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Abstract

Under several regards, various of the recently proposed computational paradigms are open-ended, i.e. they
may comprise components whose behaviour is not or cannot be fully specified. For instance, applications
can be distributed across different administration domains that do not fully disclose their internal business
processes to each other, or the dynamics of the system may allow reconfigurations and dynamic bindings
whose specification is not available at design time. While a large set of mature design and analysis tech-
niques for closed systems have been developed, their lifting to the open case is not always straightforward.
Some existing approaches in the process calculi community are based on the need of proving properties
for components that may hold in any, or significantly many, execution environments. Dually, frameworks
describing the dynamics of systems with unspecified components have also been presented. In this paper
we lay some preliminary ideas on how to extend a symbolic semantics model for open systems in order
to deal with name-based calculi. Moreover, we also discuss how the use of a simple type system based
on name-decoration for unknown components can improve the expressiveness of the framework. The ap-
proach is illustrated on a simple, paradigmatic calculus of web crawlers, which can be understood as a term
representation of a simple class of graphs.
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1 Introduction

Concurrent and distributed systems are more and more becoming open environ-

ments where components, agents or services interact one with another by dynami-

cally establishing connections. For instance, in service oriented architectures, com-

putational resources may be accessed through temporary interactive sessions. Such

open-interaction environments, subject to the dynamical binding of their compo-

nents, may result into systems being partially defined even at run-time. Describing

and analysing the behaviour of such systems in presence of incomplete information
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clearly appears more difficult than the analysis of closed interactive systems, already

recognised as a challenging problem in its own.

Open computational environments have been first addressed in terms of execu-

tion contexts, for instance in order to determine the (minimal) execution context

where the computation of a component may exhibit some desired properties. In the

semantical approach of [19], the possible transitions of a component are labelled

with information characterising those contexts in which behavioural equivalence

enjoys congruence properties (relevant to allow modular reasoning). Then, several

other authors have proposed different symbolic semantics [15,16,17,18,14,5,11] so

as not considering all the possible contexts, because universal quantification can

seriously impair verification techniques. These semantics carry abstract represen-

tations of the minimal contexts necessary for components to evolve. Here the term

“symbolic” reminds the attempt of defining suitably abstract representations that

can finitely represent universal classes of components and contexts. The issue of

avoiding universal closure of contexts finds its dual formulation in avoiding universal

closure with respect to pluggable components.

In [3], jointly with Paolo Baldan, a general methodology for analysing the be-

haviour of open systems modelled as contexts C[X1, ...,Xn], i.e. open terms of

suitable process calculi have been proposed. Variables of open terms represent

holes where other contexts and components p, i.e. closed terms, can be dynamically

plugged in. The operational semantics of contexts is given by means of a symbolic

transition system (sts), where states are contexts and transitions are labelled by

modal formulae characterising the structure that a component must possess or the

actions it must be able to perform in order to enable a symbolic transition. Symbolic

transitions are of the form:

C[X1, ...,Xn]
ϕ1,..,ϕn
−−−−−−−→aD[Y1, . . . , Ym]

The corresponding closed system C[p1, ..., pn] can perform a transition labelled with

a, whenever each component pi satisfies the corresponding formula ϕi. The target

state will be a suitable instance of D[Y1, . . . , Ym], where process variables Y1, . . . , Ym

appear in formulae ϕ1, .., ϕn. The logic where the formulae ϕi live and the notion

of satisfaction are targeted to the process calculus under study. Starting from the

rules defining a calculus, a constructive procedure based on unification distills a

(sound and complete) standard sts.

Given an sts, several behavioural equivalences can be defined directly over con-

texts, amongst which we mention strict and loose bisimilarities. The former is a

straight extension of the ordinary bisimilarity with exact matching of transition

labels, while the latter is obtained by relaxing the requirements when comparing

formulas during the bisimulation game. In order to abstract from internal compu-

tations, symbolic counterparts of weak bisimilarity have been defined. They are

called strict and loose weak symbolic bisimilarity (denoted ≈s and ≈l, respectively).

All these equivalences are correct approximations of their universal counterparts.

Differently from other approaches the sts semantics preserves the openness of the

system during its evolution, thus allowing dynamic instantiation to be accounted

for in the semantics.
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By integrating ideas from [1,3] and [8,6,7], we are interested in the development

of a flexible semantic framework for open systems that admits a graphical counter-

part. In this extended abstract we report on an ongoing development of the sts

theory aimed at accounting for calculi with an explicit treatment of names, à la

π-calculus. Names broadly represent references of a possibly reconfigurable inter-

connection network amongst components. Consequently, the extended theory may

be adapted also to other representation formalisms, such as the hierarchical graphs

considered in [6], where names can be used to account for the hierarchy.

In order to make the framework more flexible, drawing inspiration from [8],

we introduce a type discipline for open systems which prescribes how processes,

contexts and variables can be composed together. Types fix a basic interface, al-

lowing or disallowing the use of certain names within the corresponding well-typed

processes.

We present our type framework with the help of a web crawling scenario, mod-

elled with a simple nominal calculi, where names stand for references to web pages

and processes offer an abstract representation for web crawlers and pages. In this

first exploration the use of names is limited (for instance we do not deal with restric-

tion operators), but we believe it is still sufficient to illustrate the relevance of the

proposed approach. We define crawlers with different policies and confront them

with a non-fully specified network. By adopting a suitable symbolic equivalence we

can test the different behaviours over a symbolic semantics. The needed extensions

to the theory of sts are discussed. For the sake of readability and generality, the

actors of our scenario are also illustrated as graphs, where processes and names

play the role of edges and connections, and operational rules that of graph trans-

formations. A further advantage of this graphical presentation is to make evident

that interfaces can dynamically evolve, e.g. crawlers expose the web addresses they

know and such knowledge is increased during their exploration activity.

We show how global properties of the network can be enforced by imposing type

restrictions to unknown network components. Types constrain the pages that the

unknown part of the network is enforced to contain and the list of links that the

network can point to. In particular, we shall concentrate on valid networks, where

no broken link is allowed. Such type restrictions have to be updated according to the

symbolic transitions that make the overall system evolve. Consequently, standard

subject reduction results have to be rethought in this dynamical open context. One

of the benefits of considering type restrictions in our example is that, while crawlers

can be distinguished in arbitrary networks, their behaviour is equivalent in networks

of type valid.

Summarising, the main objective of this extended abstract is twofold: (i) to

define typed extensions of the sts symbolic semantics for nominal calculi, and (ii)

to use a type discipline for unknown components to derive suitable abstract equiva-

lences. We remark that our types are inspired by graphical models of process calculi

and that, for the first time, it is shown a significant abstract equivalence based on

loose weak symbolic bisimilarity.

This paper is structured as follows. Section 2 overviews the basics of sts. Sec-
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p ::= 0 | �. p | (a) p

�. p →� p
(pref )

p →a q

(a) p →τ (a) q
(hide)

p →� q

(a) p →� (a) q
(lift) � �= a

Figure 1. Tick calculus.

tion 3 describes our simple web crawling scenario: a simple nominal calculus over

which we apply the sts theory. Section 4 introduces name-decorated types in the

sts approach. Section 5 draws some conclusions and outlines future developments.

2 Background

The main concepts about sts and associated symbolic behavioural equivalences are

briefly recalled. A detailed presentation can be found in [3].

For mere illustration purposes, we introduce for this section a simple process

calculus, called Tick. The processes of the Tick calculus are defined by the syn-

tax and operational rules in Figure 1, where � ranges over a fixed set of labels Λ,

τ ∈ Λ is a distinguished label and a ranges over Λ − {τ}. Tick processes con-

sist of lists of actions which can be performed sequentially. The hiding operator

(a) allows to hide action a, which then shows up as silent action τ at the top

level. For example, the Tick process (a) (b) c. a. 0 can perform a series of two steps:

(a) (b) c. a. 0 →c (a) (b) a. 0 →τ (a) (b) 0. Note that to avoid confusion with the po-

sitioning of labels in symbolic transitions, we put the action label on the lower-right

of the arrow and not above it.

2.1 Processes, Contexts and Formulas

We distinguish between processes (ranged over by p, q, ...), i.e. closed terms of a

process calculus, and contexts (ranged by C[X1, ...,Xn],D[X1, ...,Xn], ...), i.e. terms

of the calculus that may contain variables. For the sake of readability, we consider

only single-holed contexts C[X], where X is the variable occurring in the context.

Processes are often considered up to some suitable structural congruence ≡ but in

our example we will not.

An operational and abstract semantics of contexts, can be defined as a symbolic

transition system, whose states are contexts and whose labels encode the structural

and behavioural conditions that components should fulfil to enable the move, ac-

cording to the following principles: (1) abstracting from components not playing

an active role in the transition; (2) specifying the active components as less as pos-

sible; and (3) making assumptions both on the structure and on the behaviour of

the active components.

Labels consist of formulae of a suitable logic, φ,ψ, ... comprising both temporal

and spatial modalities in the style of [9,10] and depend on the specific calculus

considered. Each formula represents the set of processes that fulfil it. A possible

temporal formula is �aφ, satisfied by the processes that can fulfil φ after having
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performed an a labelled transition (p |= �aφ if ∃q. p →a q ∧ q |= φ). Spatial

formulae are about the algebraic structure of a term, so that, for instance, p |= f(φ)

if ∃q.p ≡ f(q) and q |= φ, where f is one of the operators of the calculus. Thus,

each component p can also be regarded as a (purely spatial) formula.

To gain some insights regarding the choice of the logic, note that an instance C[p]

of a given context C[X], in order to perform a transition, must match the left-hand

side of the conclusion of a semantical rule. This might impose the component p to

have a certain structure, hence the need of inserting the spatial operators f ∈ Σ

in the logic, where Σ denotes the signature of the calculus under consideration.

Furthermore, the premises of the matched rule must be satisfiable. Such premises

may require component p to be able to exhibit some behaviour, i.e. to perform a

certain transition. Hence the logic includes also temporal operators �a expressing

the capability of performing action a.

Labels must also be able to express no constraints over unspecified components

of contexts, for instance when they do not take active part in the transition or in

order to avoid unnecessarily tight constraints over components. This is achieved

by including variables as formulas of the logic which are fulfilled by any process.

For instance, the formula �aX is satisfied by any process which is able to perform

an action a, i.e. by any process p such that p →a q for some q. Variables in

formulae will be used to identify the continuation, or residual, of a process after it

has exhibited the capabilities and structure imposed by the formula. For instance,

whenever p |= �aX and thus p →a q, the variable X in the formula �aX, identifies

the continuation q. We say that p satisfies φ with residual q, written p |= φ; q, when

p |= φ[q/X ], for X being the only process variable of φ. Symbol ; is also used for

formulae composition such that φ;ψ is an alias for φ[ψ/X ].

2.2 Symbolic Transition Systems

An sts S is a set of symbolic transitions

C[X]
φ
−→aD[Y ]

The variable names in contexts are not relevant, while the correspondence be-

tween each variable X in the source and its residual Y in the target, as expressed

by the formula φ in which the residual may occur, is relevant.

For S to provide an abstract view of a given process calculus we require some

additional properties enforcing the correspondence with the ground transitions over

components. Intuitively, whenever C[X]
φ
−→aD[Y ], the context C, if instantiated

with any component satisfying φ, must be able to perform action a and become a

suitable instance of D. More precisely, for any component q such that p |= φ; q, the

component C[p] can perform a becoming D[q] (soundness). Analogously, any ground

transition on components C[p] →a q should have a suitable symbolic counterpart

with source C[X] (completeness).

A constructive procedure for determining a correct and complete sts has been

defined (see [3]). It relies on unification for defining the constraints over unknown
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components of a coordinator according to the structure of semantical rules. It can

be straightforward implemented in Prolog for a large class of calculi. An overview

of the construction will be given in Section 3.1.

Example 2.1 Let C[X] denote an arbitrary context in Tick. Then the sts con-

sisting of the following (schema of) symbolic transitions is sound and complete:

(a1) . . . (an) a.C[X]
Y
−−→τ (a1) . . . (an)C[Y ] (a1) . . . (an)X

�a Y
−−−−→τ (a1) . . . (an)Y

(a1) . . . (an) �. C[X]
Y
−−→�(a1) . . . (an)C[Y ] (a1) . . . (an)X

�� Y
−−−−→�(a1) . . . (an)Y

where n ≥ 0, a ∈ {a1, . . . , an} and � �∈ {a1, . . . , an}. Intuitively, either the hole

does nothing and the rest of the context is able to execute an action according to

(hide) or (lift) (leftmost transitions), or the hole itself is able to perform an action

(rightmost transitions).

For example, the contexts (a) (b) a.X and (a) (b)X have the transitions

(a) (b) a.X
Y
−−→τ (a) (b)Y and (a) (b)X

�α Y
−−−−→τ (a) (b)Y (a) (b)X

�� Y
−−−−→�(a) (b)Y

for � �∈ {a, b} and α ∈ {a, b}.

2.3 Strong Symbolic Bisimilarities

Given a process calculus, several observational equivalences can be defined on top

of its operational semantics given in terms of a labelled transition system (lts).

We focus on bisimilarity, by far the most popular equivalence due to its suitability

to support modular reasoning and efficient model checking techniques. We start

recalling ground bisimilarity.

Definition 2.2 [∼] A strong bisimulation is a symmetric relation ÷ over processes

such that if p ÷ q, then for any transition p →a p′ a component q′ and a transition

q →a q′ exist such that p′ ÷ q′. We denote by ∼ the largest bisimulation, called

strong bisimilarity or just bisimilarity.

A natural way of lifting equivalences from ground processes to contexts consists

of considering all possible closed instances of the contexts, so that C[X] ÷u D[X]

if and only if ∀p,C[p] ÷ D[p]. However, universal quantification makes verification

hard when not unfeasible. Moreover, such a bisimilarity works with a complete,

although potentially infinite, specification of the system future behaviour, i.e. all

its possible instantiations. This may not be appropriate when dealing with open

systems. Informally speaking, the instant in which information becomes available

seems to have a role in distinguishing the behaviour of different contexts.

Definition 2.3 [∼s] A symmetric relation ÷ over the set of contexts C is a strict

symbolic bisimulation if for any two contexts C[X] and D[X] such that C[X]÷D[X],

for any transition

C[X]
φ
−→aC

′[Y ]

there exists a transition D[X]
φ
−→aD

′[Y ] such that C ′[Y ]÷D′[Y ]. The largest strict
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symbolic bisimulation is an equivalence relation ∼s called strict symbolic bisimilar-

ity.

For instance, referring to the calculus Tick, we can show that (a) (b)X ∼s

(b) (a)X, since the symbolic moves for the contexts (see Example 2.1) are of the

kind

(a) (b)X
�α Y
−−−−→�(a) (b)Y (b) (a)X

�α Y
−−−−→�(b) (a)Y

where � = α if α �∈ {a, b} and � = τ , otherwise.

For a sound and complete sts we have ∼s ⇒ ∼u, but the converse does not hold

in general. As mentioned, open processes that are equivalent under strict symbolic

bisimilarity are ensured to be equivalent under universal closure but the vice-versa

may not hold.

A non-trivial relaxation in the presence of spatial formulae regards the require-

ment of exact matching between the formulae labels: a transition can be simulated

by another transition with weaker spatial constraints on the residuals.

Definition 2.4 [
�

∼l] A symmetric relation ÷ over the set of contexts C is a loose

symbolic bisimulation if for any pair of contexts C[X] and D[X] such that C[X] ÷
D[X], for any transition

C[X]
φ
−→aC

′[Y ]

a transition D[X]
ψ
−→aD

′[Z] and a spatial formula ψ′ exists such that φ = ψ;ψ′

and C ′[Y ] ÷ D′[ψ′]. The greatest loose bisimulation
�

∼l is called loose symbolic

bisimilarity.

For sound and complete sts it holds ∼s ⇒
�

∼l ⇒ ∼u. We note that
�

∼l is

not guaranteed to be an equivalence relation, since it may fail to be transitive in

some “pathological” situations (see the example in [2]). In such cases, its transitive

closure (
�

∼l)
∗ should be considered as the relevant equivalence.

2.4 Weak Symbolic Bisimilarities

Many calculi, in particular those representing distributed systems, present silent

actions (τ) that model internal (non-observable) computations. In such cases,

strong bisimilarity is too fine, and weak bisimilarity ≈, which abstracts away non-

observable transitions during the simulation game, provides a more meaningful

equivalence. We denote by ≈u its counterpart over contexts defined by universal

closure, and we present a straight weak extension of symbolic bisimilarities.

The relations
φ

=⇒a and
φ

=⇒ represent in a single transition, called weak (sym-

bolic) transition, a sequence of symbolic transitions with at most one observable

action or none, respectively. Formula φ, labelling the weak transitions, arises as

the composition of the formulae labelling each single step. Then C[X]
φ

=⇒ D[Y ]

if C[X]
φ1
−−→τ

φ2
−−→τ · · ·

φh
−−→τD[Y ], with φ = φ1; . . . ;φh and h ≥ 0. Analogously,

C[X]
φ

=⇒a D[Y ] stands for C[X]
φ1
−−→τ · · ·

φk−1
−−−−→τ

φk
−−→a

φk+1
−−−−→τ · · ·

φh
−−→τD[Y ]. In the

following we let
φ

=⇒
�̂

denote
φ

=⇒ if � = τ and
φ

=⇒� otherwise.
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Definition 2.5 [≈s] A symmetric relation ÷ on contexts is a strict weak symbolic

bisimulation if for all contexts C[X], D[X] with C[X] ÷ D[X] we have

• if C[X]
φ
−→�C

′[Y ] then D[X]
φ

=⇒
�̂
D′[Y ] and C ′[Y ] ÷ D′[Y ].

The largest strict weak symbolic bisimulation ≈s is an equivalence relation called

strict weak symbolic bisimilarity (it holds ∼s⇒≈s⇒≈u).

The contexts (a) a.X and (a)X of the Tick calculus are not strict bisimilar, but

they are weak strict bisimilar. Roughly, this happens because the symbolic move

(a) a.X
Y
−−→τ (a)X can be weakly simulated by (a)X by remaining idle.

Finally, a loose weak symbolic bisimilarity can be defined, abstracting on silent

actions and releasing constraints over formula correspondence.

Definition 2.6 [≈l] A symmetric relation ÷ on contexts is a loose weak symbolic

bisimulation if for all contexts C[X], D[X] with C[X] ÷ D[X]

• if C[X]
φ
−→�C

′[Y ] then D[X]
ψ

=⇒
�̂
D′[Z] and a spatial formula ψ′ exists such that

φ = ψ;ψ′ and C ′[Y ] ÷ D′[ψ′].

The largest loose weak symbolic bisimulation ≈l is called loose weak symbolic bisim-

ilarity.

3 Scenario: Web Crawlers

Web crawlers (also known as bots, spiders or scutters) are programs that systemat-

ically browse the web to gather (and even produce) data. Prominent examples in-

clude useful applications such as those used to feed search engines (e.g. Googlebot),

and spambots that collect email addresses or post forums with malicious purposes

(e.g. spamming or phishing).

Crawlers start their search with a seed of pages and maintain a list of visited

pages. Known pages are examined to extract their links and add them to the list of

pages to visit (the crawling frontier). Crawlers follow certain policies that regard

page selection or if and how frequently pages are revisited. Such policies have an

impact on the performance of a site and in particular on its performance: a non

polite crawler with a high frequency of page request can overload the web server.

Some protocols exist that aim at harmonising the collaboration between crawlers

and sites. For instance, robot exclusion and inclusion protocols (e.g. the de-facto

standards robots.txt and sitemaps, respectively) are used by web sites to inform

crawlers of links to be excluded and included in their spidering activity. Crawlers

are free to respect or not such protocols but web servers can sometimes distinguish

crawlers from human browsers (e.g. based on navigation speed or patterns) and

thus control whether protocols are being respected or violated.

We consider a scenario in which crawlers adhere to different policies that depend

on the level of trust in the information available from the net, viz. their propensity to

check the validity of links. A scrupulous crawler checks the existence (e.g. requesting

the page header only) of a page before deciding to examine it (i.e. downloading it
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completely) and before communicating the page to its (possibly remote) database. A

cautious crawler moves (i.e. changes target page) in a similar way, but does not check

the page existence when communicating the url of a page to its database. A rash

crawler checks nothing, i.e. it assumes the existence of pages that it communicates

or tries to examine. All three kinds of crawler are able to examine an existing

page. For the sake of simplicity we restrict to static networks: no page is added or

removed during crawling activities.

Each kind of crawler has a different impact on a web server performance: a

scrupulous crawler performs more page requests than the the cautious one, which,

in his turn, performs more requests than the rash one.

We model such scenario with a simple name-based calculus where crawler agents

c operate on a web of links link(x, y). We assume denumerable sets of channel names

(ranged by a, b, ...) and of site addresses (ranged by x, y, z, w, ...) are available. The

web system s may be empty or comprise crawlers, links and their composition:

s ::= 0 | c | link(x, y) | s|s

Pages are seen just as collections of links with the same origin. If the collection

is empty we say the page is missing, it is valid otherwise. If the target of a link is

a missing page, then the link is called broken.

A crawler is an autonomous agent that can visit sites, learn new site addresses

and communicate them to its database on a given channel. We distinguish three

kinds of crawlers

c ::= rash(a, x, ỹ) | cautious(a, x, ỹ) | scrupulous(a, x, ỹ)

where a is the channel for communicating site addresses, x is the current site address

of the crawler and ỹ is the set of site addresses the crawler has already learnt (but

not necessarily valid or visited). We let ỹ denote the set {y1, ..., yn} and write ỹ +x

for the set {y1, ..., yn, x} and ỹ − yi for the set {y1, ..., yi−1, yi+1, ..., yn}.

The operational semantics is given by few (unconditional) rewrite rules, see

Figures 2–4, assuming that parallel composition is associative, commutative and

with identity 0. The rules are parametric w.r.t. a generic system s and w.r.t.

suitable site addresses x, ỹ, z, w and reference channel a for the crawler.

The rules are accompanied by a self-explanatory visual notation that is remi-

niscent of a graphical interpretation of process calculi (see e.g. [13,12]): names are

represented as nodes of type ◦ and • for channels and pages, respectively, crawlers

and links as hyper-edges (rounded boxes) and their arguments (names used) are in-

dicated by tentacles of various types. More precisely, the first argument of a crawler

(e.g. the address of its database) is indicated by an upwards concave tentacle, the

second one (the current site) by a bar-ended tentacle and the set of visited sites by

arrowed tentacles. For links the arrowed tentacle indicates the target and the plain

one represents the source. In our intuitive notation, items in the left- and right-hand

side are identified by their position and we remark that a graph rewriting reading of

the rules should be understood with matchings not being injective, i.e. two different

rule nodes can be matched with the same actual node (e.g. learning of known pages

is allowed).
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c(a, x, ỹ) | link(x, z) | s →τ c(a, x, ỹ + z) | link(x, z) | s

(i)

◦

�� ��
�� �	c

��

�

�� ��

•
�� ��
�� �	link �� •

• ... •

→τ

◦

�� ��
�� �	c

��

�

�� ��

��•
�� ��
�� �	link �� •

• ... •

(ii)

Figure 2. Textual (i) and graphical (ii) representation of Learn rules where c ∈ {rash, cautious, scrupulous}.

rash(a, x, ỹ + z) | s →τ rash(a, z, ỹ + x) | s

c(a, x, ỹ + z) | link(z,w) | s →τ c(a, z, ỹ + x) | link(z,w) | s

(i)

◦

�� ��

�� �	c′

��

�

�� ��

•

• ... •

→τ

◦

�� ��

�� �	c′

��

���

�� •

• ... •

◦

�� ��
�� �	c

��

�

�� ��

•

• ... •
�� ��
�� �	link �� •

→τ

◦

�� ��
�� �	c

��

���

�� •

• ... •
�� ��
�� �	link �� •

(ii)

Figure 3. Textual (i) and graphical (ii) representation of Move rules where c′ = rash and
c ∈ {cautious, scrupulous}.

Any crawler can learn new site addresses by looking at the links departing from

its current site. The corresponding rules are identical for the three different kind

of crawlers and abstract away the actual interaction that would take place in con-

crete crawlers (rules Learn). The graphical representation makes evident that the

interface of the crawler agent may be enlarged by the acquisition of a new site

address.

Any crawler can move to new sites (rules Move). In particular, rash crawlers

move eagerly around the web, to any target they have learnt; cautious and
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c(a, x, ỹ) | s →az c(a, x, ỹ) | s with z ∈ ỹ + x

scrupulous(a, x, ỹ) | s →ax scrupulous(a, x, ỹ) | s

(i)

a
◦

�� ��
�� �	c

��

�

�� ��

•x

•y1
... •yn

→az

a
◦

�� ��
�� �	c

��

�

�� ��

•x

•y1
... •yn

a
◦

�� ��

�� �	c′

��

�

�� ��

•x

• ... •

→ax

a
◦

�� ��

�� �	c′

��

�

�� ��

•x

• ... •

(ii)

Figure 4. Textual (i) and graphical (ii) representation of Obs rules where c ∈ {rash, cautious} and
c’=scrupulous.

scrupulous crawlers move only to valid sites. The graphical representations show

the two different policies used by the crawlers and make evident the swap of names

in the interface of the crawler.

A second difference in the considered policies lies in the observations crawlers

can make (rules Obs): rash and cautious communicate any site addresses they know;

scrupulous crawlers communicate only site addresses they are currently examining.

3.1 Symbolic Transitions

A (sound and complete) symbolic transition system for our calculus is simply ob-

tained by taking as symbolic transitions for each context C[X] all the transitions

resulting from the possible (most general) unifications with the left hand sides of

each rewrite rule, where s, x, ỹ, z, w, a are seen as (fresh) variables. More precisely,

if L[s] →α R[s] is a rewrite rule (for a suitable label α, possibly the silent one), and

θ is a most general unifier between L[s] and C[X], then we have the transition

C[X]
θ(X)
−−−−→αθ(R[s])

where θ(X) denotes the term substituted for X by the substitution θ (which with

a slight abuse of notation can be directly interpreted as a spatial formula) and

θ(R[s]) inductively applies the substitution θ to the variables in R[s] (recall that

θ(L[s]) = θ(C[X])).

For instance, considering the context rash(a, x, ỹ) | X and the Learn rule of
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R[X]
link(x,z)|Y
−−−−−−−−−→τ rash(a, x, ỹ + z) | link(x, z) | Y (for any z)

R[X]
Y
−−→τ rash(a, yi, ỹ + x − yi) | Y

R[X]
Y
−−→ax R[Y ]

R[X]
Y
−−→ayi

R[Y ]

K[X]
link(x,z)|Y
−−−−−−−−−→τ cautious(a, x, ỹ + z) | link(x, z) | Y (for any z)

K[X]
link(yi,z)|Y
−−−−−−−−−→τ cautious(a, yi, ỹ + x − yi) | link(yi, z) | Y (for any z)

K[X]
Y
−−→ax K[Y ]

K[X]
Y
−−→ayi

K[Y ]

S[X]
link(x,z)|Y
−−−−−−−−−→τ scrupulous(a, x, ỹ + z) | link(x, z) | Y (for any z)

S[X]
link(yi,z)|Y
−−−−−−−−−→τ scrupulous(a, yi, ỹ + x − yi) | link(yi, z) | Y (for any z)

S[X]
Y
−−→ax S[Y ]

Figure 5. Some examples of symbolic transitions.

Fig. 2, we obtain a unifier θ that unifies X with link(x, z)|s. The resulting symbolic

transition is the topmost of Fig. 5.

Unification is considered up to associativity, commutativity and identity of par-

allel composition (see [3]). We also require an exact matching for non-process vari-

ables x, ỹ, z, w, a appearing in the rules, i.e. θ must substitute them with actual

values.

In the following we shall often focus on the three open processes R[X], K[X] and

S[X] defined below:

R[X]
def
= rash(a, x, ỹ) | X

K[X]
def
= cautious(a, x, ỹ) | X

S[X]
def
= scrupulous(a, x, ỹ) | X

Some of the symbolic transitions for R[X], K[X] and S[X] obtained with this

technique can be found in Fig. 5. In particular, the first transition is obtained from

rule Learn for rash contexts, the second one from rule Move, the next two from

rule Obs, and so on. Other transitions, needed for determining a complete sts

regard the presence of crawlers in holes and are not considered here for brevity.

3.2 Abstract Semantics

A natural question that emerges is: under which situation can the different crawlers

exhibit essentially the same abstract behaviour? If we consider weak bisimilarities

then it is evident that rash(a, x, ỹ)|s and cautious(a, x, ỹ)|s are equivalent for any
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given system s. Indeed even if they follow different movement policies both commu-

nicate all the addresses they gather (valid or not). Instead, it is possible to find suit-

able networks that distinguish scrupulous crawlers from rash and cautious crawlers

with the same knowledge. For instance, consider the processes rash(a, x, ∅)|link(x, y)

and scrupulous(a, x, ∅)|link(x, y). The latter will be able to communicate only the

valid site x, while the former can communicate also the missing site y. It follows

from the considerations above that R[X] ≈u K[X], whilst R[X] �≈u S[X] �≈u K[X].

When we consider symbolic semantics, the situation is slightly different. In

fact, it might be the case that certain silent moves for K[X] require the presence of

some links as hypothesis, while this is not the case for R[X]. This is evident when

comparing the two transitions relative to the Move rules for R[X] and K[X] (from

Fig. 5):

R[X]
Y
−−→τ rash(a, yi, ỹ + x − yi) | Y

K[X]
link(yi,z)|Y
−−−−−−−−−→τ cautious(a, yi, ỹ + x − yi) | link(yi, z) | Y (for any z)

It follows that R[X] �≈s K[X] but this is not a desirable result, when considering

that both contexts behave bisimilarly in terms of pages observed. Indeed, we know

that R[X] and K[X] are equivalent under universal closure weak bisimilarity.

However, the situation changes when we consider the coarser equivalence ≈l,

according to which the symbolic move of K[X] can be simulated by the less con-

straining (more abstract) move of R[X]. But can K[X] loosely simulate R[X]? The

answer is yes, because even if K[X] has no transition that can be used to simulate

the silent step

R[X]
Y
−−→τ rash(a, yi, ỹ + x − yi) | Y

still, K[X] can just stay idle. Thus while R[X] �≈s K[X] we have R[X] ≈l K[X].

In words, the loose bisimilarity approximates universal closure weak bisimilarity,

better than strict bisimilarity.

The situation is slightly different when considering K[X] and S[X], because S[X]

cannot observe yi without first moving to yi, thus requiring the site to be valid, while

K[X] can observe it anyway. S[X] can only communicate yi as:

S[X]
link(yi,z)|Y
−−−−−−−−−→τ scrupulous(a, yi, ỹ + x − yi) | link(yi, z) | Y

Y
−−→ayi

...

Hence, we have that cautious and scrupulous are not equivalent under loose weak

bisimilarity but neither they are under universal weak bisimilarity. Indeed, it can be

shown that the behaviour of a cautious crawler subsumes that of a scrupulous crawler

by showing that K[X] loosely simulates S[K[X]]. In words a context with a cautious

crawler behaves like a context with both a cautious and a scrupulous crawler.

4 Typed Symbolic Transition Systems

In the previous section we saw that some crawlers can exhibit different behaviours

depending on the network of pages they operate on. Now suppose that we are given

some guarantees about the holes that appear in a context, like the fact that R[X],
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K[X] and S[X] represent valid networks, in the sense that they contain valid site

addresses only. Then, we would expect that R[X], K[X] and S[X] are all equivalent

as they are all able to observe the same pages in the same order. Indeed, we

would like to consider them to be equivalent under a variant of universal weak

bisimilarity that takes into account the set of valid holes, rather than any possible

system. Unfortunately, we saw in the previous section that our loose equivalence

≈l distinguishes cautious and rash from scrupulous in the general case.

In this section we propose a technique for stipulating some guarantees over the

holes and for manipulating the symbolic transitions under such guarantees in order

to account for an equivalence coarser than ≈l. We show the technique at work on our

case study and then try to distill some general guidelines for making it applicable

in general.

4.1 Typing

First, we define a suitable type system for terms. Here we consider a type system

based on the page addresses with particular types for valid networks. Types take

the form T
d̃,p̃

, where d̃ is the set of addresses that must correspond to valid sites,

i.e. defined within the system, and p̃ is the set of addresses that can be pointed by

the system without being necessarily valid within the system itself.

Definition 4.1 [Typed Systems] A system s has type Td̃,p̃, written s : Td̃,p̃, iff

• for any x ∈ d̃ there exists y, s′ such that s ≡ s′|link(x, y);

• for any link link(x, y) in s such that y �∈ p̃ there exists z, s′ such that s ≡
s′|link(y, z).

Let def (s) = {x|∃y, s′ such that s ≡ link(x, y)|s′ } denote the set of defined

pages of a system s, and ref (s) = { y|∃x, s′ such that s ≡ link(x, y)|s′ } denote the

set of pointed pages of a system s. Then, in the definition above, d̃ ⊆ def (s) is

the set of pages that the typed system explicitly guarantees to exist, while p̃ ⊇
ref (s)− def (s) are the pages that the system is allowed to point even if they might

not be defined within the system itself. Any pointed page y �∈ ref (s) that is not

in p̃ must necessarily be provided by the system itself, i.e. it must be in def (s).

Summing up, a system s is allowed to point to pages in d̃, p̃ − d̃ (possibly outside

s) and even not in p̃, provided that they are in def (s). Note that d̃ and p̃ are not

necessarily disjoint, although, according to the definition, their intersection can be

excluded from p̃, as stated by the following lemma.

Lemma 4.2 Given a system s such that s : T
d̃,p̃

, for some d̃ and p̃, then s : T
d̃,p̃−d̃

.

As underlined by the lemma, it is easy to see that a site can have different

types. More importantly, any system can be typed, i.e. for any s there exist d̃ and

p̃ such that s : T
d̃,p̃

(e.g. T∅,ref (s)−def (s)). The following lemma expresses how the

requirements imposed by a type can be relaxed: if a system fulfils a type then it

also fulfils a type that requires less page definitions than the original one, or allows

a larger set of pointed pages.
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Lemma 4.3 If s : T
d̃,p̃

, then for any x, y it holds

• s : Td̃−x,p̃, and

• s : T
d̃,p̃+y

.

The above lemma induces a partial order over types, i.e. T
d̃,p̃

� Tẽ,q̃ when d̃ ⊆ ẽ

and q̃ ⊆ p̃. It is easy to see that the maximal type amongst those fulfilled by a

system s is Tdef (s),ref (s)−def (s), i.e. the one that exposes all the defined pages and

permits only the needed ones to be pointed outside the system. Such type represents

the most precise type we can assign to a system and it is called the characteristic

type of s.

Example 4.4 Let s ≡ link(x, y)|link(x, z)|link(y,w). Then the characteristic type of

s is T{x,y},{z,w}. By Lemma 4.3 we also know that s : T{x},{z,w,x} and s : T∅,{z,w,x,u}.

On the contrary, it is not the case that s : T{y},{z}, because s points to w �∈ def (s)

and w is not mentioned in the type. Similarly, it is not the case that s : T{x,y,w},{z,w},

because w is not a defined name of s.

Clearly, the presence of crawlers does not influence the typing of a system, which

depends just on links. Moreover, as the rewrite rules cannot change the set of links

in the system, it follows that the typing enjoys subject reduction.

Lemma 4.5 (Subject Reduction) If s : T
d̃,p̃

and s →α s′, then s′ : T
d̃,p̃

.

Finally, a type-based characterisation of valid systems can be expressed by the

fact that the system has a type requiring that all the pointed pages are defined in

the system.

Definition 4.6 [Valid System] A system s is called valid if s : T
d̃,p̃

and p̃ ⊆ d̃.

From Lemma 4.2 and Lemma 4.3, an alternative characterisation of valid systems

as those s such that s : T∅,∅ easily follows. Quite naturally, compositional properties

of types and systems can be determined, as for instance stated by the next lemma

and its trivial corollary.

Lemma 4.7 Let s : T
d̃,p̃

and s′ : T
d̃′,p̃′

be two typed systems, then s|s′ : T
d̃+d̃′,p̃+p̃′

.

It is immediate from from Lemma 4.2 to see that s|s′ : T
d̃+d̃′,p̃+p̃′−(d̃+d̃′) and from

Lemma 4.3 that s|s′ : T∅,p̃+p̃′−(d̃+d̃′).

Corollary 4.8 Let s : T
d̃,p̃

and s′ : T
p̃,d̃

be two typed systems, then s|s′ is valid.

More relevant for the application of our technique is the following theorem. It

characterises the structure of a typed site with respect to the links and other typed

components occurring in it.

Theorem 4.9 For any site s, site addresses d̃, p̃ and x ∈ d̃, the typing s : Td̃,p̃

holds iff

• y ∈ p̃ and s′ exist such that s ≡ link(x, y)|s′ and s′ : Td̃−x,p̃+x , or
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Figure 6. First item of theorem 4.9.

• z �∈ p̃ and s′ exist such that s ≡ link(x, z)|s′ and s′ : T
d̃−x+z,p̃+x

.

The theorem states that given a typing s : T
d̃,p̃

we know that s can be decom-

posed in two forms: (i) the site has a link from a guaranteed page x to a page y in

p̃, hence the rest of the site does not need to guarantee x and is allowed to point

to x, or (ii) the site has a link from a guaranteed page x to page z not in p̃. By

definition such page must necessarily be part of the site. Hence, the rest of the site

has a type requiring to guarantee z. The converse implication follows from the type

definition.

We observe that Theorem 4.9 establishes a logical equivalence between the type

predicate : T
d̃,p̃

and the disjunction of spatial formulas with typed holes, namely:

∨

y∈p̃

link(x, y)| : T
d̃−x,p̃+x

∨
∨

z 	∈p̃

link(x, z)| : T
d̃−x+z,p̃+x+z

Figures 6 and 7 illustrate the two items of theorem 4.9. A site is denoted by

enclosing it in a dotted box. Pages are replicated and connected with waved arrows

and lines to emphasise the interface of a site (its type). The type of the site is

written at the top left corner of the enclosing box. The remaining part of the site

(i.e. s′) is represented as an edge labelled with its name and type.

4.2 Decorated Variables

The second step towards our typed sts is the decoration of process variables with

typing information, so to consider well-typed contexts only.

A decorated variable takes the form X : T
d̃,p̃

. It represents a hole that can be

filled only with systems s of the corresponding type, i.e. such that s : T
d̃,p̃

.

Definition 4.10 [Typed Contexts] We say that C[X : T
d̃,p̃

] has type Tẽ,q̃, written

C[X : T
d̃,p̃

] : Tẽ,q̃ iff for any s : T
d̃,p̃

then C[s] : Tẽ,q̃. A context C[X : T
d̃,p̃

] is called

valid if C[X : T
d̃,p̃

] : Tẽ,q̃ and q̃ ⊆ ẽ.

Lemma 4.11 For any C[X : Td̃,p̃], there exist ẽ and q̃ such that C[X : Td̃,p̃] : Tẽ,q̃.
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Figure 7. Second item of theorem 4.9.

•x
�� ��
�� �	link �� •z

?

?
�� ��
�� �	X

��

��

?

�� ��
�� �	link

��
•y

T{x,y,u},{z,v}

•x
�� ��
�� �	link �� •z •����

•u

�� ��

�� �	
X:T{y,u},{x,v}

��





•v •����

�� ��
�� �	link

��
•y

•

��
��
��
��
��
��
��
��
��
��
��
��
��

•

��
��
��
��
��
��
��
��

•
��

Figure 8. Untyped and typed contexts.

Note that any C[X] takes the form s|X for some s, so that Lemma 4.7 can

be exploited to type C[X : T
d̃,p̃

] by combining the characteristic type of s and the

typing information attached to X. Moreover the type of X can be restricted while

preserving the type of its context as stated by the following lemma.

Lemma 4.12 For any z and y if C[X : T
d̃,p̃

] : Tẽ,q̃ then:

• C[X : T
d̃,p̃−y

] : Tẽ,q̃, and

• C[X : Td̃+z,p̃+z] : Tẽ,q̃.

Example 4.13 Figure 8 depicts a context C[X] ≡ link(x, z) | link(y, y) | X in un-

typed form (left) and with a typing C[X : T{y,u},{x,v}] : T{x,y,u},{z,v} that constraints

X to define pages y and u and allows X to point to x, v.

As far as the contexts R[X], K[X] and S[X] are concerned, we are interested in

considering valid systems w.r.t. the names initially known by the crawlers, hence

we can restrict to R[X : Tỹ+x,∅], K[X : Tỹ+x,∅] and S[X : Tỹ+x,∅], which are all of type

Tỹ+x,∅, i.e. valid.
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4.3 Typed Universal Equivalence

The third step is to refine the universal weak bisimilarity ≈u according to the type

decoration of the variables: we say that C[X : T
d̃,p̃

] is universally weak bisimilar to

D[X : T
d̃,p̃

], written C[X : T
d̃,p̃

] ≈u D[X : T
d̃,p̃

], if for any s : T
d̃,p̃

we have C[s] ≈
D[s].

Lemma 4.14 For any type T
d̃,p̃

and any contexts C[X] and D[X] such that

C[X] ≈u D[X] we have C[X : T
d̃,p̃

] ≈u D[X : T
d̃,p̃

].

Note that the overall types of C[X : T
d̃,p̃

] and D[X : T
d̃,p̃

] are not considered and

might be even different. From the above lemma, it follows that R[X : Tỹ+x,∅] ≈u

K[X : Tỹ+x,∅]. Moreover, from the notion of typed systems we can expect that

K[X : Tỹ+x,∅] ≈u S[X : Tỹ+x,∅], but the proof of K[X : Tỹ+x,∅] ≈u S[X : Tỹ+x,∅] re-

quires universal closure w.r.t. all systems s : Tỹ+x,∅.

4.4 Decorated Symbolic Transitions

The last and fourth step is to exploit symbolic equivalences to conclude that

K[X : Tỹ+x,∅] ≈u S[X : Tỹ+x,∅], i.e. that all three crawlers are equivalent in valid

networks that contain the initial knowledge of the crawlers. Unfortunately, we

have already seen that K[X] �≈l S[X]. However, our idea is to exploit the logical

equivalence exposed by Theorem 4.9 to give S[X] the possibility of simulating the

unmatched transition (see Section 3.2)

K[X]
Y
−−→ayi

K[Y ]

We notice that all symbolic transitions carry as formula just some spatial infor-

mation. In general, given the kind of rewrite rules under consideration, such spatial

labels can take one of the following forms (where c stands for the presence of a

suitable crawler):

(a) C[X]
Y
−−→α D[Y ] (b) C[X]

c | Y
−−−−→α D[Y ]

(c) C[X]
link(x,y) | Y
−−−−−−−−−−→α D[Y ] (d) C[X]

c | link(x,y) | Y
−−−−−−−−−−−−→α D[Y ]

For the forms (a) and (b) (observations Y and c | Y , respectively) we just keep

the decoration assigned in the source, resulting in the decorated transitions:

(a’) C[X : Td̃,p̃]
Y
−−→α D[Y : Td̃,p̃] (b’) C[X : Td̃,p̃]

c | Y
−−−−→α D[Y : Td̃,p̃]

For the forms (c) and (d) (observations link(x, y) | Y and c | link(x, y) | Y ) we

exploit Theorem 4.9 to derive a proper decoration for Y . We show what happens

for link(x, y) | Y , but the other case is entirely analogous.

(c1) C[X : T
d̃,p̃

]
link(x,y) | Y
−−−−−−−−−−→α D[Y : T

d̃−x,p̃+x
] if y ∈ p̃

(c2) C[X : Td̃,p̃]
link(x,y) | Y
−−−−−−−−−−→α D[Y : Td̃−x+y,p̃+x] if y �∈ p̃

The decorated symbolic transitions for K[X : Tỹ+x,∅] are in Fig. 9, where z �∈
ỹ + x. Note that it is not important to decorate Y also in the labels, because they

are matched exactly, and given that the decoration of X is known, that of Y follows

unambiguously.
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K[X : Tỹ+x,∅]
link(x,x)|Y
−−−−−−−−−→τ cautious(a, x, ỹ + z) | link(x, z) | Y : Tỹ,x

K[X : Tỹ+x,∅]
link(x,yi)|Y
−−−−−−−−−→τ cautious(a, x, ỹ + z) | link(x, yi) | Y : Tỹ,x

K[X : Tỹ+x,∅]
link(x,z)|Y
−−−−−−−−−→τ cautious(a, x, ỹ + z) | link(x, z) | Y : Tỹ+z,x

K[X : Tỹ+x,∅]
link(yi,z)|Y
−−−−−−−−−→τ cautious(a, yi, ỹ + x − yi) | link(yi, z) | Y : Tỹ+x−yi,x

K[X : Tỹ+x,∅]
link(yi,yj)|Y
−−−−−−−−−−→τ cautious(a, yi, ỹ + x − yi) | link(yi, yj) | Y : Tỹ+x−yi,x

K[X : Tỹ+x,∅]
link(yi,z)|Y
−−−−−−−−−→τ cautious(a, yi, ỹ + x − yi) | link(yi, z) | Y : Tỹ+x−yi+z,x

K[X : Tỹ+x,∅]
Y
−−→ax K[Y : Tỹ+x,∅]

K[X : Tỹ+x,∅]
Y
−−→ayi

K[Y : Tỹ+x,∅]

Figure 9. Some examples of decorated symbolic transitions (z 	∈ ỹ + x).

We define a new notion of bisimilarity, called decorated loose weak bisimilarity

≈d.

Definition 4.15 [≈d.] Two contexts C[X : T
d̃,p̃

] and C ′[X : T
d̃,p̃

] are decorated loose

weak bisimilar if there is a symmetric relation ÷ s. t. whenever C[X : T
d̃,p̃

] ÷

C ′[X : Td̃,p̃] we have that for each transition C[X : Td̃,p̃]
φ
−→α D[Y : Tẽ,q̃] the following

holds:

(i) φ �= Y and there exists a (weak) decorated symbolic transition

C ′[X : T
d̃,p̃

]
ψ

=⇒α̂ D′[Z : T
f̃ ,r̃

] and a spatial formula ψ′ such that φ = ψ;ψ′

and D[Y : Tẽ,q̃] ÷ D′[ψ′],

(ii) φ = Y (and hence d̃ = ẽ, p̃ = q̃) and

i) either C ′[X : T
d̃,p̃

]
Y

=⇒α D′[Y : T
d̃,p̃

] and D[Y : T
d̃,p̃

] ÷ D′[Y : T
d̃,p̃

],

ii) or for any x ∈ d̃, y ∈ p̃ and z �∈ p̃ it holds that:

• C ′[X : Td̃,p̃]
link(x,y) | Y

=⇒ α D′[Y : Td̃−x,p̃+x] with D[link(x, y) | Y : Td̃−x,p̃] ÷
D′[Y : T

d̃−x,p̃+x
], and

• C ′[X : T
d̃,p̃

]
link(x,z) | Y

=⇒ α D′′[Y : T
d̃−x+z,p̃+x

] with D[link(x, z) | Y :

T
d̃−x+z,p̃+z

] ÷ D′′[Y : T
d̃−x+z,p̃+x

]

where α̂ stands for label α if α �= τ and no label otherwise.

Note that we give the possibility of simulating the formula Y when the hole has

type T
d̃,p̃

by considering all the possible cases exposed by Theorem 4.9. That is, not

only a step could be simulated by one with a more general label as it was possible

also in ≈l, but here a Y labelled step can be simulated by the collection of more

specific steps performed by the instances compatible with the type of Y .

Let us now return to our goal of showing the equivalence of crawlers in valid

networks. This result is obtained by showing that S[X : Tỹ+x,∅] ≈d K[X : Tỹ+x,∅].
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Indeed, we now can show that the symbolic move

K[X : Tỹ+x,∅]
Y
−−→ayi

K[Y : Tỹ+x,∅]

can be simulated by the symbolic moves

S[X : Tỹ+x,∅]
link(yi,z)|Y

=⇒ ayi
scrupulous(a, yi, ỹ + x− yi) | link(yi, z) | Y : Tỹ+x−yi,yi

for z ∈ ỹ + x, and

S[X : Tỹ+x,ỹ+x]
link(yi,z)|Y

=⇒ ayi
scrupulous(a, yi, ỹ + x − yi) | link(yi, z) | Y :

Tỹ+x−yi+z,yi
for z �∈ ỹ + x.

In fact, we have also:

K[link(yi, z) | Y : Tỹ+x−yi,yi
] ≈d scrupulous(a, yi, ỹ + x − yi) | link(yi, z) | Y :

Tỹ+x−yi,yi
,

and

K[link(yi, z) | Y : Tỹ+x−yi+z,yi
] ≈d scrupulous(a, yi, ỹ + x − yi) | link(yi, z) | Y :

Tỹ+x−yi+z,yi
for z �∈ ỹ + x.

In conclusion all three crawlers are equivalent in valid networks according to

the decorated bisimilarity introduced in this paper and this is a nice result in the

illustrating scenario because we know that in a valid network one can freely chose

the desired policy with the guarantee of obtaining the same (observable) behaviour.

4.5 Scenario Implementation

For the convenience of the reader we have implemented our scenario and made it

available at http://www.di.unipi.it/~lafuente/ice08. The web page proposes

a simple game where players should find out the crawling policy according to obser-

vations only. While deduction is possible in missing sites, in valid sites (as shown

in this paper) it is all a matter of guessing and having luck on one’s side.

We remark that the site types T
d̃,p̃

we use are related to typical inclusion and

exclusion protocols. For instance, the sitemap index can be seen as d̃, i.e. the list

of pages whose existence a site guarantees, while the robots.txt file would be pages

in p̃ − d̃ that reside on the site, i.e. the list of pages that a site asks not to visit.

In our scenario the motivation under the site asking crawlers not to visit cer-

tain pages is that they are not guaranteed to exist and not because they contain

information the site would prefer not to be crawled, which is the typical intention

of robots.txt.

Thus, in our implementation we call this file mightmiss.txt. The polite crawler

offered there behaves like the scrupulous one, but exploits the information in that

file to perform less page existence checks, thus lowering the server’s load.

We believe that one could apply our technique to establish new crawling pro-

tocols or enrich existing ones. For instance, web sites can exhibit their type and,

based on it and desired behaviour, crawlers can decide the most convenient policy.
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5 Final remarks

We have performed a first step towards the treatment of names and types in sts,

our approach to the specification and reasoning of open systems. Our work has been

illustrated with a simple nominal calculus, inspired by a web crawling scenario. We

have shown how the usual equivalence notion of sts is too fine grained, in the sense

that it does distinguish between web crawlers one expects to be equivalent in some

networks. We have thus defined a suitable (name-decorated) type system, that

allows us, e.g. to constrain an unknown network to be valid, i.e. to not contain

any broken link. Based on such types, a new variant of bisimilarity have been

defined. According to this notion, all three considered crawlers are equivalent for

valid networks.

The presented work should be understood as a first step towards the quite am-

bitious goal of having more general equivalences, e.g. based on types defined by

structural induction.

As future work we plan to generalise our technique to prominent nominal calculi

(e.g. the π-calculus) and to deepen in the relationship with graph transformation

approaches dealing with types and unspecified graph parts (e.g. [8]). More precisely,

we would like to focus on service oriented calculi (e.g. [4]) where the notion of hole

and type naturally resemble services and their specifications.
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