.html

Toxicity Data
• DSSTox http://www.epa.gov/ncct/dsstox/
• ToxML http://www.leadscope.com/toxml.php
• PubChem http://pubchem.ncbi.nlm.nih.gov/
• OECD Harmonised Templates http://www.oecd.
org/document/13/0,3343,
en_2649_34365_36206733_1_1_1_1,00.html
• IUCLID5 templates

Validation
Algorithm Validation

• Common best practices such as k-fold cross valida-
tion, leave-one-out, scrambling

(Q)SAR Validation (Model Validation)
• OECD Principles http://www.oecd.org/dataoecd/
33/37/37849783.pdf
• QSAR Model Reporting Format (QMRF) http://
qsardb.jrc.it/qmrf/help.html
• QSAR Prediction Reporting Format (QPRF) http://
ecb.jrc.it/qsar/qsar-tools/qrf/QPRF_version_1.1.pdf

Reports
• REACH Guidance on Information Requirements
and Chemical Safety Assessment http://guidance.
echa.europa.eu/public-2/getdoc.php?
file=information_requirements_en

◦ Part F - Chemicals Safety Report http://gui-
dance.echa.europa.eu/docs/guidance_document/
information_requirements_part_f_en.pdf?
vers=20_08_08
◦ Appendix Part F http://guidance.echa.europa.
eu/docs/guidance_document/information_requir-
ements_appendix_part_f_en.pdf?vers=20_08_08

Appendix 2: Required Functionality for OpenTox
Components
Prediction
create model not applicable in all cases (e.g. expert

systems), but required for validation

Input training structures, training activities
Output prediction model

predict

Input chemical structure, prediction model
Output prediction, confidence, supporting
information

Descriptor Calculation
calculate

Input chemical structure, property
Output descriptor(s)

Data Access
create

Input new data

update

Input modified data

query

Input chemical structure, endpoint
Output experimental measurement(s)
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delete

Input ID

Validation
validate

Input prediction model, validation method
Output validation statistics, supporting information

Report Generation
create report

Input data, report type
Output report

Additional material

Additional file 1: Definition of Ontology. Description of ontology and
vocabulary definitions.

Additional file 2: User Requirements by User Type. User requirements
for several different kinds of OpenTox user are described.

Additional file 3: Interfaces and REST services. Description of
approach to OpenTox interfaces and REpresentational State Transfer
(REST) web service architecture.

Additional file 4: Data Schema. Descriptions of OECD-HT and ToxML
data schemas of relevance to OpenTox and the mapping of data
resources to the schema.

Additional file 5: OpenTox Algorithm Template. The fields of the
OpenTox description table for the algorithm template are described.

Additional file 6: Initial Implemented OpenTox Algorithms.
Descriptions of initial implemented OpenTox Algorithms for descriptor
calculation, classification and regression, clustering and feature selection.

Additional file 7: Validation Use Case Examples. Description of three
example validation Use Cases for application to predictive toxicology
models.

Additional file 8: Validation Interfaces and Services. Description of
API for OpenTox Validation services.

Additional file 9: Model Validation Use Case. Description of Model
Validation Use Case execution by OpenTox Web Services.

Additional file 10: Information included in OpenTox Reports.
Description of Information included in OpenTox Reports.

Additional file 11: OpenTox Reporting API and Supported
Templates. Description of reporting formats supported by OpenTox.

Additional file 12: OpenTox Data Infrastructure. Description of data
resources included in initial OpenTox Data Infrastructure.

Additional file 13: Graphical Interface Description of ToxPredict
Application Steps. Description of graphical user interface interactions
for steps involved in execution of ToxPredict Application.

Additional file 14: Graphical Interface Description of ToxCreate
Application Steps. Description of graphical user interface interactions
for steps involved in execution of ToxCreate Application.
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