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Weighted networks as randomly reinforced urn processes
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We analyze weighted networks as randomly reinforced urn processes, in which the edge-total weights are
determined by a reinforcement mechanism. We develop a statistical test and a procedure based on it to study the
evolution of networks over time, detecting the “dominance” of some edges with respect to the others and then
assessing if a given instance of the network is taken at its steady state or not. Distance from the steady state can be
considered as a measure of the relevance of the observed properties of the network. Our results are quite general,
in the sense that they are not based on a particular probability distribution or functional form of the random
weights. Moreover, the proposed tool can be applied also to dense networks, which have received little attention
by the network community so far, since they are often problematic. We apply our procedure in the context of the
International Trade Network, determining a core of “dominant edges.”
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In recent years complex network theory has proved to be
a general-purpose and interdisciplinary tool for the analysis
of a variety of systems, in different fields such as physics
[1-3], economics [4-7], computer science [8], social science
[9], transportation [10], and others, which can be efficiently
described by a network structure, where the nodes are the
system entities and the edges represent the relations between
them. All the models that produce complex networks are based
either on preferential attachment (or copying mechanism)
or on a fitness (hidden variables) microscopic mechanism.
Unfortunately, no statistical method has been developed in
order to assess the relevance of both experimental data and
model simulations. In this paper, we present a model of
network evolution based on randomly reinforced urn (RRU)
processes [11-14]. In our model we map the weight associated
to a given edge with the number of balls of a given color,
which are added in an urn so that at a given time step the
probability of picking an edge (color) depends on the total
weight associated with it until that time. At each time step we
first extract an edge (color) with probability proportional to
its total weight and then we associate to it a random weight
(number of added balls) which increases its total weight. This
results in a preferential attachment (PA) rule for edges with
random weights. Hence, although our model can be considered
as a particular refinement in the class of the PA mechanisms,
its novelty is in the connection that we can establish between
complex networks and RRU models [15]. RRU theory allows
us to develop a procedure for the detection of the “dominant
edges” in the evolution of a weighted network and for an
evaluation of the distance from the steady state of the network,
in the sense that we can assess if the structure observed at a
given time is what we can expect at the steady state or not. The
novelty of our methodology is also related to its applicability to
dense, weighted networks (a situation often problematic both
for modeling and for randomization) [16].

We consider a system with N vertices and Lpotential edges
(directed or not). Hereafter we indicate the various edges by
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the index ¢ (with € € [1,L]). Our model defines a weighted
adjacency matrix W, for every time step ¢, where the generic
element w,; = [W,]; is the total weight associated with the
edge ¢ until time step 7 (the total number of added balls
of color ¢ until time step ¢). Similarly, we define a matrix
K, whose elements k,;; = [K;], represent the total number of
extractions of edge ¢ until time step 7. Note that at a given time
the graph may actually be incomplete, since some weights
could be zero. We can describe analytically the network
dynamics. We start at time ¢ = 1 by picking an edge, say
£*, according to the following rule: every edge £ can be picked
with an initial probability Zo, = a;/ ZzL=1 ae, where a; > 0.
A random weight W, is associated to the picked edge £*.
At time step t + 1, we pick another edge £* according to the
probability distribution given by

_ ag + Z;:l Whee X
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where X, = 1 if at time step n we picked edge £ and X, = 0
otherwise, and W,,; denotes the random weight associated with
edge ¢ at time step n. In other words, we define (akin to the PA
rule) a probability of edge extraction that takes into account the
previous weights of the network. We do not assume a priori
a specific form or probability distribution of the weights. We
only require that they are positive random variables which
are uniformly bounded by a constant, and each of them is
independent of the previous weights and of the outcomes of
the previously done extractions. The parameters a, do not
explicitly appear in the tools we will present hereafter and
therefore we avoid estimating them.

We assume that the mean values and the variances of the
weights are constant along time and we define D as the set of
edges such that

Zi (1)
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We set Var[W, ] = 0’42 for each £. If D coincides with the
L edges, the above conditions mean that the weights have
the same mean value for all edges. Conversely, when the
number of elements in the set D is lower than L, the weights
associated with the edges in D “dominate in mean” on those
associated to the others. (A typical case of the first type holds
when every weight W,, is equal to a same constant, i.e., the
classical PA.) As r — +o00, the probability Z;, of choosing
the edge ¢ converges almost surely (a.s.) to zero when ¢ ¢ D,
while it converges a.s. to a random variable Z,« with values
in (0,1] as. when £ =¢* €D and ) ..., Zp- =1 [11,12].
Therefore the notion of “dominant edges” could provide
a formalization of the empirical evidence that many real
networks are rather heterogeneous in the sense that, with
respect to all the possible edges, a club of edges collects
the major fraction of the total weight of the network. More
precisely, it has been analytically proven [11,12] that, as the
number of time steps ¢ grows, the total weight associated with
the dominant edges grows according to

¥ W, e * t_ Whes Xner  as.
Zl EDt[ Z]K — ZZ €D Zn;l 4 4 a5 ,bL*, (3)

while the same limit for the dominated edges is zero, i.e.,

1¢D t1e 0¢D Ln=1 "YntAnt a.s.
t t

Moreover, for a dominant edge £*, the total weight
associated to that edge normalized by the total weight of the
network asymptotically behaves as Z;;~ and so converges
a.s. to the previous random variable Z,. The number of
extractions of £* divided by the total number of extractions
also converges a.s. to the same random variable, that is
[K e/t = Z;zl X/t 2% Zp. On the other hand, the
corresponding limits for dominated edges are both equal to

zero (see Fig. 1). In particular, we have t'=*Z,, 250 for
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FIG. 1. (Color online) We performed some simulations of the
model (with L = 2500 and 10° extractions) in both cases of no
dominant set (one class) and of a dominant set (two classes). On the
left we plot the frequency distributions of the weights in the case of
uniform/truncated Gaussian (G) distributions of the random variables
W. On the right we plot the normalized number of extractions of each
edge/color in the case of no dominant set (up) and in the case of two
classes with the set [1,1250] as the dominant set (below).
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¢ ¢ D and each A € (A,1), where A = maxegp e/ w*. The
exact distribution of the limit random variable Z- is generally
unknown (except in some special cases such as the trivial case
of one single dominant edge ¢* for which we have Z, = 1
a.s. and the case of the above-mentioned classical PA in which
Z~ is beta-distributed). Using the above limit relations and
some asymptotic results, analytically proven in [11,12], we
have developed a statistical test and a procedure, based on
it, for the detection of the set D and for the assessment of
whether a particular instance of a given network has a weight
distribution that already evolved into its steady state or not.
More precisely, the statistical test is the following. Assuming
our model, we take as a null hypothesis Hp the fact that
the “dominant set” D coincides with a certain subset D* of
edges with card(D*) > 2. Then we consider a certain level o
(typically & = 5%,10%), we fix £* in D*, and we compute

%
Cleel _ V11X = Z}5]

NN ©
where
Yje* = ZL:I anp ’
L2 veps 2onmt Xne
7 = 1+Y W,th,w* ’ ©
card(D*) + " yepe Dot WaneXne
and U,,+ (assumed to be nonzero) is defined as
Unpe — X, {(l - Y;e*)za\,zg* + X, ;KGD*,[#* X ’0\,2(3} ’
B* (X ep- Xf5)4
(7
with X,p = >! _, X,¢/t and [} an estimate of the mean value
w* and G an estimate of the variance o}
ot = 1 Z (Z;Ztl Wi Xone )1
card(D*) 5= anl Xnue ®

2
52 = Dot WaeXne <22=1 Wnean>
' Zfl:l Xne Zi’t:l Xne

As a consequence of a result proven in [12], if Hj is true,
the random variable C};./+/U;+ converges in distribution
to the standard normal distribution N(0,1) as t — 400,
while this convergence does not hold when Hj is false.
Hence we compare the quantity (5) with the quantile g, of
N(0,1) of order (1 — «/2) (that is, g, is the number such
that N(0,1)(gy, +00) = a/2 and g, = 1.96 for o =5%
and g, = 1.645 for o = 10%). If the computed quantity is
greater than ¢g,, then we reject the null hypothesis at the
(approximate) level «; otherwise, we cannot reject it.
Simulations have shown that if we perform the above test
taking D* exactly equal to the true dominant set, known a
priori, then the percentage of indexes £* for which the test gives
the rejection of the hypothesis is very low (2.28% foro = 10%
and 0.82% for @ = 5%). From now on we call this percentage
the “rejection percentage.” If we consider a different D* with
the same size as the true dominant set, the rejection percentage
increases (even if we change a single element): the more D*
and the true dominant set are different, the higher the rejection
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percentage is (we got values up to 93% for o« = 10% and 85%
for o = 5%). However, we observed that the ability of the test
of rejecting Hy when it is false decreases with decreasing the
size of D*. This is due to the factor (3, p- X,0) < 1in the
denominator of (7), which may be so small for a small D* as
to distort the test response. As a solution to this problem, we
add to the previous test a variant of it obtained by replacing
the random variable U, ¢+ by

- S v~ T - ~ = \2
X {(1 = X1 )34 X100 Y pepr e X100} (X pep- Xie)
(117> '

€))

This second test works well for an arbitrary D* with a size
smaller than the one of the true dominant set (the rejection
percentage goes from 80% to 100%). Indeed, the above
convergence in distribution to A/(0,1) still holds under Hy,
but we have eliminated the above-discussed problem since the
previous factor now appears in the numerator of (9). However,
for D* equal to the true dominant set, the rejection percentage
of the first test is lower than the one of the second test.

We can leverage the illustrated statistical test (and possibly
its variant) to obtain a procedure for the detection of the
dominant set of edges of a network and for an evaluation
of the distance from its steady state (see Fig. 2).

As an application to real data, we consider the international
trade network (ITN), also known in complex network literature
as the world-trade web [17]. ITN is defined as the network
of import-export relationships between world countries in a
given period (usually a year). Many efforts have been devoted
to analyze the structure and the dynamics of the ITN from
an empirical and theoretical modeling perspective (see, for
instance, [18-26]). In particular, since it is a dense weighted
network, it is rather difficult to define a tractable reference
case against which one can measure the specific features of
the real system. Our model can contribute to fill this gap. In
the context of the ITN, the nodes represent the countries and
the edges represent the trade relationships among them. With
regard to the weights [27], there are different possibilities. The
most natural choice is to define the weight of a certain edge
¢ =1,j in terms of the value of the flow from i to j. As a
real data example, we illustrate here a short analysis, based
on the first test, of the data of trades between countries in
the years 1948-2000 reconstructed from COMTRADE data
[28]. Our aim here is to briefly show the potentialities of the
introduced model and tools. We computed for each year and
for each couple of countries £ = i, j the amount of dollars for
the total exports from i to j in that year. When it is nonzero, we
interpreted this fact as an extraction of that edge (color) where
the associated weight (number of added balls) is equal to this
amount. Hence, for each edge we set the total edge weight
equal to the sum of the weights associated to that edge during
the considered years. We fixed D* equal to the subset of the
2000 edges with the largest total edge weight (the “top 2000
edges”), and we performed the first test for D* with o« = 5%,
picking up £* € D* in descending order starting from the one
with the largest total edge weight. Making a plot of the number
of no-rejections along the whole set of £* in D* (see Fig. 2,
lower panel), we found that the number of no-rejections grows
linearly with constant slope but at a certain point the curve
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FIG. 2. (Color online) In the lower panel we plot the number of
no-rejections N, for the COMTRADE data (solid blue line) and for
the simulated data of an urn with colored balls in the case of uniform
distributions (+ = 10° dotted and dashed red line, t = 250 000 dashed
black line, and r = 125000 dotted black line). For both cases we
ordered the edges/colors in descending order according to the total
edge-weight/number of added balls and we considered as D* the set
of the top 2000 edges/colors. We then executed the test taking £* in
D* running from the highest to the lowest value and accumulating the
number of no-rejections in the y axis. After a constant no-rejection
rate, the curves associated to simulations start bending, exactly in
correspondence of the true dominant set (the top 1250 edges), known
a priori. The turning point is always the same, but the higher 7 is, the
sharper the turning point is. The curve associated to COMTRADE
has a similar trend with a turning point around 500, which reveals the
presence of a core subset of dominant edges (the top 500 edges). In
the inset we performed the same procedure for a randomly chosen set
D* with size 2000 for the two collections of data. In the upper panel,
we calculated for various sizes of D* the difference A ; between the
rejection percentage obtained for the randomly chosen set (averaged
over 10 realizations) and the one obtained for the set of the top edges
(red square for simulations and blue circle for COMTRADE), and
we found a maximum where the two curves of the lower panel start
bending.

starts bending. After this bending, it saturates and reaches a
plateau where £* always gives a rejection, pointing out the
presence of a core subset of dominant edges. For simulated
data, we made the plot for different values of ¢ in order to point
out that the degree of the curvature around the turning point
gives information regarding the distance from the steady state.
(For simulated data, we used a very small «, around 0.05%,
in order to stress the behavior of the corresponding curve.)
Remarkably, performing the first test as above but for various
sizes of D* and also for a randomly chosen set D* of the same
size (see Fig. 2, upper panel), we found an “optimal” size of
D* for which the difference between the rejection percentages
of the two cases (the case of the randomly chosen edges and
the case of the “top edges”) is maximal. This maximum point
coincides with the turning point of the previous curve.

In summary, we present here a model of weighted-network
evolution based on a PA principle for edges [29] with random
weights. We provide a theoretical framework, which accounts
for the empirical evidence that many real networks grow in
a heterogeneous way, generating a subset of dominant edges
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that controls a major share of the total weight of the network.
Although the proposed methodology is suitable for weighted
networks evolving according to a PA mechanism for edges, our
approach is quite general and flexible in the sense that it does
not require a particular probability distribution or functional
form of the weights. These features and the initial parameters
of the model affect the outcomes of the extractions and so the
observed data implicitly depend on them, but the asymptotic
results on RRU processes have allowed us to develop some
tools for the detection of the set of dominant edges which do
not require to exploit them. Further, the proposed procedure
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can serve to evaluate if the network has reached its steady state
or not, a problem often encountered in assessing the relevance
of the observations in complex networks. It is worthwhile to
note the applicability of our method to dense networks. Finally,
our model produces uncorrelated weighted networks to be used
as benchmarks in order to understand the specific features of
the considered networked system.
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